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Abstract— Motivated by the sensor network setting, we con-
sider lossless storage of correlated discrete memoryless sources.
The underlying tradeoff is between exploitation of inter-source
correlation for low rate storage and efficient (low rate) selective
retrieval from the fusion storage. We define the problem of shared
descriptions (SD) source coding and relate it to the storage and
retrieval problem. We present an achievable rate region for the
SD problem and use it to characterize the storage vs. retrieval
tradeoff.

I. INTRODUCTION

The data acquired by networks of sensors generally exhibit
a high degree of correlation. There has been considerable
work on utilizing this correlation to minimize the capacity
of the link from each sensor to the fusion center. Issues in
the storage of this data at the fusion center, however, have
received less attention. We suspect that this problem may turn
out to be critical in practice. The fusion center could store
(many) received data streams separately, but this would clearly
be wasteful due to the inter-stream correlation. Hence, joint
coding for storage is naturally called for. However, an end
user may eventually be interested in retrieving only a subset
of the available streams at any given time. It would be highly
undesirable for the decoder to retrieve all the streams in order
to satisfy the user’s request for reconstructing a small subset of
them. For example, consider a network of cameras that cover
a scene or an area from a variety of angles (and/or spectral
bands, etc.). A user will eventually want to retrieve a small
subset of these streams to review an event of interest, as it
would be impossible for a human observer to view all of these
simultaneously. It is clearly highly inefficient to retrieve all the
data in order to reconstruct a small subset of the streams.

Motivated by this type of scenarios, we investigate the trade-
off between storage cost and retrieval cost in the compression
of correlated streams of data. We focus on the scenario where
the sources are discrete and memoryless and the reconstruction
is required to be (asymptotically) lossless. The problem is
formally defined in Section II. The storage problem is cast as a
source coding problem, which we term the shared descriptions
(SD) problem in Section III. Adopting earlier results by Han
and Kobayashi [1] for general multiterminal source coding
scenarios, we obtain the (non-single letter) achievable rate
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region for the SD problem. By relating the multiple encoder
problem to the multiple descriptions problem, we also obtain
a single letter characterization of a (partial) achievable rate
region. The results for the SD problem lead to a characteriza-
tion of the storage-retrieval cost tradeoff problem (Section IV).
Finally, we observe that the general solution that emerges from
the analysis involves an inordinately large computational com-
plexity. This can be mitigated by the imposition of structural
constraints on the encoder. We also study one such structural
constraint in Section IV.
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Fig. 1. Storage of correlated sources

II. PROBLEM DEFINITION

Let {(Ut1, . . . , UtK)}T
t=1 be a sequence of random vectors

defined over a discrete alphabet. The sequence is memo-
ryless and represents the realizations of a random vector
(U1, . . . , UK) ∼ pU1,...,UK (u1, . . . , uK), uk ∈ Uk at each
instant t. Alice observes the sequence of random vectors and
stores her observations as the set of bits Bs. At some later
time, Bob queries Alice for a non-empty subset q ⊂ K ,
{1, . . . ,K} of the streams. Alice retrieves a subset Bq ⊂ Bs of
the stored bits to reconstruct the data streams indexed by q (See
Fig. 1). We are interested in the tradeoff between the average
retrieval cost and the total storage cost. We will assume
infinite data streams, T → ∞, to simplify the derivation of
results, in the expectation that they will nevertheless provide
significant insight into the tradeoff for finite T .

In the following, for any set s, |s| denotes the cardinality
of the set and 2s denotes the power set of s, that is the set of
all subsets of s. For a function r, ‖r‖ denotes the cardinality
of its range. For any set q = {k1, . . . , k|q|} ⊂ K, we shall
denote (Uk, k ∈ q) by Uq and the corresponding alphabet



Uk1 × · · · × Uk|q| by Uq. A sequence of n realizations of Uq

will be denoted Un
q .

An ε-storage code (f, g, hq, q ⊂ K) of block length n for
the source (U1, . . . , UK) is the following set of mappings:

1) the encoder: f : Un
K → {0, 1}Ms , where Ms is some

positive integer,
2) the query to bit subset mapping : g : 2K → 2{1,...,Ms},

and
3) the query decoders : For each q ⊂ K, hq : {0, 1}Mq →
Un

q , where Mq = |g(q)|,
that satisfies for each q ⊂ K

Pr
[
Un

q 6= hq(f(Un
K)|g(q))

]
< ε,

where for a b bit word B and a ⊂ {1, . . . , b}, B|a denotes
the |a| bit word formed by extracting from B the bits at the
positions indicated by a.

A tuple of rates (Rs, Rq, q ⊂ K) is termed achievable if
for every ε > 0, there exists an ε-storage code at some block
length n = n(ε) that satisfies

Ms ≤ n(Rs + ε) (1)
Mq ≤ n(Rq + ε),∀q ⊂ K (2)

Suppose that the subset q is requested with probability or
frequency P (q). To avoid unnecessary complications, we shall
assume that all sources have positive probability of being
retrieved, i.e., for all k ∈ K, there exists q 3 k such that
P (q) > 0. We are interested in the tradeoff between the
average retrieval cost

∑
q⊂K P (q)Rq and the storage cost

Rs for achievable rate tuples (Rs, Rq, q ⊂ K). To better
understand the tradeoff, it is instructive to consider the two
extreme scenarios.

Case 1. Suppose Rs =
∑

q⊂KH(Uq), where ε > 0 and
H(X) denotes the Shannon entropy of the random variable
X . This extreme case allows for enough storage rate to encode
each possible subset of sources that may be requested by
Bob, and store separately in the database. (Since the Shannon
entropy H(X) of random variable X signifies the minimum
asymptotic per symbol bit rate that is necessary and sufficient
for lossless compression of the corresponding i.i.d. sequence.)
Here, for any given query subset q, only the corresponding
encoded bits (at rate Rq = H(Uq)) need to be retrieved. The
average per letter retrieval cost in this scheme is

C(Rs) =
∑

q⊂K
P (q)H(Uq).

Since reconstructing the streams Uq would require a bit rate
of at least H(Uq), this is the smallest retrieval cost that can
be attained by any scheme and with any total storage bit rate
constraint.

Case 2. Suppose Rs = H(UK). By jointly encoding all the
streams we remove all redundancy in the database and obtain
a single joint description the entire data that uses H(UK)
bits per instant. Note that this is the lowest achievable Rs

for lossless compression of the observed data. To obtain a
reconstruction, regardless of the query subset q, the entire

description of H(UK) bits would in general need to be
retrieved. The retrieval cost that is incurred is therefore

C(Rs) = H(UK).

Most interesting is, of course, the intermediate tradeoff
between these extremes. In the following sections, we study
more general coding strategies and characterize a region of
achievable rate tuples.

Fig. 2. General Storage Scheme for a Two-Source

III. THE SHARED DESCRIPTIONS PROBLEM

We transform the storage problem into a source coding
problem with multiple encoders as follows. Since the query
q can be one of 2K − 1 possibilities, there are J , 2K − 1
decoders. For any code (f, g, hq, q ⊂ K), each of the Ms bits
can be accessed by any subset of the decoders. Therefore each
bit position could be indexed to identify the corresponding one
of the subsets of {1, . . . , J}. Alternatively, we can divide the
total bit rate Rs into 2D − 1 components and can view the
coding system as consisting of 2J − 1 encoders, one for each
non-empty subset of the decoders. For K = 2 (a two-source),
this system is depicted in Fig. 2. The binary subscript on the
decoders indicate the sources that they need to reconstruct.
Similarly, the binary subscript on the encoders indicate the
decoders that they service.

The basic multiple encoder scenario, which we term the
shared descriptions (SD) scenario consists of a set of encoders
{Ei, i ∈ Σ} (|Σ| = I) and a set of decoders {Dj , j ∈
∆}(|∆| = J). There are J discrete memoryless correlated
sources (Xj , j ∈ ∆), each of which is associated with a
distinct decoder. For every subset of decoders i ⊂ ∆, there
is some encoder Ei that transmits information at rate Ri to
exactly those decoders. Each of the I = 2J − 1 co-located
encoders observes all the J sources. Let Σj denote the set of
encoders that service a particular decoder j. We are interested
in characterizing the set of rate tuples (Ri, i ∈ Σ) that would
allow all decoders to reconstruct their corresponding sources
noiselessly in the Shannon sense. The SD problem with two
decoders is represented in Fig. 3. This special case has been
considered earlier by Gray and Wyner [4]

The asymptotically achievable rate region for the SD prob-
lem remains unchanged even if we constrain the encoders to



(a) (b)
Fig. 3. (a) An SD scenario with two sources, (b) An equivalent multiterminal scenario with modified encoder inputs

be independent since all encoders observe the same source.
This enables us to use known results from multiterminal
source coding to obtain a non-single letter characterization
of the rate region. In the example in Fig. 3, of the three
encoders, E{1} and E{2} service a single decoder. We claim
that each such encoder need only access that source that needs
to be reconstructed at its corresponding decoder. This is a
consequence of the following lemma for general multiterminal
source coding systems. A multiterminal source coding system
consists of a set of independent encoders {Ei, i ∈ Σ} and a
set of decoders {Dj , j ∈ ∆}. Each encoder i observes a set of
correlated sources. Each decoder j is connected to a subset of
the encoders {Ei, i ∈ Σj ⊂ Σ} and wishes to reconstruct some
subset of the sources observed by the encoders corresponding
to Σj . Let J, I and Ij denote the cardinalities of ∆, Σ and Σj

respectively. Achievable rates for this network are defined in
the usual manner (see [1]).

Lemma 1: Consider an arbitrary multiterminal source cod-
ing network. Suppose there exists an encoding terminal that
observes a correlated pair of discrete memoryless sources with
generic random variables (X, Y ) ∈ X×Y and the sole decoder
that it services needs to losslessly reconstruct only the X
process. Then the region of achievable rates would not change
were the encoder to only depend on the X process.

Proof: Let (Ri, i ∈ Σ) be an achievable rate for this
network. Let encoder 1 and decoder 1 be as in the statement of
the lemma. We wish to show that for every ε > 0, there exists
encoders (fi, i ∈ Σ) at block length n that allow decoding at
each decoder with probability of error less than ε, 1

n log‖fi‖ ≤
Ri + ε and where f1 is solely a function of the X sequence.
Since (Ri, i ∈ Σ) is an achievable rate, for every ε′ > 0, there
exists a set of encoders (f ′i , i ∈ Σ) at block length n′ such that
1
n′ log‖f ′i‖ ≤ Ri + ε′ and the probability of decoding error at
each decoder is less than ε′ (f1 is possibly a function of the Y
sequence as well). Let V ∈ V be the random variable denoting
the codewords from all encoders except f ′1 that decoder 1 has
observed. The converse part of the Slepian-Wolf theorem [3]
tells us that

n′(R1 + ε′) ≥ H(Xn|V )− ε′[log|Xn|+ log|V|]− 1. (3)

On the other hand, from the direct half of the Slepian-Wolf
theorem, for all ε′′ > 0 there exists a supercode that encodes
m blocks of the X sequence of length n′ each using a binning
scheme such that the probability of reconstruction error is
less than ε′′ and the rate per n′-length block R̃1 is less than

H(Xn′ |V ) + ε′′. Choosing ε′′ < ε′, we therefore have a new
code with block length mn′ where the rate for encoder 1 is

R′1 ≤
1
n′

(H(Xn′ |V ) + ε′′), (4)

and all the other rates remain unchanged. Note that the
behavior at the other decoders also remains unchanged. The
probability of error for the new code is therefore less than ε′

at each decoder, while the first encoder only needs to observe
the X sequence. Comparing the new rate with the old one, we
have

R′1 −R1 ≤ 1
n′

(ε′′ + ε′[log|Xn′ |+ log|V|] + 1) + ε′

≤ 1
n′

+ ε′[log|X |+
∑

i>1

Ri + 1 +
1
n′

]. (5)

By choosing ε′ sufficiently small and n′ sufficiently large, we
can make the right hand side of (5) less than the given ε, thus
obtaining a code of the type we wanted to construct. This
proves the lemma.

Remark 1: The phenomenon described in Lemma 1 had
been observed earlier for certain special cases, most notably
the Slepian-Wolf case [3] and the Gray-Wyner case [4], [5].

Lemma 1 enables us to modify the inputs of encoders that
only service a single decoder to be that subset of the input
data that needs to be reconstructed at the decoder. For the
two source SD problem, the input to E{1} and E{2} can be
assumed to be the X1 and X2 sequences respectively (see Fig.
3 (b)). We are now left with a coding problem that has been
considered earlier in [1] (see also [2]): For each decoder Dj ,
let µj denote the index of the encoder that solely services Dj

(and whose input the decoder needs to reconstruct). For each
encoder Ei, let Xi denote the source that is input to Ei in
the modified coding system. Let µ̃ , {µj , j ∈ ∆}. In the
two-source case (Fig. 3 (b)), we have Σ = {{1}, {2}, {1, 2}},
µ̃ = {{1}, {2}}, and for example, Σ1 = {{1}, {1, 2}} and
µ1 = {1}.

A non-single letter characterization of the entire rate region
is now possible by applying the results of [1] (Theorem 5
in [2] provides an alternate, but equivalent characterization of
the achievable rate region). For some positive integer n, define
auxiliary finite random variables Vi, i ∈ Σ such that

1) The random variables Vi, i ∈ Σ are conditionally inde-
pendent given Xn

∆.
2) For each i ∈ µ̃, the conditional distribution of Vi given

Xn
∆ depends only on Xn

i .



For every such set of auxiliary random variables, de-
fine Rn

HK,Total(VΣ) , where the subscript stands for “Han-
Kobayashi”, as the set of all rate tuples (Ri, i ∈ Σ) satisfying
for each j ∈ ∆ and each S ⊂ Σj

∑

i∈S

Ri ≥ 1
n

I(VS ;Xn
∆|VΣj\S) + ψn

j (S), (6)

where

ψn
j (S) ,

{
H(Xn

µj
|VΣj

) if S 3 µj

0 Otherwise.

The entire achievable rate region

R∗HK,Total = closure of ∪∞n=1 ∪VΣRn
HK,Total(VΣ). (7)

Han and Kobayashi also present a single letter partial
achievable rate region. However, their result assumes indepen-
dent encoders, which is an unnecessary restriction for the SD
problem. We present a more general rate region by relating
the SD problem to the multiple descriptions (MD) problem
[6], [7]. In the MD scenario, there are I encoders, all of
which observe the same source and 2I − 1 decoders. For
every nonempty subset of the encoders, there is a decoder that
observes the output of exactly those encoders. The objective is
to perform a lossy encoding of the common source such that
the reconstruction quality improves as the number of encoder
outputs observed at a decoder increases. Although the com-
plete MD achievable region for general sources is unknown,
some partial achievable rate regions have been characterized
all of which rely on encoding schemes that transmit some set
of auxiliary random variables to the decoders. The SD problem
is in a dual of the MD problem in the following sense: in the
MD problem I encoders communicate with 2I − 1 decoders,
while in the SD problem, 2J − 1 encoders communicate
with J decoders. However, we can employ the MD strategy
of communicating auxiliary random variables correlated with
the source to the decoder for the SD problem. In applying
results for the MD problem to the SD problem, we impose
the constraint that only the MD decoders corresponding to
the SD decoders are active. Since only a subset of the MD
decoders is active, we can enlarge the rate region given by the
MD strategy by using binning schemes.

For the SD scenario, let Σv = ∪j2Σj . Define R∗ach to be the
closure of the set of I tuples (Ri, i ∈ Σ) such that there exist
both an auxiliary rate tuple (R′i, i ∈ Σ) and a set of auxiliary
finite random variables (WS , S ∈ Σv) satisfying

1) For all S ⊂ Σ, S 6= ∅,
∑

i∈S

R′i ≥ φj(S)−H(W2S∩Σv
|X∆)+

∑

S′⊆S

S′∈Σv

H(WS′ |W2S′\{S′}), (8)

where

φj(S) ,
{

0 if S 3 ∆
−I(W∅;X∆) otherwise.

2) For all j, S ⊂ Σj , S 6= ∅
∑

i∈S

Ri ≥
∑

i∈S

R′i −
∑

S′∈Σj

S′*Σj\S

H(WS′ |W2S′\{S′})+

H(W
2Σj \2(Σj\S) |W2(Σj\S)) + ψj(S), (9)

where

ψj(S) ,
{

H(Xµj
|W2Σj ) if S 3 µj

0 otherwise.

Theorem 1: All rate tuples in R∗ach are achievable.
Proof: (Sketch) Fix ε > 0. Let (Ri, i ∈ Σ) ∈ Rach and

(R′i, i ∈ Σ) and (WS , S ∈ Σv) be the associated auxiliary rate
tuple and auxiliary random variables. Define R′′µj

= Rµj
−

ψj({µj}) + ε
2 , ∀j ∈ ∆ and R′′i = Ri + ε otherwise. We now

describe a code at block length n.
Codebook Design: For every c′ = (c′i, i ∈ Σ), 1 ≤ c′i ≤

2n(R′i+ε′) and every S ∈ Σv , associate a vector Wn
S(c′S).

The components of Wn
S(c′S) = (W (1)

S , . . . , W
(t)
S , . . . , W

(n)
S )

at every instant 1 ≤ t ≤ n are drawn independently from the
distribution pWS |W2S\{S}

(·|W (t)

2S\{S}(c
′
S)). Once the codebook

has been constructed, for all i ∈ Σ distribute 1 ≤ c′i ≤
2n(R′i+ε′) uniformly among 2nR′′i bins indexed by c = (ci, i ∈
Σ), 1 ≤ ci ≤ 2nR′′i . Each bin contains 2n(R′i−R′′i +ε′) elements.
Finally, for every j ∈ ∆ assign the elements of Xn

j uniformly
at random into one of 2n(ψj({µj})+ ε

2 ) bins uniformly at
random.

Encoding: An observation Xn
∆ is encoded in two steps

1) Find the c′ such that (Xn
∆,Wn

Σ(c′)) belongs to the
typical set (The typical set at block length n with respect
to some probability distribution P is the set of all vectors
of length n over the alphabet of P whose empirical
distribution is close to P . See [8] for a formal definition
and a discussion of properties). If there is no such c′, set
c′ = (0, . . . , 0). Encoder i outputs the bin index vector c
corresponding to c.

2) For every j ∈ ∆, encoder Eµj transmits the bin index of
Xn

µj
.

Note that the total rate from encoder i is Ri + ε.
Decoding: Using the bin indices cΣj output after the first

encoding step, decoder j finds the unique ĉ′Σj
from the

bins corresponding to cΣj such that W2Σj (ĉ′Σj
) is jointly

typical. The decoder declares an error if there are no jointly
typical sequences or more than one such sequence. If the first
decoding step is successful, the decoder tries to find the Xn

µj

that is jointly typical with W2Σj (ĉ′Σj
). From the results of

Slepian and Wolf [3] and the choice of the number of bins
in the second encoding step, the second decoding step is
successful with high probability conditioned on the success of
the first step if the block length n is large enough. So to prove
that the entire encoding scheme is successful, we need to show
that the first decoding step succeeds with high probability.

The first decoding step fails if one of the following occurs:
a) Xn

Σ is not in the typical set. From the law of large numbers,
this happens with small probability if n is large.



b) Given that Xn
Σ is in the typical set, the first encoding

step fails, that is there is no c′ such that (Xn
∆,Wn

Σ(c′))
belongs to the typical set. Since the (R′i, i ∈ Σ) satisfy
equation (8), this event occurs with negligible probability
at large n using the proof of Theorem 1 in [7]. Since
all decoders receive the output of decoder EΣ, unlike in
[7], the information corresponding to W∅ can be included
solely in the output of encoder EΣ, which leads to an
enlargement of the rate region for a given set of auxiliary
random variables.

c) Given that the above two events have not occurred, for
some j ∈ ∆, there is more than one jointly typical Ŵ2Σj

that belongs to the bin indexed by cΣj
. Using Slepian-Wolf

type arguments (see the proof of Theorem 1 in [1]), it can
be shown that this happens with low probability if equation
(9) is satisfied. A key component in applying the argument
to the SD scenario is the fact that for a given j if two
codeword index subvectors c′Σj ,1 and c′Σj ,2 do not match
at the coordinates corresponding to some set S ⊂ Σj , the
codewords for the two index subvectors corresponding to
subsets of Σj \S will match while all other codewords will
be conditionally independent.

We have therefore shown as required that for any given ε, if
the block length is sufficiently large, then there is a code with
rates (Ri + ε, i ∈ Σ) if (Ri, i ∈ Σ) ∈ R∗ach.

Since we employ a binning strategy in addition to the MD-
like strategy, R∗ach is certainly at least as large than the rate
region obtained by using a pure MD-like strategy. If, on the
other hand, we consider only those cases where the auxiliary
random variables WS , |S| = 1 are conditionally independent
given XΣ, while the rest of the auxiliary random variables
are constants, we obtain the achievable region characterized
by Han and Kobayashi for the multiterminal source coding
problem. Therefore R∗ach is potentially larger than the region
predicted by the constituent strategies.

For the two source case, if all auxiliary random
variables other than W{{1,2}} are constants, R′{1} =
R′{2} = 0 and R′{1,2} = I(W{{1,2}}; X1,2), both
(8) and (9) are satisfied by (R{1}, R{2}, R{1,2}) =
(H(X1|W{{1,2}}), H(X2|W{{1,2}}), I(W{{1,2}};X1,2)). The
region of rates obtained by varying W{{1,2}} is known to be
the entire rate region for this problem [4]. Hence, for the two
source SD problem, R∗ach is the entire achievable rate region.

IV. THE STORAGE VS. RETRIEVAL TRADEOFF

As described earlier, the storage and retrieval problem is
equivalent to an SD problem where ∆ = 2K and Xj =
(Uk, k ∈ j). Therefore, the achievable rate region for the SD
scenario R∗HK,Total contains all the information required for
characterizing the rate region for the storage problem. From
the way we defined the SD problem from the storage problem,
it is apparent that the rate region of our interest S∗ is a section
of R∗HK,Total where the sum of the rate tuples does not exceed
Rs. Therefore the minimum retrieval cost at a given storage

cost is given by

C(Rs) = min
(Ri,i∈Σ)∈R∗HK,Total

{
∑

q⊂K
P (q)

∑

i∈Σq

Ri :

∑

i∈Σ

Ri ≤ Rs} (10)

We can obtain a computable upper bound on C(Rs) by
replacing R∗HK,Total by R∗ach in equation (10).

Observe that for a given number of data streams K, the
optimal number of decoders is exponential in K (specifically
2K −1), and the number of encoders is doubly exponential in
K (i.e., 22K−1 − 1). This means that the computational com-
plexity of the optimal system becomes unbearably high even
for moderately large K. It is of interest to incorporate some
means for performance-complexity tradeoff. While the number
of decoders cannot be modified without altering the problem
setting altogether, we can impose a complexity constraint on
the encoding side by restricting the number of encoders to
L. R∗HK,Total is sufficient to characterize the retrieval cost
vs storage cost tradeoff for this case as well. The minimum
retrieval cost at a given storage cost and for a given number
of encoders is:

C(Rs, L) = min
(Ri,i∈Σ)∈R∗HK,Total

{
∑

q⊂K

∑

i∈Σq

P (q)Ri :

∑

i∈Σ

Ri ≤ Rs

|{i : Ri > 0}| ≤ L}.
In the two-source example, if Rs = H(U1, U2) and L = 2,
the minimum achievable retrieval cost is

C(H(U1, U2), 2) = Cmin

+ min[P ({1})H(U2|U1), P ({2})H(U1|U2)],

where Cmin ,
∑

q⊂K P (q)H(Uq) is the minimum retrieval
cost when there are no storage or complexity constraints.
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