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Abstract— This paper proposes a novel bi-directional motion
compensation framework that extracts existing motion infor-
mation associated with the reference frames and interpolates
an additional reference frame candidate that is co-located with
the current frame. The approach generates a dense motion
field by performing optical flow estimation, so as to capture
complex motion between the reference frames without recourse
to additional side information. The estimated optical flow is
then complemented by transmission of offset motion vectors to
correct for possible deviation from the linearity assumption in the
interpolation. Various optimization schemes specifically tailored
to the video coding framework are presented to further improve
the performance. To accommodate applications where decoder
complexity is a cardinal concern, a block-constrained speed-up
algorithm is also proposed. Experimental results show that the
main approach and optimization methods yield significant coding
gains across a diverse set of video sequences. Further experiments
focus on the trade-off between performance and complexity,
and demonstrate that the proposed speed-up algorithm offers
complexity reduction by a large factor while maintaining most
of the performance gains.

Index Terms— Optical flow, video coding, hierarchical
structure.

I. INTRODUCTION

MOTION compensated prediction is a key component in
video compression, which exploits temporal correlation

between frames [1]–[4]. Conventionally, motion compensation
involves a block-based motion search, where a matching block
in the reference frame is selected as prediction for the current
block. The motion vector and the prediction residual are then
coded and transmitted to the decoder. Many recent video
codecs employ a hierarchical coding structure wherein video
frames are not encoded according to their order of display, but
in a pre-defined order reflecting the layered structure. In this
setting, the currently encoded frame may be predicted from
both past and future frames (in terms of display order), which
is referred to as bi-directional prediction. Here, two motion
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vectors, pointing from the current block to the two reference
frames are calculated by a block matching algorithm (BMA),
and are sent to the decoder. The prediction is usually generated
as a combination of the two reference blocks.

However, BMAs [5]–[7] largely assume that the motion of
all pixels in the current block is uniform, which is only valid in
the case of purely translational motion, leaving more complex
motion such as rotation, zoom and perspective effects beyond
their capability. The variable block size scheme [8] employed
by most recent video codecs offers some mitigation of this
shortcoming by enabling subdivision into smaller blocks where
needed, albeit at the cost of additional overhead.

In contrast with BMAs, a dense per-pixel motion field can
capture more complex motion by assigning to every pixel
its own motion vector. Optical flow estimation methods are
widely used in many applications to determine the dense
motion field. Basic optical flow estimation was proposed
in [9]. Numerous techniques were developed over the years to
enhance the optical flow estimation accuracy, e.g., [10]–[14].
Recent contributions include approaches that leverage deep
learning for optical flow estimation, which were shown to offer
satisfactory performance [15]–[17]. Optical flow estimation
has been used in a variety of application contexts, including
autonomous vision systems [18], object segmentation [19],
video frame rate up-conversion [20], and many more.

Motion compensated prediction in video coding can, in prin-
ciple, overcome the limitations of BMA by employing a dense
motion field generated by optical flow estimation. However,
the enhanced prediction comes at the cost of a considerable
increase in side information. One natural remedy is to reduce
the overhead by further compression of the motion field infor-
mation before transmission, e.g., by employing hierarchical
finite element (HFE) representation [21], or the discrete cosine
transform [22]. Note that these methods trade reduction in
side information for some distortion of the motion field and
hence degradation of the overall prediction quality. Another
approach that circumvents increasing the overhead was pro-
posed in [23], where optical flow estimation principles were
used to ultimately generate a block-level motion field. While
it was reported to outperform standard BMA by incorporating
optical flow-like techniques, it nevertheless suffers from the
inherent limitations of block-based motion.

Another important consideration is that the decoder has
access to some motion information that is not fully exploited
to reduce the amount of motion information that must be
transmitted. This led to a series of contributions focused on
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“decoder-side motion vector derivation” (DMVD) [24]–[26],
wherein the motion vectors of the current block are derived
from previously reconstructed pixels in the neighborhood,
without recourse to transmitting additional side information.
DMVD typically relies on template-matching motion search at
the decoder in order to derive the motion vectors. An extension
proposed in [27] performs separate template-matching motion
searches in regions of the searching window, and linearly
combines the outcomes to obtain final prediction of the current
block. While improvements are reported for these template-
matching methods, their weakness is due to critically relying
on the spatial correlation of motion vectors, which may not
be sufficiently high in many scenarios.

Another implication of the above realization that motion
information available to the decoder should be exploited,
involves bi-directional prediction within a hierarchical coding
structure, where the current frame is predicted from reference
frames that temporally precede and succeed it. This implies
that the decoder already has access to some motion informa-
tion relating the bi-directional references, which can be used to
predict the current frame. To exploit such motion information,
in [28], block-based motion estimation is performed between
the reference frames at both the encoder and decoder, and the
estimated motion is projected to the current frame. The pro-
jected motion vectors are then used to generate a motion com-
pensated prediction for the current frame. Similarly, instead
of block-based motion vectors, a dense motion field can
be estimated between the reference frames, and the motion
compensated prediction can be generated accordingly [29],
[30]. Since the decoder performs the same estimation, there is
no need for side information and hence no need to compress
the dense motion field.

Motivated by similar intuition, the Bi-directional Opti-
cal (BIO) Flow approach was proposed in [31], [32]. The
approach uses conventional motion estimation to calculate and
transmit the bi-directional motion vectors, but then refines
the motion compensation by performing optical flow based
techniques on the two-sided reference frames to obtain a
dense motion field. Note that the two conventional block-based
motion vectors essentially provide a better initialization for the
motion estimation/refinement process, but at the cost of side
information as discussed earlier, since the decoder’s access to
motion vectors relating the bi-directional reference frames is
not exploited.

It is important to note that, when estimating the per-
pixel motion field between the reference frames, the above
approaches must rely on a motion model (e.g., linear motion)
in order to project the motion relating the reference frames
onto the current frame. In many scenarios, however, the actual
motion will deviate from the presumed trajectory. There-
fore, the estimate obtained by interpolation under the above
assumption may exhibit a local spatial offset from the source,
reflecting the deviation form assumed motion model, and cause
degradation in prediction quality.

In this paper, a novel approach to generate a co-located ref-
erence frame (CLRF) via optical flow estimation is proposed,
which utilizes the hierarchical coding structure in a different
manner. First, the optical flow between the two reference

frames is estimated and a per-pixel motion field is constructed
without recourse to side information. Then, a reference frame
(i.e., CLRF) is interpolated according to the motion field
and the two-sided references, which is temporally co-located
with the current frame, assuming a locally linear motion
model. Note that CLRF naturally captures both translational
and more complex non-translational motions due to the per-
pixel motion field. Next, instead of using CLRF directly as
the frame prediction, the proposed approach treats it as an
extra candidate reference frame, in addition to other exist-
ing reconstructed reference frames. Regular block matching
motion compensation techniques are then performed on CLRF,
as needed, in order to effectively compensate for any potential
offset in the optical flow estimation and to refine the prediction
quality.

In addition to the basic approach, we also propose various
techniques that are specifically tailored to current video codecs
in Section IV. Motion field initialization is first discussed,
where we re-use the motion vectors available to the decoder
and derive a high-quality initialization of the motion field with
the proposed method. Then, to account for the workings of
advanced motion reference systems in recent video codecs
such as the motion vector reference scheme in AV1 [33]
and the merge mode in HEVC [3], we present algorithms to
incorporate our generated motion field, as well as the offset
motion vectors, into the motion vector prediction schemes.
Last, but not least, recognizing that optical flow estimation
in video coding has somewhat different objectives than in
other applications, namely, better rate-distortion performance
rather than motion precision per se, we also introduce a
specifically designed confidence weight estimation scheme
geared to optimizing coding performance.

A major consideration in many video coding applications
is complexity, and especially decoder complexity. Section V
provides an analysis of the complexity of the proposed method
as well as how it is impacted by various design parameters.
Then, an adjustable block-constrained optical flow estimation
algorithm is presented, which serves as an effective tool to
control the trade-off between coding performance and com-
plexity.

It is experimentally shown that the proposed approach
achieves significant coding performance gains. Moreover,
the proposed optimization techniques offer considerable reduc-
tion in complexity at limited cost in coding performance.

Some preliminary results of the basic approach and an
initial proof of concept for speed optimization appeared in
a conference publication [34]. The current paper subsumes
the early conference paper, and not only offers a more
comprehensive presentation of the approach from basic prin-
ciples, but also introduces a series of novel contributions,
as detailed in Section IV, most notably as relates to integra-
tion within the practical framework of state-of-the-art video
coders, and a thorough complexity analysis of the proposed
method coupled with speed-performance experiments. Experi-
mental results show that these enhancements yield an increase
in performance gains by a factor of over 1.3, as com-
pared to the gains observed in the preliminary conference
paper.
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II. RELEVANT BACKGROUND

In this section, the basic optical flow estimation formulation
and two cost minimization algorithms are briefly introduced.
Note that for the purpose of this paper, the term “optical flow”
is used interchangeably with “motion field”, despite some
known distinctions that are inconsequential in this context.

A. Basic Formulation of Optical Flow Estimation

Optical flow estimation is usually formulated as a
Lagrangian optimization, where the cost function J is given
by:

J = Jdata + λJspat ial, (1)

where the data term, Jdata, denotes the matching cost of an
optical flow solution with respect to the data (pixel intensities)
it is applied to. The spatial term Jspat ial represents the spatial
continuity or coherence constraint on the optical flow. λ is
the Lagrangian parameter and controls the relative weight of
the spatial constraint (λ ≥ 0). We next summarize a basic
formulation for the two terms which will be used in this paper.

Let I (x, y, t) denote the pixel intensity at location (x, y)
and at time instant t , and let (u, v) denote its motion, where
u is the horizontal and v is the vertical component. Assuming
linear motion and constant brightness of the object, given
parameter 0 ≤ td ≤ 1 and a time interval T , we have:
I (x − td T u, y − td T v, t − td T )

= I (x + (1 − td T )u, y + (1 − td T )v, t + (1 − td)T ). (2)

This equation relates to the scenario of interest where in
the current frame at time t , a pixel located at (x, y) with
motion vector (u, v), is predicted from the two bi-directional
reference frames at time instants t − td T and t +(1− td )T , and
specifically from pixels located at (x − td T u, y − td T v) and
(x+(1−td)T u, y+(1−td)T v), respectively. Here, T represents
the time interval between the two reference frames, and is
hereafter normalized to T = 1 for simplicity of presentation.

From (2), one natural choice for Jdata is the sum of
squared pixel differences between the two reference frames
after motion compensation:

Jdata =
∑

{I−td − I(1−td )}2, (3)

where I−td = I (x − td u, y − tdv, t − td ) and I(1−td ) = I (x +
(1 − td)u, y + (1 − td )v, t + (1 − td )), corresponding to the
pixel values in (2) with T normalized to 1, and the summation
is over every pixel in the current frame.

In order to obtain a data term that yields a simpler relation-
ship with respect to u and v, as introduced in [9], we apply
first-order Taylor expansion to I−td and I(1−td ) about (x, y, t)
and substitute into (3). After reordering terms, we arrive at the
following equation:

Jdata =
∑

(Ix u + Iyv + It )
2. (4)

Here Ix , Iy and It denote the partial derivatives with respect
to x , y and t , respectively.

To formulate the spatial term, consider the simple
4-directional 2D Laplacian filter:
�ux,y = −4ux,y + ux−1,y + ux+1,y + ux,y−1 + ux,y+1, (5)

and define the spatial term as:
Jspat ial =

∑
{(�u)2 + (�v)2}. (6)

It is worth noting that there exist optical flow estimation
schemes that utilize more complicated cost functions than (4)
and (6), with possibly better accuracy. However, the focus of
this paper is on how to utilize optical flow estimation within
video coding applications, as well as on how to optimize the
overall scheme for the video coding scenario, rather than the
specific implementation of the optical flow estimation itself.
The formulation described in this section was selected due to
its simplicity, which better satisfies the practical constraints
of video coding applications. We note that more sophisticated
optical flow estimation techniques can be similarly incorpo-
rated into the proposed scheme.

B. Cost Minimization Algorithms

Given N pixels of interest, we use a compact vector
notation for their horizontal and vertical motion components:
x = (u0, u1, . . . , uN−1, v0, v1, . . . , vN−1)T . Then, noting its
quadratic form, (4) can be written as:

Jdata = xT DT Dx − 2bT
datax + cdata, (7)

where D, bdata and cdata are easily obtained from (4). Specif-
ically, D is a diagonal matrix with Ix and Iy of all pixels
appearing on its diagonal, etc.

Similarly, the spatial term (6) can be written as:
Jspat ial = xT LT Lx − 2bT

spatx + cspat , (8)

where L, bspat and cspat are derived from the Laplacian filter
mask of (5). As will be of interest later in Section V, note
that L as derived from (5) is a sparse matrix whose diagonal
elements are all −4, and whose each row has additional four
non-zero elements taking the value 1. Also note that (5)
only defines the Laplacian filter for a general location with
all neighbors available, hence a modification is needed for
boundary pixels, and different strategies for this will yield
different bspat and cspat . Furthermore, more complex Lapla-
cian masks can be used in lieu of (5) (e.g., in Section IV-D,
we propose an adaptive Laplacian mask). While the design
choices may yield different values for L, bspat and cspat ,
the general derivation in this section remains valid.

It follows from (7) and (8) that the overall cost function can
be written as:

J = xT Ax − 2bT x + c, (9)

where A = DT D + λLT L, b = bdata + λbspat and
c = cdata + λcspat .

It is easy to see that, by definition, A is a symmetric
positive semi-definite matrix, hence this is a quadratic convex
optimization problem. Setting the gradient of J to 0, we have:

Ax = b. (10)
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A natural technique to solve the linear equations of (10),
given the symmetric positive semi-definite property of A,
is the conjugate gradient (CG) method [35]. Other iterative
approaches target direct optimization of the cost function.
For example, it was observed in [9] that the data term only
involves the motion of the current pixel while the spatial term
introduces inter-pixel cross terms, which suggests that the
spatial term of a current pixel can be estimated using motion
vectors from the last iteration, so as to circumvent the cross
terms.

From (5), we have �u = wc(ū − u) and �v = wc(v̄ − v),
where ū is the average of the horizontal components of the
neighboring motion vectors (and similarly for v̄), and wc is the
center weight of the Laplacian filter mask (for example, in (5),
wc = 4). For iteration k + 1, this approach uses the average
from the last iteration ū(k) to approximate ū(k+1). Since ū(k) is
considered constant during iteration k +1, this allows separate
per-pixel optimization. The update at iteration k+1 for a given
pixel is:

u(k+1) = ū(k) − Ix (Ix ū(k) + Iy v̄
(k) + It )

(w2
cλ + I 2

x + I 2
y )

;

v(k+1) = v̄(k) − Iy(Ix ū(k) + Iy v̄
(k) + It )

(w2
cλ + I 2

x + I 2
y )

. (11)

Note that this iterative approach is similar to the Jacobi
iterative method for solving linear equations, and is essentially
a stationary iterative method, which may suffer from slower
convergence when compared to Krylov subspace methods
such as CG. However, with more complicated (non-linear)
cost functions, such iterative approaches may offer a more
straightforward yet effective form.

In this paper, we employ the CG method as the cost
minimization method, and our focus is on cost functions that
are mapped to solving linear equations. Complexity analysis
of the approach is provided in Section V.

III. PROPOSED SCHEME AND THE

CO-LOCATED REFERENCE FRAME

A. Overview of the Basic Scheme

Consider the scenario of hierarchical frame coding struc-
ture, and specifically when the processing frame fn , located
at time n, occurs while there exist bi-directional reference
frames fn0 and fn1 (n0 < n < n1) that have already
been reconstructed (denoted as f̂n0 and f̂n1 ). Note that such
reconstructed references are available to both encoder and
decoder. As mentioned earlier, there is also some motion
information relating these reference frames which is available
to the decoder but is not fully utilized by conventional bi-
directional motion compensation schemes.

To account for such motion information, as represented by
the dash line in Figure 1(a), it is natural to assume linear
motion between the reference frames and then perform optical
flow estimation to obtain the motion field. In addition to
the basic cost minimization method introduced in Section II,
various techniques are utilized to improve the robustness of the
algorithm and will be presented in Section III-B. Moreover,

Fig. 1. Illustration of the proposed prediction scheme. First a linear motion
model is assumed and the motion field is estimated. Then a co-located
reference frame (CLRF) is interpolated accordingly. An offset motion vector
is then calculated and sent per block to correct possible offsets from the linear
assumption.

design optimization tailored for the video coding application
is introduced in Section IV.

Given the estimated motion field at frame fn , we interpolate
a new frame that combines information provided by the two
reference frames on frame fn . As long as the motion field is
estimated accurately, and the linear motion assumption is valid
(i.e., objects move at constant velocity), the interpolated frame
should be exactly co-located with fn . Therefore, we refer to
the interpolated frame as the “co-located reference frame”
(CLRF), as shown in Figure 1(b). CLRF extracts the motion
information between f̂n0 and f̂n1 , and is capable of capturing
complicated non-translational motion thanks to the estimated
per-pixel motion field. It is important to emphasize that
generating the CLRF at the decoder does not require any extra
side information.
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Algorithm 1 Overall Algorithm of the Proposed
Bi-Directional Prediction Scheme

While CLRF may be used directly as the prediction for
fn , it is important to keep in mind that the linear motion
assumption is not often perfectly valid, which results in an
offset between the interpolated frame and the ground truth.
This offset, even if quite small, can significantly compromise
the prediction quality.

The remedy, as illustrated in Figure 1(c), is to calculate
an offset motion vector per coding block, in accordance with
the block-based scheme commonly used in modern video
codecs. Our experiments show this to be effective in correcting
possible offsets. In this manner, CLRF is treated as a regular
reference frame and the offset motion vectors are treated as
regular motion vectors associated with CLRF for integration
with a block-based video codec. Integration problems and
solutions will be extensively discussed in Section IV-A.

It should be noted that one could consider more sophisti-
cated motion models than the linear motion that is initially
assumed in our implementation. It is nevertheless still highly
unlikely to perfectly capture the actual motion, and hence
offset motion vectors may still be needed. To adapt the
proposed method to such models, one simply modifies the
way CLRF is generated following the expected trajectories,
while the rest of the algorithm remains the same.

The overall bi-directional prediction algorithm that lever-
ages the CLRF concept, is summarized in Algorithm 1.

B. Optical Flow Estimation and CLRF Interpolation

The optical flow estimation accuracy plays a crucial part in
the overall prediction quality. Note that the cost optimization
method introduced in Section II depends on the assumption
that the brightness of an object remains constant, and that
the spatial derivatives Ix and Iy are stationary. In practice,
however, the scene may be complex and such assumptions
may only hold locally, potentially resulting in poor optical
flow estimation accuracy.

A commonly utilized technique that introduces a pyramid
structure is helpful in such scenarios. Here, the reference
frames are resized to different resolution scales to form a
pyramid, and a lower resolution optical flow is first calculated

to initialize the optical flow estimation of the next level
(at higher resolution). In this way, it is easier to capture
large motion at lower resolution, while at higher resolution
the details are further refined.

The observations that resizing to low resolution entails loss
of detail and, further, that calculating the derivatives at low
resolution runs the risk that the derivative filter mask extends
beyond the stationary local areas, motivate the choice of a
slightly different approach for the pyramid structure. First,
we calculate the derivatives at the original resolution, and then
resize the derivatives to the desired scale.

In addition, at each pyramid level, multiple warping steps
are performed to improve the estimation accuracy. After calcu-
lating the optical flow at a certain step, we warp the reference
frames accordingly towards the current frame fn . Then, at the
next step, the motion field is updated by estimating the optical
flow between the warped reference frames, and will be used
for future warping steps.

To interpolate the CLRF, we warp the two reference frames
according to the final optical flow estimate, and then employ
a weighted average to combine them:

IC L RF (x, y) = (1 − td)In0 (xn0, yn0) + td In1(xn1, yn1), (12)

where IC L RF (x, y), In0(x, y) and In1(x, y) denote the pixel
intensity at location (x, y) in fC L RF , fn0 and fn1 , respectively,
and td is defined as the fraction td = (n − n0)/(n1 − n0). Let
(u, v) be the motion vector associated with location (x, y) in
the CLRF frame, then xn0 = x − tdu, xn1 = x + (1 − td)u,
and yn0 = y − tdv, yn1 = y + (1 − td )v.

IV. CLRF INTEGRATION WITHIN THE VIDEO CODEC

In this section, we first introduce the video codec integration
of the proposed scheme, followed by design considerations to
improve the overall video coding performance.

A. Integration With the Video Codec Structure

As mentioned in Section III-A, CLRF is used as a candi-
date reference frame along with other reconstructed reference
frames. Considering that CLRF is already a blended frame,
it is used only for single reference inter prediction, and is not
considered for the compound reference mode (multi-reference
inter prediction).

At the encoder, for every frame, first determine if the CLRF
option is available, i.e., there exist two reference frames in the
reconstructed frame buffer, such that the current frame is in
between them. Otherwise, the regular coding scheme is used.
When the CLRF option is available, interpolate to generate
a CLRF and use it as a candidate for single reference frame
motion compensation.

In the bitstream, to signal the reference frame used for a
certain inter block, a flag is first sent (if CLRF is available
for the current frame) to signal whether the block is using
CLRF as the reference frame. If using CLRF, the regular
coding scheme is used with CLRF in terms of the associated
motion vector, residuals, etc. If CLRF is not used for the
block, the regular bitstream syntax for other reference frame
candidates will then be coded.
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The decoder can also infer the availability of CLRF for
every frame. When the CLRF option is available, the decoder
also calculates the optical flow, interpolates to generate a
CLRF and, for every block, reads the relevant flag to determine
whether CLRF is used.

Our proposed scheme uses CLRF as an additional reference
frame. As with regular reference frames, block based motion
search is performed on CLRF, and the selected offset motion
vectors are treated as regular motion vectors.

We implemented the proposed approach within the
AV1 codec, noting that integration with other block-based
video codecs is possible and straightforward.

B. Motion Field Initialization

The optical flow estimation, as also stated in Section III-B,
relies on constant object brightness across frames, as well as
stationary spatial derivatives. In practice this condition only
holds (approximately) in local areas over short time intervals.
Therefore, when the motion vector for an object is large,
relative to the local area, it compromises the optical flow
estimate. This scenario occurs frequently in dynamic video
sequences. Moreover, when the two reference frames are far
apart in the hierarchical coding structure, the resulting motion
between them is often quite large.

The above problem can be mitigated by better initialization
of the motion field, where the regions pointed to by the initial
motion vectors already belong to the same local area and the
intensity constancy condition is satisfied. Thus, performing
optical flow estimation on top of such initialization will
significantly enhance the accuracy.

In many optical flow estimation applications, motion search
is first performed between the frames to provide a good
initialization. However, this may not be the best option for our
proposed method considering the facts: 1) motion search at the
decoder adds considerable complexity which is not desirable in
many video coding applications; 2) unlike the classical optical
flow estimation setting where only the two reference frames
are available, in video coding the two reference frames have
already been analyzed by the encoder and useful information
may have already been extracted and buffered for the current
frame.

Therefore, we propose the following initialization method,
which does not require extensive motion search. The key idea
is to utilize the motion vectors associated with the reference
frames, which are already available at both the encoder and
decoder.

Consider the scenario with the current frame fn , a pre-
ceding reference frame f̂n0 and a subsequent reference frame
f̂n1 . First, since the initialization essentially tries to coarsely
estimate the motion between f̂n0 and f̂n1 , we look at every
inter-predicted block in the reference frames, and if its motion
vector points to the other reference frame, then this motion
vector is considered as part of the initialization of the motion
field. We refer to such motion vectors that relate one reference
frame to the other as the direct MVs.

While the direct MVs offer a high quality initialization for
the motion field, there may be many blocks in the reference

Fig. 2. Examples of different methods to calculate the motion field
initialization. For a certain block in f̂n0 , if its associated motion vector does
not point to f̂n1 , but other frames f̂k or f̂ j , we can calculate the projected
MVs or the proposed derived MVs, and use them as initialization. Note how
the proposed derived MVs in Figure 2(b) serve as a better initialization when
the motion is non-linear.

frames whose MVs do not point to the other reference frame,
resulting in many uninitialized regions in the current frame.

In preliminary work [34], we proposed a method based on
linear projection (developed from a motion vector reference
scheme proposed in [33]) to reduce the number of uninitialized
regions. As shown in Figure 2(a), taking f̂n0 as an example,
if the motion vector of a certain block in f̂n0 does not point to
f̂n1 , we project this motion vector to f̂n1 by assuming linear
motion. Such motion vectors are referred to as projected MVs.

However, although the projected MVs may fill in the
uninitialized regions, their quality is questionable as they
depend heavily on the motion linearity assumption (illustrated
in Figure 2(a) by projected MVs that differ significantly with
the desired initialization).

Recognizing this problem, this paper proposes another
approach to provide more reliable alternative initializations in
addition to the direct MVs. Figure 2(b) illustrates how this
approach works. Still taking f̂n0 as an example, if the motion
vector of a certain block, mvn0,k , is not pointing to f̂n1 , but
to block bk in frame f̂k , we check whether there exists any
motion vector mvn1,k that lies between f̂n1 and f̂k , pointing
to/from bk . If such a motion vector exists, then the difference
(if the two MVs point to the same frame f̂k) or the sum
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(if mvn1,k points from f̂k to f̂n1 ) of the two motion vectors
represents the motion between f̂n0 and f̂n1 , and thus can be
used as initialization. We refer to these motion vectors as the
derived MVs. As can be seen from Figure 2(b), the derived
MVs do not rely on the linear motion assumption, and hence
are more reliable than the projected MVs.

In our proposed scheme, we use the direct MVs together
with the derived MVs to initialize our motion field. As
such a motion vector crosses the current frame, we find the
nearest pixel to the crossing location and assign the motion
vector as the initialization of the motion field for this pixel.
The remaining uninitialized regions are filled by copying the
initialized motion vector of the nearest available pixel.

C. Motion Vector Prediction With CLRF

In Section IV-A, we proposed to integrate the CLRF into
video codecs as a regular reference frame, and also regard
its associated offset motion vectors as regular motion vectors.
Note, however, that the offset motion vectors, though treated
as regular, do not represent actual motion of the block, but
rather its deviation from the assumed linear motion model.

In this section, we first point out that the difference in
physical meaning between offset motion vectors and regular
motion vectors could undermine the motion vector prediction
scheme used by video codecs. We thus provide a novel
approach to perform motion vector prediction in conjunction
with CLRF, to overcome these difficulties.

In video coding, the motion vector of every inter-predicted
block must be transmitted to the decoder. To improve the
coding efficiency, motion vectors are first predicted and the
prediction residuals are then coded. In many video codecs,
motion vectors of spatially and temporally neighboring blocks
are used for such prediction. The motion field initialization
introduced in Section IV-B can also serve as a temporal
prediction of motion vectors [33].

However, in the case of CLRFs, the motion vector we
predict from could be an offset motion vector associated with
a CLRF, while the motion vector to be predicted is a regular
motion vector. As explained, these two motion vectors differ in
their physical interpretation, which could result in low-quality
prediction, potentially breaking the motion vector prediction
loop.

The solution to this problem is based on the observation that
although the offset motion vector does not represent the actual
motion, together with the estimated optical flow, the actual
motion can be derived for that neighboring block. As shown
in Figure 3, which takes the spatial motion vector prediction
as an example (assuming the CLRF and the current block
share the same reference frames), the derivation is done by
the following steps:

First, find the adjusted location given by the location of
the neighboring CLRF block and its offset motion vector
mvof f set . At the adjusted location, find its motion field given
by the optical flow estimation. By averaging the motion field
in the adjusted region, form the motion vectors pointing from
this adjusted location to fn0 and fn1 , denoted as mvm f,0 and
mvm f,1. Finally, the motion vector predictions are given by

Fig. 3. Predicting regular motion vectors from an offset motion vector.

Fig. 4. Predicting an offset motion vector from regular motion vectors.

vector addition, i.e., adding mvo f f set to mvm f,0, or mvm f,1,
respectively. The resulting predictions are depicted by the
dashed arrows in the figure.

Similarly, there are also situations where we try to predict an
offset motion vector from regular vectors. For such situations,
we apply the same reasoning, but in a “reversed” manner. As
illustrated in Figure 4, the motion offset prediction is derived
by calculating the linearly weighted average of the regular
motion vectors mvreg,0 and mvreg,1:

mv′
o f f set = (1 − td )mvreg,0 + td mvreg,1. (13)

By the above approach, we are able to perform motion
vector prediction for our proposed scheme with CLRF, which
significantly reduces the motion vector coding redundancy.

D. Confidence Based Optical Flow Estimation

Optical flow estimation relies heavily on the various
assumptions on the stationarity properties of the signal, and
there exist various scenarios when it will not provide a
good estimate. Such scenarios typically occur when some

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 29,2021 at 06:22:19 UTC from IEEE Xplore.  Restrictions apply. 



8310 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

information in one reference frame is not available in the other
(e.g., due to occlusion, appearance of new objects, etc.), and
typically affect a portion of the whole frame. Such affected
areas are identified as low-confidence areas, while areas where
we can accurately estimate the optical flow are high-confidence
areas.

Note that the cost functions Jdata and Jspat in (4) and (6)
are summations of costs across the entire frame, and generally
combine both high-confidence and low-confidence areas. This
might compromise the accuracy in the high-confidence area
in order to satisfy spatial constraints and to provide better
accuracy on the average. Similarly, in many optical flow based
applications, compromises in terms of actual distortion from
the ground truth (e.g., in the MSE sense) are made for the
interpolated frame given by the optical flow estimate, in order
to avoid obvious visual artifacts.

However, we emphasize that this is not the case for our
scheme. First of all, CLRF is not a display frame, therefore
visual artifacts are not a concern, whereas the actual prediction
quality with respect to the ground truth plays a more prominent
role. Furthermore, CLRF is not used as in its entirety to predict
the current frame, but rather as a collection of candidate ref-
erence blocks for predicting a given coding block. Therefore,
the encoder is more likely to select CLRF as reference in the
high-confidence areas, than the low-confidence areas where the
encoder will often choose from other, conventional prediction
references.

We thus conclude that, unlike other classical applications
of optical flow estimation, our scheme should place more
emphasis on the quality of the high-confidence areas, which
is more likely to contribute to the overall coding performance.
In other words, in low-confidence areas, it is acceptable to
sacrifice the quality of the optical flow estimate (since they are
unlikely to be used for prediction), so as to avoid compromise
of the high-confidence areas.

To implement the above principle, the confidence level
of each pixel is first estimated. There have been various
approaches to estimate the confidence of optical flow estima-
tion [12], [13]. To avoid the complexity of such approaches,
a simple approach is utilized in our proposed method. Based
on the pixel intensity constancy constraint, if the two pixels
at the two reference frames, matched by a calculated motion
vector, exhibit very different pixel intensities, then this motion
vector is not to be trusted. Specifically, the confidence weight
of location (x, y), denoted as w(x, y), is calculated by:

w(x, y) = e−αc
∑

k{I0(x (k)
0 ,y(k)

0 )−I1(x (k)
1 ,y(k)

1 )}2
, (14)

where αc is a parameter controlling the decay in confidence
weight. Note the pixel difference is first averaged in a local
area (e.g., 5 × 5 neighborhood of the current pixel), and then
used to determine the weight, where k enumerates pixels in
this local area.

If for some pixel location, its associated estimated motion
vector points out of bound of the reference frame, then
its confidence is defined at a very low level (0.01 in our
experiments).

Given the confidence of each pixel, we then modify
the Laplacian filter mask to attenuate the influence from a

Fig. 5. Modification of Laplacian filter mask according to the confidence
weight. As we are processing the current pixel (denoted by the gray block,
with confidence weight 0.4), its neighbors used by the 4-directional Laplacian
filter (denoted by the light gray blocks) are classified as low-confidence
or high-confidence pixels, and the associated Laplacian filter mask value is
modified accordingly.

low-confidence pixel to its neighboring high-confidence pixels.
To achieve this, for every pixel location, we look at its neigh-
boring pixels used by the Laplacian filter mask (which, in the
case of the 4-directional filter, are the horizontal and vertical
neighbors). If the confidence level of the neighboring pixel
is either 1) greater than the confidence of the current pixel,
or 2) greater than a threshold Tw , we decide this neighboring
pixel as a high-confidence pixel and set its mask value for
the current pixel as 1. If the neighboring pixel is not a high-
confidence pixel, we use its associated confidence weight as its
mask value. The center of the mask is decided by the negative
of the sum of all mask values for the neighboring pixels.
In our experiments the parameters are chosen empirically
(αc = 0.001 and Tw = 0.2). It is worth noting that the
overall performance is not sensitive to small changes to the
parameters. Refer to Figure 5 as an example.

The above change to the Laplacian filter effectively modifies
the spatial term, and stops the propagation of estimation errors
in the motion field from the low-confidence area to the high-
confidence area. Additionally, the absolute value of the center
mask value is also smaller when the pixel belongs to a low-
confidence neighborhood, reducing the importance of that
pixel in the total cost.

Similar to this center mask value, for each pixel, we also
apply a weight to the data term. The weight is simply chosen as
the confidence weight of the current pixel. In this way, if we
are not certain about some areas, the cost of having errors
in those areas is considered not as important as the high-
confidence areas. This shifts the optimization focus towards
the high-confidence areas, where it is more likely for the
encoder to choose CLRF as the reference frame.

V. COMPLEXITY ANALYSIS AND SPEED OPTIMIZATION

A. Complexity Analysis of Optical Flow Estimation

From (10), given N pixels, x is a vector containing 2N
variables. Therefore, minimizing the cost J in (9) involves
solving 2N linear equations. Directly solving the inverse of
a 2N × 2N matrix A would incur O(N3) complexity with
simple approaches such as the Gaussian elimination method.

However, since the accuracy requirement of our calculation
is fairly limited, iterative solutions such as the conjugate gra-
dient (CG) method offer computational efficiency. Generally,
the complexity of CG is O(N2 M), where M is the number
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of iterations and can be chosen much smaller than 2N for our
precision requirements.

Furthermore, note that A is a sparse matrix with O(N)
number of non-zero elements. This is mainly due to the
Laplacian filter mask, where only a fixed number of neighbors
(defined by the mask) can affect the variables (u, v) associated
with the current pixel. Formal proof ascertaining the degree
of sparsity of A is not included here, but is straightforward
to obtain by explicit consideration of DT D and LT L in (7)
and (8).

Therefore, considering that the dominant complexity cost of
each CG iteration lies in calculating the matrix vector product,
which is O(N) due to the sparsity of A, we conclude that the
total complexity of optimizing J is O(N M).

Thus, the complexity of optical flow estimation depends on
the number of pixels N , as well as number of iterations M .
It should also be noted that for larger N , it also takes more
iterations to converge to a certain precision, thus M should
also increase as we increase N .1

In addition, as discussed in Section III-B, the number of
pyramid levels num P and the number of warping steps numW

at each pyramid level are also factors influencing the overall
complexity. Other components (e.g., median filtering of the
motion field, the choice of interpolation filters, etc.) also
affect the total complexity, but the main focus here is on the
dominant complexity cost of solving the linear equations.

B. Speed Optimization With the Block-Constrained Algorithm

In this section, we present an alternative block-constrained
algorithm to lower the complexity of the proposed scheme.

The basic idea of the block-constrained algorithm is simple:
instead of performing optical flow estimation for the entire
frame, we first divide the current frame fn into blocks of size
h×w, and then perform optical flow estimation for each block
independently.

At the encoder, before encoding the current frame, we cal-
culate the optical flow for each such block, and combine the
optical flow of these blocks to form a frame-level motion
field. Then, CLRF interpolation and subsequent encoding of
the current frame follow the prescription of Section III.

At the decoder, however, the optical flow estimation is
not done before decoding the current frame. Instead, as we
decode and reconstruct a coding block, only if it uses CLRF
as reference frame for motion compensation, will we perform
optical flow estimation for the h × w blocks in fC L RF that
are needed by the current coding block. These h × w blocks
are determined by the location of the current block, the offset
motion vector, and the length of sub-pixel interpolation filter L
(as illustrated in Figure 6). If a certain h×w block in the CLRF
is already interpolated for a previously decoded coding block,
then skip its calculation and use the previously interpolated
result.

The above block-constrained algorithm considerably
improves the speed of the proposed scheme because of

1In fact, it is proven that when M = 2N , CG is guaranteed to converge to
the exact solution assuming no precision loss (rounding error) [35]. However
in our application, such high precision is not required and we still choose
M � N .

Fig. 6. Illustration of the block-based algorithm at the decoder. For the
current coding block, the h × w blocks that require optical flow estimation
are marked by the gray blocks, which are determined by the offset motion
vector mvof f set and the length of sub-pixel interpolation filter L .

the following reasons. First, the complexity of performing
optical flow estimation for a block is O(Nb Mb), where
Nb is the number of pixels in a block (Nb = hw), and
Mb is the number of iterations needed. Therefore the
total complexity of processing all blocks in the frame is
O(

∑{Nb Mb}) = O(
∑{Nb}Mb) = O(N Mb). As mentioned,

since Nb is much smaller than N , the number of iterations
(Mb) needed to converge to a certain precision is also much
smaller than M , thus reducing the total complexity by a large
factor. Second, at the decoder, only a portion of h × w blocks
will need optical flow estimation, since there may be many
other coding blocks predicting from other references rather
than from CLRF. The decoder complexity is further reduced
in this way. Lastly, the optical flow estimation of each block
should not interfere with each other, which ensures that highly
effective parallelization can be exploited in the hardware
design.

The key aspect of the block-based algorithm lies in the
fact that the optical flow estimation of each block does not
rely on other blocks. This enables the decoder to selectively
skip certain blocks according to the usage of CLRF. To ensure
such independence, the estimated optical flow of neighboring
blocks should not affect the current block through the spatial
constraint term. Therefore, we treat the initialization of the
neighboring blocks’ motion field as their actual motion. Since
the initialization is already available to the decoder before
the optical flow estimation, it is considered as part of the
constant term cspat in (8), effectively relaxing the spatial
constraint across the block boundary compared to the frame-
based algorithm. Moreover, noting that the initialization is not
accurate, we apply a lower confidence level to the initialization
to decrease its influence on the current block.

Apart from the spatial term, the calculation of derivatives
of the data term also depends on neighboring blocks, since the
derivative filter may span out of block. Similarly, the initial-
ization is also used here to generate the derivatives near the
block boundaries.
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It should be noted that the block-constrained algorithm
depends more heavily on the quality of motion field initial-
ization. This is because, on the one hand, the initialization is
used to handle the block boundaries, and on the other hand,
the block-constrained algorithm, by its nature, works only
locally, thus requiring the initialization to match the current
block to the same local area for better accuracy.

The choice of the block size controls the trade-off between
speed and performance, where a larger block size incurs higher
complexity and yields higher quality. The below experiments
used parameter values h = w = 16.

VI. EXPERIMENTAL RESULTS

As mentioned in Section IV-A, the proposed scheme is
generally applicable to any video codec that supports block
based bi-directional motion compensated prediction to exploit
temporal correlations. To evaluate its effectiveness and sub-
stantiate the benefits it offers, the proposed scheme, along with
its various enhancements and optimizations, were integrated
within the AV1 framework, according to the prescriptions of
Section IV-A, and is compared to the baseline (libaom hashtag
3a1bd78). The choice to implement within the AV1 codec was
simply because it was the most recently finalized major codec
at the time this work was carried out. It must be noted that
the benefits observed are strictly due to better bi-directional
prediction, and are largely orthogonal to other modules of the
codec, and as such are expected to be realized in conjunction
with any modern video codec.

Various video sequences were tested, with different reso-
lutions including low-res (240p, CIF), mid-res (480p, 4CIF)
and hd-res (720p, 1080p). For each video sequence 150 frames
are encoded at various target bit-rates (separately determined
for each sequence, resulting in overall PSNR ranging between
30 and 50 dB). Hierarchical structure is enabled and the
maximum length of a group of pictures is 16. In this section,
we will discuss experimental results from two perspectives:
the peak performance and the trade-off between complexity
and performance.

For peak performance, frame-based optical flow is utilized
with a three-level pyramid structure (num P = 3). The number
of warping steps is also set to 3 (numW = 3).

The BD-rate [36] reduction compared to the baseline
AV1 encoder, in terms of overall PSNR, is shown in Table I.
It is evident that substantial coding gains are obtained and
that the coding gains are consistent across the extensive set
of testing video clips with various resolutions. The overall
bit-rate reduction is 3%, 3.8% and 3.5% for low-res, mid-res
and hd-res, respectively. Especially, note the relatively larger
gains (approximately 8%-10%) for sequences with complex
sets of moving subjects (such as crowd_run, rush_field_cuts,
ice, etc.) and sequences with non-translational motions (such
as station2, blue_sky, city, etc.). This proves that our proposed
algorithm utilizes the motion information more efficiently, and
confirms the capability of the estimated per-pixel optical flow.
In Figure 7, rate-distortion (RD) curves of two sequences
are presented, which demonstrate the effectiveness of the
algorithm across a wide rate range. Moreover, it is observed
that CLRF is used very often. For example, for city_cif,

Fig. 7. RD curves of crowd_run (9.8% gain) and blue_sky (8.4% gain).
Note the resulting PSNR range of blue_sky is relatively larger, therefore the
difference of the two RD curves may appear smaller in the plot.

48.8% of the pixels belong to blocks that use CLRF as refer-
ence frame, further proving the effectiveness of our proposed
scheme.

To highlight the impact on the performance due to the
enhancements introduced in Section IV of this paper, we con-
sider the gains they offered over our preliminary results that
appeared in the conference paper [34], which is subsumed in
Section III, and referred to herein as the basic approach. The
basic approach yielded 2.3%, 2.8% and 2.7% BD-rate reduc-
tion for the low-res, mid-res and hd-res test sets, respectively,
on top of the AV1 baseline. Thus, the additional enhancements
of Section IV, improve the gains of the basic approach by a
factor of over 1.3.

Recognizing the practical constraints of many video coding
applications, the additional complexity of performing optical
flow estimation (especially at the decoder) is an important
consideration. As discussed in Section V, various parameters
could influence the complexity of the proposed approach. First,
as presented in Section V-A, the additional complexity should
be linear in the the number of iterations for CG, M and Mb .
This is confirmed by Figure 8, which clearly demonstrates
such linear relationship for sequence city_cif. Note that, as also
shown in the figure, even with the same number of iterations
(M = Mb), the block-constrained algorithm yields a low com-
plexity. This is because for the block-constrained algorithm,
the relaxed condition at block boundaries effectively reduces
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TABLE I

PEAK PERFORMANCE BD-RATE REDUCTION (%) OF THE PROPOSED METHOD

the number of total non-zero elements in the sparse matrix by a
constant factor. Furthermore, the decoder is able to skip blocks
that are not referred to, thus further reducing the complexity.
It should be noted that as the number of iterations increases,
the complexity for the block-constrained algorithm eventually
becomes a bit lower than the linear curve. This is due to the
fact that we terminate the algorithm when a certain precision
is reached, and that the block-constrained algorithm with
fewer variables converges much faster. In our experiments,
we noticed that such relationship and similar trends were also
exhibited for other test sequences, and therefore for the rest
of the section, we use the complexity of city_cif as a rough
approximation of the average complexity.

Next, in Figure 9, the relationship between the coding per-
formance gain for the low-res test set and additional decoder
complexity, is presented (the number of iterations, M or Mb ,

is shown as the label of each data point). For both frame-based
and block-constrained algorithms, the performance improves
with increasing complexity until it saturates at a certain level.
Also note that the block-constrained algorithm reaches the
plateau much faster than the frame-based algorithm, but its
maximal performance gain is lower, as it ignores the correla-
tion across block boundaries. It can be concluded that, when
the target decoder complexity is limited, the block-constrained
algorithm serves as a good alternative in terms of the trade-off
between complexity and overall performance.

Such trade-off is also influenced by other parameters.
Table II presents the average coding gain for a few experiment
sets, each with different choices of num P , numW and optical
flow estimation algorithm (we fix Mb = 10 as it provides a
better trade-off as shown in Figure 9). Obviously, by chang-
ing the parameters, different tradeoffs of performance and
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TABLE II

TABLE OF BD-RATE REDUCTION (%) WITH VARIOUS COMPLEXITY TRADE-OFFS

Fig. 8. The linear relationship of decoder time complexity v.s. number of
iterations for solving linear equations (M or Mb).

Fig. 9. Trade-off between performance and complexity for both frame-based
and block-constrained algorithms. The label associated with each data point
represents the number of iterations M or Mb .

complexity can be achieved. With the fastest setting (set 4),
more than 60% of the coding gains are maintained, while the
additional complexity is only 1% of that needed to achieve
peak performance.

It is also worth noting that, for the “initialization only”
set, we do not perform optical flow estimation at all, and use
the initialization of motion field directly for CLRF generation
(hence incurring nearly no additional complexity). As shown,
it also yields a significant bit-rate reduction. This clearly shows
the effectiveness of the motion vector initialization scheme,
and how it lays a solid foundation for the subsequent optical
flow estimation.

VII. CONCLUSION

This paper proposes a novel scheme for bi-directional
motion compensated prediction that accounts for the motion

information, already available to the decoder, between the two-
sided reference frames. Optical flow estimation is utilized to
provide a per-pixel motion field, capable of capturing non-
translational motions. A co-located reference frame is interpo-
lated according to the estimated motion field, and offset motion
vectors are calculated and transmitted to correct possible
deviation from the assumed motion model. The basic approach
is complemented by various optimization techniques tailored
to video codecs, including motion field initialization, motion
vector prediction and confidence-based optical flow estimation.
Moreover, a block-constrained algorithm is proposed, which
is specifically designed for lower complexity applications.
The effectiveness of the proposed scheme is evidenced by
the experiment results, with significant BD-rate reductions
across a large set of video sequences (3% to 4% on average).
It is also shown that the proposed speed optimization incurs
considerably lower complexity while maintaining most of the
performance gains.
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