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ABSTRACT

Temporal prediction plays a crucial role in most video coding appli-
cations. However, due to error propagation via the prediction loop, it
also increases the vulnerability to channel loss. The standard counter
measure to mitigate error propagation is the ‘intra refresh’ mode,
which in effect resets temporal prediction to block error propaga-
tion, but at a significant rate overhead. This on/off switch for tempo-
ral prediction is overly crude to optimize the compression-resilience
tradeoff. In this paper, we propose a novel framework that signifi-
cantly expands the options available to counter error propagation by
introducing optimally controlled soft resets, wherein intra and inter
predictions are combined with adjustable weights to control the de-
pendency on previous frames while accounting for the overall rate
and distortion. Since the optimal control of such soft resets can
only be achieved if the encoder can effectively estimate its impact
on the end-to-end distortion (EED), we propose to extend the well
known recursive optimal per-pixel estimation (ROPE) approach to
accurately account for the soft reset mode, then optimize encoder
mode decisions to minimize the estimated EED for the given rate.
Experimental results show that the proposed framework achieves
significant performance gains for video streaming over unreliable
networks.

Index Terms— End-to-end distortion, joint source channel cod-
ing, soft reset

1. INTRODUCTION

In most current video coding systems, motion compensated predic-
tion is employed to exploit temporal redundancies by effectively pre-
dicting the content of the current frame from previous reconstructed
frames. However, the extensive benefits of temporal prediction come
at considerable cost when the encoded data are transmitted over un-
reliable networks, as errors introduced due to packet loss propagate
through the prediction loop and impact future frames, causing a sub-
stantial and extended degradation of quality. To mitigate this prob-
lem, many error resilience tools and paradigms have been employed,
including forward error correction, intra refresh, multiple description
coding, and macro block re-transmission [1]. Specifically, we focus
on the intra refresh method (also referred to as the constrained intra
prediction) among all error resilience methods above, since it is the
only one addressing the error propagation directly, while others at-
tempt to either reduce the effective rate of packet loss or mitigate its
immediate impact.

In contrast to the inter prediction mode, the intra refresh mode
predicts only from information available in the current packet, re-
sulting in an instant reset of error propagation. However, as typical
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error resilience methods usually do, it also introduces redundancies
in the compressed signal, and hence incurs additional bit-rate costs.
Therefore, when deciding between the inter and intra refresh modes,
the fundamental optimization problem that underlies the coder is for-
mulated in terms of the trade-off between bit-rate and the distortion
experienced at the decoder, also referred to as end-to-end distortion
(EED). It is thus obvious that in order to optimize the encoding de-
cisions, it is crucial for the encoder to accurately estimate the EED,
accounting for all factors including compression, packet loss and er-
ror propagation.

Our lab’s recursive optimal per-pixel estimation (ROPE) [2] ap-
proach is well known to optimally estimate the EED. The main idea
of ROPE is to treat the decoder reconstructed pixels as random vari-
ables (due to the randomness of packet losses) and rather than ex-
haustively simulating the decoding procedure at the encoder [3],
ROPE recursively calculates the first and second moments of the
reconstructed pixels and then directly obtains the optimal EED esti-
mate. The calculation is done via update equations that explicitly ac-
count for motion compensated prediction, packet loss rate, and con-
cealment at the decoder. The basic version of ROPE was extended
in [4] to account for operations such as sub-pixel motion compensa-
tion, de-blocking, and rounding, where inter-pixel correlation terms
are involved. ROPE and its extensions have been successfully incor-
porated into various error-resilient video coding methods [5, 6, 7, 8].

With accurately estimated EED by ROPE, the encoder can opti-
mally switch between the inter prediction and the intra refresh modes
to account for the trade off between compression and error resilience.
However, although mode selection between the above two modes
with EED estimation provides good performance improvement [2],
the ‘intra refresh’ approach is in fact the outcome of repurposing the
existing tool of intra coding, originally designed to encode newly ap-
pearing objects which are not predictable from the past, to arbitrarily
reset temporal prediction (and hence stop error propagation) at a sig-
nificant cost in rate overhead. Such ad-hoc repurposing of existing
tools is significantly suboptimal.

In this paper, a novel framework is proposed, where options to
control the error propagation are significantly expanded, including a
soft reset joint intra-inter prediction mode specifically designed for
a controlled tradeoff between compression and resilience. As a cru-
cial part of the framework, accurate EED estimation methods for the
expanded options are also developed, in order to enable the encoder
to optimally decide its mode selection and thus take advantage of
the broader options of controlling error propagation. Experimental
results show that compared to mode selection among existing predic-
tion modes, the proposed framework with soft reset prediction mode
yields a significant gain for video streaming over lossy channels.
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2. RELEVANT BACKGROUND

Consider point-to-point video communication, assuming that packet
loss is statistically uniformly distributed with packet loss rate p avail-
able to the encoder (for simplicity but without loss of generality,
since extensions of ROPE have been developed for different network
models [6, 9] and can be generalized to the EED estimation meth-
ods introduced in this paper). For optimal performance, the encoder
must optimize its decisions with respect to the decoder reconstructed
video quality. However, the decoder reconstruction is a random pro-
cess as far as the encoder is concerned, with the influence of channel
loss greatly complicated by error propagation through the prediction
loop, error concealment efforts at the decoder, etc.

Therefore, ROPE considers the decoder reconstruction of each
pixel as a random variable, and estimates the expected EED. Let
the uncoded value of the pixel at location m in block k of frame n
be denoted as x7,";, and the decoder reconstruction of the pixel as
Z' . With mean squared error (MSE) distortion, the expected EED
of :Enyk can be formed as:

E{(emn — &)’} = (@700)” + 2200 {270} + E{(@7)°),

which clearly only requires the first and second moments of the de-
coder reconstruction &7,

Thus in order to accurately estimate EED, ROPE recursively
tracks the moments of the decoder reconstruction. Note that different
decoder error concealment methods and encoder schemes may result
in different ROPE recursion formulas. In this paper, we employ the
simple ‘slice copy’ error concealment method, where if the packet
containing the current slice is lost, the co-located reconstruction in
the previous frame is copied as the reconstruction of the current slice.
We further assume each packet contains one frame for simplicity.

For the ‘intra refresh’ mode, the current block is only predicted
using other pixels encoded by the intra refresh mode in the same
packet. Thus, as long as the packet containing the current frame is
correctly received, the decoder will be able to reconstruct the cur-
rent block exactly as the encoder reconstruction (denoted as Z;" ).
Therefore, the recursion formula to track the first and second mo-
ments are:

E{a = (1= p)Zn + pE{E5"1 1},
E{(&7)"} = (1= p) (@) + pB{(E71,0)"}
For the inter prediction mode, the current block & is predicted by
the decoder reconstruction of another block &’ in the previous frame
(first-order inter prediction is assumed in this paper without loss of

generality). Denoting the quantized residual as 77", it can be shown
that the ROPE recursions for inter prediction are:

E{dn,} = (1
E{(@m)*} = (1~

e))

—p)(E{Zn_1 0} + Tak) + PE{E3 11},
P)(B{ (@1 p)’} + 27 E{En 1 }
+ (Fe)?) + pE{(#0-1.1)"} @)

As shown in (1) and (2), the first and second moments of de-
coder reconstructed pixels in the current frame depends only on the
moments of decoder reconstructions in the previous frame, thus es-
tablishing a recursive method to track the moments, and therefore
accurately estimate the EED.

Note that in this paper, only integer precision motion compensa-
tion is considered for the purpose of simple presentation. Accurate
EED estimation of sub-pixel inter prediction methods have been de-
veloped in [4].
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3. PROPOSED FRAMEWORK WITH SOFT RESET

As explained in Section 2, with the ability to accurately estimate
EED, the encoder is capable of optimally switching between the inter
prediction mode, which causes error propagation through the tempo-
ral prediction loop, and the intra refresh mode, which fully stops the
propagation at that instant. These two modes in effect serve merely
as an on/off switch for error propagation, providing a very crude
control to the encoder, when in fact with accurate estimate of EED
in hand, the encoder can optimally control the extent of error propa-
gation.

Therefore, we propose an error-resilient video coding frame-
work, where besides the inter and intra refresh modes, more options
of controlling the error propagation are allowed, and the encoder
decisions are based on the EED estimation, thus providing a more
flexible control over the trade-off between error-resilience and com-
pression. Specifically, in addition to the inter mode and the intra
refresh mode, the unconstrained intra prediction mode is first in-
cluded to provide the option of allowing error propagation through
the spatial prediction loop. More importantly, we propose to include
the soft-reset joint inter-intra prediction mode in order to provide a
finer control over error propagation. In the rest of this section, the
above two modes and their corresponding methods to overcome the
challenges of accurately estimating EED are presented.

3.1. Unconstrained Intra Prediction

While the constrained intra prediction (intra refresh) mode is widely
used by error-resilient video coding applications, the unconstrained
intra prediction mode, wherein the current block is allowed to be
predicted from previously reconstructed inter-predicted pixels within
the same frame, is usually the default intra prediction method in non
error-resilient coders. The unconstrained intra mode is more efficient
in exploiting spatial correlations between blocks, but unlike the con-
strained intra mode, it suffers from error propagation through the
spatial prediction loop, i.e., errors in spatial neighbors of the current
block (potentially through temporal error propagation) will influence
its intra prediction. We introduce the unconstrained intra mode into
our proposed framework as an optional mode to let the encoder have
control over the possible error propagation paths. Moreover, as to be
seen in Section 3.2, it is also part of our soft reset joint prediction
mode.

The EED estimation of unconstrained intra prediction is obvi-
ously different from that of constrained intra prediction shown in (1).
If the packet containing the current frame is received, the uncon-
strained intra prediction &', (I) is a filtered output of previous de-
coder reconstructions of its nelghboring blocks:

Enn) = adl (1), 3)

where a; are the filter coefficients. The decoder reconstruction of
the ith reference, given the current frame is correctly received, is
denoted as :i"m"' ( ). If e.g., this sample was reconstructed via inter
prediction mode in (2), 2,5, (r) =

A

Ay
xnfl,k:. + Tﬂ k;

For the unconstramed 1ntra mode, the moment estimation recur-
sions can then be expressed as:

E{znn} = (1= p)(E{Znk(D)} + 7e) + pE{En"1,1},

B{(&71)°} = (1 — p)(B{(@n (1)} + 2 E{an (1)}
+(Fm)?) + pE{(E0 1 )2 ) “)



()%}

Note that substituting (3) into the second moment E{(Z},

shows requirement of the cross correlation term E{z,"; (T)Jin k; (r)}.

Since only the first and second marginal moments are avallable we
need to approximate the spatial correlation coeffcient ps. In [4],
the ‘exponential decay’ correlation model is presented for EED
estimation:

ps(d) = exp(—ad), ©)
where « is a parameter whose typical value is around 0.05, and d
is the distance between the pixels. With this model utilized, we can
now estimate the first and second moments of pixels predicted by the
unconstrained intra mode, and thus estimate EED accordingly.

3.2. Soft Reset Joint Inter-Intra Prediction

As discussed in Section 3.1, the unconstrained intra prediction mode
provides the encoder with an alternate error propagation path, but
still does not provide the encoder with a fine control over the degree
of error propagation.

To provide a controllable ‘soft reset’ for the error propagation,
we propose to utilize the weighted average of unconstrained intra
prediction and inter prediction, namely the joint inter-intra predic-
tion. The joint prediction of pixel z;;';, can be expressed as:

Ty = w™ (P)iy,(P) +w™ ()T (1), (6)

where Z,'(P) is the inter prediction and Z'(I) is the uncon-
strained intra prediction, and w™ (P), w™(I) are the weights for
the two predictions, respectively.

Although similar joint inter-intra prediction methods (also re-
ferred to as combined inter-intra prediction) have been previously
proposed [10, 11], we emphasize here that we are proposing to per-
form joint inter-intra prediction with both a different motivation and
different optimization approach.

First, our goal of using the joint prediction is not for a better
prediction. Rather, we average intra and inter prediction in order to
provide a soft reset. Recognizing the difference in motivation, we re-
fer to our proposed prediction mode as the ‘soft reset joint prediction
mode’. Also, due to the different motivations, the weights should not
be targeted to address the correlation between the referenced and the
predicted pixels, but should be designed for the balance between er-
ror resilience and coding efficiency.

Furthermore, since our soft-reset joint prediction is intended for
video coding over a lossy channel, establishing a ROPE-like EED
estimation method for the joint prediction is crucial for optimal rate-
distortion (R-D) decisions in our framework. However, extending
ROPE to account for the proposed mode is not trivial. To overcome
the challenges, we propose the following methods to estimate EED
accurately for the soft-reset joint inter-intra prediction mode.

Similar to (4), we first establish the moment estimation recur-
sions as following:

E{ey k=1 —p)(E{Znk} + Frk) + pE{Zn_1 1},
E{(&n)"} = (1 — p)(B{(Z1)*} + 27 E{&n s} @)
+ (Fr)®) + pE{(&7- 1)}

It is obvious that the first and second moments of the joint prediction
are needed. Substuting (6) into the moments we have:

B} o™ (P)E(E(P)} + " (DB (1)},
B{(@)°} =(w™ (P)’ B{@(P))’}

Hw™ (1)) B{(@7 (1))}
+2u™ (Pyw™ (1) E{#

®
P)Eyk(1)},

where the first and second moments of Z7;"; (1) are given in Sec-
tion 3.1 and moments of Z;;";, (P) are given by moments of pixels in
the previous frame.

However, note that the correlation term is still not directly avail-
able to the encoder. Moreover, the inter prediction is a reconstructed
pixel in the previous frame along the motion trajectory, while the
intra prediction is a reconstruction in the current frame located at
the boundaries of the current block. Therefore, unlike the correla-
tion term in Section 3.1, this correlation of inter and intra prediction,
E{z(P)Z;1.(I)}, is actually a combination of spatial correlation
and temporal correlation.

In order to approximate the correlation term with both satisfac-
tory accuracy and complexity, we make the ‘separate correlation’ as-
sumption, wherein the correlation coefficient p is given by the prod-
uct of the temporal correlation coefficient p; and the spatial correla-
tion coefficient ps:

p(t, d) = pi(t)ps(d). ©)

For the temporal correlation, the Markov model can be applied
to pixels along the motion trajectory. Since first order temporal pre-
diction is assumed, the time difference ¢ is a constant, thus in this
paper we apply p; as a constant (typically 0.95-0.98). The spatial
correlation coefficient can be calculated through (5), where the dis-
tance d is defined as the distance from the boundary to the predicted
pixel along the predicting direction for angular prediction, and the
average distance to the upper and left boundary for DC and planar
prediction. As will be shown in Section 4, with properly set param-
eters, this simple approximation of cross correlation is sufficient for
accurate EED estimation. With the correlation term estimated, we
can finally estimate the moments in (8), and thus estimate the EED
for the soft reset joint prediction mode.

Note that for the soft reset joint prediction mode, the uncon-
strained intra is used rather than intra refresh. This decision is based
on the following considerations. First, if the boundaries or even a
portion of them are reliable (e.g., coded by the intra refresh mode),
the unconstrained intra prediction portion will reasonably reset the
error propagation through spatial prediction loop. Second, even
when the boundaries are not reliable, the spatial error propagation
path usually provides better error-resilience, which ensures the ef-
fectiveness of the joint prediction mode to serve as a soft reset.
Finally, using intra refresh in joint prediction would severely con-
strain its ability since it would have significant bit-rate overhead due
to the very limited availability of boundaries with no impact of error
propagation.

It should also be noted that the purpose of adding the uncon-
strained intra mode and the soft reset joint prediction mode is to
demonstrate the potential of our proposed error resilient video cod-
ing framework with EED estimation. The framework is general and
effective even if other possible methods to control error propagation
are introduced with proper EED estimation.

4. RESULTS AND DISCUSSION

In our experiments, the proposed framework and methods of EED
estimation were implemented in the High Efficiency Video Coding
(HEVC) [12] reference software and used for the R-D optimization
of mode selection. A wide range of video sequences with resolutions
ranging from 240P to 1080P were tested. For each video sequence,
the first 100 frames were encoded with QP values of 27, 32, 37 and
42. The channel loss was simulated with 100 realizations at a packet
loss rate of 5%. The decoder was implemented with the simple ‘slice
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copy’ error concealment method and the video coding performance
was assessed by averaging the MSE of the decoder reconstructions
over the 100 realizations for each sequence and each QP.

To show the performance of our proposed error-resilient video
coding framework, three sets of experiments were conducted with
different availability of modes. First, the baseline includes only the
inter and intra refresh modes. In the second set of experiments (de-
noted as base+UI), the unconstrained intra mode is enabled in addi-
tion to the two modes in baseline. Finally, in the third set (denoted
as base+UI+soft), the proposed soft reset joint prediction mode is
enabled along with the inter, intra refresh and unconstrained intra
modes. For the soft reset mode in the third set, the weights of inter
and intra prediction are both set to be 0.5, in order to provide a soft
reset where both the predictions have the same importance.
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Fig. 1. EED estimation compared with simulated ground truth.

We first show results to compare the estimated EED of each
frame with the simulated EED (which can be viewed as the ground
truth) to illustrate the accuracy of our proposed EED estimation
methods. As shown in Fig. 1, EED estimation of both the base+UI
and base+UI+soft settings is quite accurate and follows the general
trend seen in simulated results, which confirms that the various
assumptions and models introduced in Section 3 are valid for our

purpose.
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Fig. 2. R-D curves of the proposed base+UI+soft set compared to
the baseline.

Next, to demonstrate the performance of our proposed frame-
work, compared to the baseline, the BD-rate [13] reduction of the
base+UI set and base+UI+soft set are shown in Table 1. As seen in
the table, with unconstrained intra mode enabled we achieve an aver-
age BD-rate reduction of 1.72%. On the one hand, this performance
gain shows the potential of our framework which benefits from the
ability to switch between error propagation paths while accounting
for the channel loss with EED estimation. On the other hand, the
relatively small gain also illustrates the need for a better designed

Table 1. Bit-rate reduction (%) compared to baseline

Sequence base+UI | base+Ul+soft

mobile (CIF) 1.52 9.61
foreman (CIF) 1.75 7.00
flower (CIF) 0.03 3.71
BasketballPass (416 x240) 2.55 4.66
BlowingBubbles (416 x240) 2.45 12.83
PartyScene (832x480) 0.54 10.04
FourPeople (1280x720) 2.07 5.45
Johnny (1280x720) 5.90 8.76
BQTerrace (1920x 1080) 0.03 2.76
ParkScene (1920x 1080) 0.36 6.13
Average 1.72 7.09

error-resilient prediction mode.

This need is confirmed by the results of the base+Ul+soft set,
which achieves a significant average BD-rate reduction of 7.09%
due to the introduction of the proposed soft reset joint prediction
mode. The R-D curves comparing the base+UI+soft set to the base-
line of two sequences are also shown in Fig. 2, which confirm its
effectiveness for a wide range of operating points. Overall, the re-
sults show that with properly designed options, our framework pro-
vides considerable performance gain for video streaming over lossy
networks.

Note in our experiments, the parameter « in (5), as well the value
of temporal correlation coefficient p; are manually selected for each
sequence and are set as constants for the test 100 frames. This is
clearly suboptimal since it not only requires manual adjustment, but
also ignores the fact that video content statistics are not guaranteed to
be stationary, either within a single frame or across multiple frames.
To address this problem, on-going research is focused on estimating
even these parameters recursively for every pixel, which allows the
encoder to capture the local statistics.

It should also be noted that, in our experiments, the weights in
the soft reset joint prediction mode are chosen as a constant value
of 0.5. Although the current results already show a significant per-
formance gain, the weights should be better designed to accommo-
date different video content, block size, bit-rate, packet loss rate,
etc. Hence, on another front, on-going work is focused on various
approaches of designing the weights, which could be introduced as
multiple options of weight combinations in the proposed framework.

5. CONCLUSION

In this paper, a novel error-resilient video coding framework with
EED estimation and soft reset joint prediction is proposed. With the
framework, the encoder’s options to finely control the error propa-
gation are significantly expanded. Furthermore, with accurate EED
estimation for each option, the encoder is capable of selecting the
modes while accounting for both the overall bit-rate and error re-
silience. Experimental results show that the proposed framework
with soft reset joint prediction achieves considerable performance
gains for video streaming over lossy networks.
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