
ADAPTIVE INTERPOLATED MOTION COMPENSATED PREDICTION

Wei-Ting Lin, Tejaswi Nanjundaswamy, Kenneth Rose

Department of Electrical and Computer Engineering, University of California Santa Barbara, CA 93106
Email: {weiting, tejaswi, rose}@ece.ucsb.edu

ABSTRACT
Current video coders rely heavily on block-based motion
compensation, which is known to accurately capture pure
translation, but to (at best) approximate all other types of
motion, such as rotation and zoom. Moreover, as motion
vectors are obtained through pixel-domain block matching
to optimize a rate-distortion cost, and do not necessarily
represent the actual motion, the model should not be con-
sidered a proper sampling of the underlying pixel motion
field. This paper explicitly treats several neighboring mo-
tion vectors as pointers to multiple observation sources for
estimating a pixel in the current frame. The corresponding
optimal linear estimation coefficients are derived for pre-
dicting each pixel, given the observations obtained based on
nearby motion vectors. Prediction coefficients are further
adapted to local statistics by switching between predefined
sets of coefficients, which are trained offline through a proce-
dure of “K-modes” clustering. Experimental results outside
the training set validate this paradigm with significant bit rate
savings over conventional motion compensated prediction.

Index Terms— Video coding, motion compensation,
adaptation, linear predictor

1. INTRODUCTION

Motion-compensation is one of the key components in video
coding. It is based on the assumption that each pixel value
in the current frame is correlated to some pixel in the previ-
ously coded frames. Therefore, instead of encoding the raw
pixel values, pixels are predicted from reference frames, and
only the prediction errors are encoded. The difference in po-
sition between the target and reference pixel is referred to
as a motion vector, which has to also be coded and sent to
the decoder. Since the complexity for searching and signal-
ing overhead for transmitting the motion vector at each pixel
would outweigh the benefits of exploiting this temporal re-
dundancy, modern video coding standards, such as HEVC [1]
and VP9 [2], use block-based motion compensation (BMC) to
exploit temporal redundancies. These coders divide a frame
into non-overlapping blocks, which are predicted from similar
blocks in the reference frame, to minimize the rate-distortion

This work was supported by Google Inc.

(RD) cost. BMC implicitly assumes that all pixels in a block
move uniformly, i.e., the motion is pure translation. This as-
sumption does not hold in a number of scenarios, e.g., a block
covering multiple objects that differ in their motion, or non-
translation motion components such as rotation and zoom.
Thus, BMC may result in large prediction errors, as well as
annoying blocking artifacts.

Variable block size motion compensation was proposed
to enhance the prediction accuracy by a more flexible parti-
tion of the frame into blocks [3], but this still does not fully
account for actual object shapes. Employing higher order
models to capture motion other than a simple translation was
proposed in [4], wherein motion vectors estimated by BMC
are viewed as control points to construct smoothly varying
motion vectors across pixels. This allows pixels in the same
block to have different motion vectors, thus potentially cap-
turing other types of motion, such as rotation and zoom. How-
ever, in the presence of objects moving in different directions,
the motions at control points will be a compromised choice,
rendering the approach ineffective, and in scenarios where ad-
jacent blocks predict from different reference frames, the ap-
proach is simply inapplicable. Other limitations involve the
subpixel precision of many motion vectors of individual pixel
and the need to rely on a finite set of imperfect interpolation
filters, which yield errors, see [5].

The above two approaches still try to associate each block
or pixel with a single most suitable motion vector to construct
the prediction. Instead of limiting the approach to a single
motion vector per pixel, we propose to use the neighboring
blocks’ motion vectors as pointers to sources of relevant ob-
servations, and construct the final prediction using optimal
linear estimation coefficients to combine these observations.
Relevant early work includes the overlapped block motion
compensation (OBMC) approach, which was first proposed to
reduce blocky artifacts [6, 7], and was later observed to also
reduce the prediction error. In [8], an estimation approach
to design the weighting window based on a symmetric mo-
tion assumption, was proposed, and in [9] a parametric win-
dow design based on the motion model was proposed. These
approaches use a single type of extended window such that
overlapping neighboring windows effectively average their
respective observations. In this work the focus is on imple-
menting the optimal linear estimator for each pixel from ob-

Fig. 1: Grid of motion vectors.

servations obtained by applying the multiple nearby motion
vectors available. Moreover, the estimator is adaptive to vari-
ation to local statistics by switching betweenK sets of coeffi-
cients that are designed offline based on training data. We re-
emphasize that, unlike prior methods that design the weights
for a window centered around a motion vector position, we
design the sets of coefficients for the area that lies between
motion vector positions. This distinction allows us to ac-
curately capture variations in how predictions due to neigh-
boring motion vectors need to be weighted, and in effect en-
ables accounting for arbitrary object shapes. We design the
weights via K-modes clustering to capture the variation in
local statistics. Note that additional side information needs to
be transmitted to indicate the selected set of coefficients per
block, hence, K is chosen to balance the trade off between
prediction accuracy and rate overhead. Experimental results
demonstrate the efficacy of the proposed paradigm with av-
erage 8.46% bit rate savings over conventional fixed block
motion compensation.

2. PROPOSED PREDICTION MODEL

Conventional motion compensated prediction for pixel s in a
block at location (i, j) in frame k, can be written as

x̃k(s) = x̂k−1(s− vi,j), (1)

where, vi,j is the motion vector for the (i, j) block, and
x̂k−1(·) is a reconstructed pixel in the previous frame. (We
assume without loss of generality that the reference block is
in the previous frame). Since a single motion vector cannot
capture complex motions within a block, we propose to ex-
ploit nearby motion vectors to obtain additional observations,
and generate the final prediction by linearly combining the
observations weighted by appropriate coefficients. The coef-
ficients are selected from one of the predefined K-sets that
are designed to capture variations in the local statistics.

We denote by Bi,j the block of pixels lying between mo-
tion vectors vi,j ,vi+1,j ,vi,j+1 and vi+1,j+1, as shown in
Fig. 1. If these motion vectors were produced by conventional
BMC then each corresponds to the center of its block. Hence,
our block definition is off-grid and covers one quadrant each
from four blocks of the standard fixed block grid. Let stli,j be

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) vi,j

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) vi,j+1

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) vi+1,j

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) vi+1,j+1

Fig. 2: An example set of weight distributions corresponding
to motion vectors vi,j ,vi+1,j ,vi,j+1 and vi+1,j+1

the top-left pixel in Bi,j , and s′ = s − stli,j , be the relative
position within the block. The overall prediction for the pixel
s ∈ Bi,j in frame k is calculated as

x̃k(s) =

1∑
m=0

1∑
n=0

cqm,n(s
′)x̂k−1(s− vi+m,j+n) (2)

= cq(s′)ᵀx̂k−1(s), (3)

where cqm,n(s
′) is the q-th set coefficient for prediction at po-

sition s′ using the corresponding (m,n) neighboring motion
vector. Equation (2) is shown in vector form in (3) where ᵀ

denotes transposition. The set of coefficients is selected to
minimize the mean squared prediction error, i.e.,

q = argmin
r∈{0,...,K−1}

∑
s∈Bi,j

(
xk(s) − cr(s′)ᵀx̂k−1(s)

)2
. (4)

An example set of coefficients is shown in Fig. 2. The co-
efficients tend to approach one near the corresponding mo-
tion vector position and decrease with distance. As discussed
in Sec. 1, applying coefficients this way allows us to capture
variations in local statistics corresponding to significance of
predictions due to neighboring motion vectors. Ideally, differ-
ent coefficients that are optimal for each block can be used,
but these coefficients must be known to the decoder as well.
In order to implement the proposed prediction model with-
out introducing too much signaling overhead, we restrict our-
selves to using K sets of coefficients. These coefficients are
stored in both the encoder and decoder, hence, we only need
to signal the index to the decoder.

3. COEFFICIENT DESIGN VIA K-MODES
CLUSTERING ALGORITHM

We propose to design the coefficients offline through a “K-
modes” clustering-based approach. Note that the overall ob-

jective of the coder is to optimize the tradeoff between rate
and quantization error, and the quantized pixel is the sum of
prediction x̃k(s) and quantized prediction error êk(s), i.e.,

x̂k(s) = x̃k(s) + êk(s). (5)

Designing coefficients to minimize prediction error leads to
better prediction, but this does not guarantee better recon-
struction. Hence we propose to design the coefficients while
accounting for the reconstruction error.

Once blocks are classified into K clusters based on (4),
the squared reconstruction error for each cluster Cq is

J =
∑

Bi,j∈Cq

∑
s∈Bi,j

(
xk(s)− x̃k(s)− êk(s)

)2
. (6)

Given the discreet nature of quantization, this cost (6) is
piecewise continuous in the prediction coefficients. Suf-
ficiently small changes in coefficient values will (almost
always) only affect the reconstructed value through the pre-
diction term of (5), hence optimal predictive coefficients
cq(s′) must satisfy

cq(s′) = E[x̂k−1(s)x̂k−1(s)
ᵀ]−1E[x′k(s)x̂k−1(s)], (7)

where x′k(s) = xk(s)−êk(s). Overall an iterative closed-loop
approach is used to update these values until convergence:

1. Given the sets of coefficients at iteration i − 1, a train-
ing set of reconstructions {x̂(i)0 , x̂

(i)
1 , x̂

(i)
2 , · · · , x̂(i)N }

and quantized prediction errors {ê(i)0 , ê
(i)
1 , ê

(i)
2 · · · ê

(i)
N }

are generated for iteration i using (4).

2. Given the new training set, (7) is employed to compute
the new coefficients.

3.1. Motion refinement for interpolated prediction

In the proposed interpolated prediction framework, each mo-
tion vector influences multiple prediction blocks, which im-
plies the motion vectors cannot be optimally selected inde-
pendently. Hence, we propose an iterative motion refinement
algorithm.

Given the coefficients for all the K modes, we initialize
the motion vector for each blockBi,j via conventional motion
compensation, and then update the motion vectors as follows:

1. Calculate the optimal mode for each block Bi,j given
the motion vectors.

2. Fix the modes and Bi,j’s neighboring blocks’ mo-
tion vectors; run motion search to minimize the rate-
distortion cost.

The above two steps are repeated until convergence. We note
that the motion vector update in Step 2 above can be divided

Fig. 3: Motion vectors of blocks shown with the same color
can be updated in parallel during motion refinement for inter-
polated prediction.

into different groups to be run in parallel, since a motion vec-
tor only affects a limited area (at maximum four blocks for
fixed block sizes). For example, as shown in Fig. 3, all motion
vectors shown with the same color can be updated in parallel.

4. EXPERIMENTAL RESULTS

We evaluated the proposed approach in the experimental
branch of the VP9 framework. It is important to emphasize
that the proposed paradigm is applicable to any modern video
coding standard, as they all employ variants of BMC. For
simplicity of simulations, we restrict the coder to use 16× 16
fixed block size in an IPPP structure, with only the previous
frame allowed as reference for inter prediction. To minimize
complexity overhead, we limit the motion refinement to one
iteration and the search window size to [−1, 1] on both hori-
zontal and vertical directions. The coefficients are initialized
using 2-D raised cosine function, which is defined as

H2D(βx, βy, x, y) = C(x, y)H1D(βx, x)H1D(βy, y),

where H1D(βx, x) is the 1-D raised cosine function,

H1D(β, x) =
1, 0 ≤ |x| ≤ (1− β)B

2
1

2
+

1

2
cos

(
πB

β

[
x− (1− β)B

2

])
,
(1− β)B

2
< |x|

0, otherwise

and C(x, y) is the normalization function. We selected
βx, βy ∈ {0, 0.5, 1} (i.e. K = 9) and the initial co-
efficients are uniformly sampled values of the function
H2D(βx, βy, x, y) for 0 ≤ x, y ≤ 1. We design separate
set of coefficients for different target bit-rate regions and
different range of resolutions. The training set for CIF res-
olution consists of first 100 frames of Flower, Coastguard,
Mobile and Stefan video sequences, and the training set for
HD resolution consists of first 20 frames of BQTerrace, Cac-
tus, In to Tree and Pedestrian video sequences. The trained

0 2 4 6 8 10 12 14 16 18

Iterations

0

0.1

0.2

0.3

0.4

0.5

0.6

P
S

N
R

 Im
pr

ov
em

en
t

low bit-rate
mid bit-rate
high bit-rate

Fig. 4: PSNR improvement (in dB) versus iterations of the
proposed K-mode clustering algorithm for different target bit
rate regions.

coefficients are stored in both the encoder and decoder. The
mode index is entropy coded and the signaling overhead is
accounted for in the results.

Fig. 4 shows the average PSNR improvements of the
training set at each iteration for different target bit-rate re-
gions. In the low bit-rate case, most of the prediction residu-
als are quantized to zero, which implies that improvement in
prediction accuracy directly maps to improvement of recon-
struction, and hence we see significant improvement in the
first few iterations. This is not the case in mid and high tar-
get bit-rate regions, and therefore the improvement is much
more smooth. Note that the low bit-rate case also suffers
from instability of performance improvement. We conjecture
that this is due to a known problem in closed-loop design of
predictive systems (see [10]), wherein there is a potentially
considerable mismatch in statistics observed prior to param-
eter updates and after the update is made. We are currently
working on adopting the asymptotic closed-loop design ap-
proach proposed in [10] to address this problem.

The performance gains for the test set, in terms of BD rate
reduction, is summarized in Table 1, and the RD performance
comparison for one of the test sequences is shown in Fig. 5.
We can observe from these results that the trained coefficients
provide significant performance improvement for video se-
quences with complex motion, as the proposed approach cap-
tures this by accounting for all neighboring motion vectors, in
contrast to the conventional BMC, which is restricted to em-
ploy some compromise approximation of complex motions
within a block. Moreover, for such sequences, we also obtain
larger gains for doing motion refinement as this improves tak-
ing neighboring motion vectors into account, even with the
limited range of motion refinement. It is also worth noting
that the motion compensated residuals are smoother due to re-
duced blockiness by interpolating multiple predictions, which
also leads to rate savings in transform coding.

Table 1: BD rate reduction for the proposed approaches rela-
tive to VP9, evaluated outside the training sets.

Without With
Sequence motion refinement motion refinement
Foreman 11.174 11.316

Bus 13.783 14.455
Ice 6.213 6.863

HighWay 9.500 9.969
BlowingBubbles 6.898 7.422

BQMall 7.804 7.891
Vidyo4 3.973 4.011

CrowdRun 9.068 9.266
BasketBallDrive 7.746 7.937

Average 8.462 8.792

0 20 40 60 80 100 120 140 160 180
kBs

24

26

28

30

32

34

36

38

PS
N

R

baseline
proposed method with motion refinement

Fig. 5: RD performance comparison for the sequence bus.

5. CONCLUSION

A method for interpolating multiple motion compensated pre-
dictions with a choice ofK modes is proposed to fully exploit
the motion field and adapt to local statistics. Experimental re-
sults show that the proposed scheme can achieve an average
8.46% bit-rate saving over conventional fixed-block motion
compensation method, and demonstrate the potential benefits
of using nearby motion vectors to generate final predictions.
Further improvement is expected with stable design of coeffi-
cients in low bit-rate regions, online adaptation of weights to
currently observed statistics, and fully accounting for context
while encoding the mode index. Future work will also in-
clude RD optimal mode selection and generalization to vari-
able block sizes.

6. REFERENCES

[1] G. J. Sullivan, J. R. Ohm, W.-J. Han, and T. Wiegand,
“Overview of the high efficiency video coding (hevc)
standard,” IEEE Transactions on circuits and systems
for video technology, vol. 22, no. 12, pp. 1649–1668,
2012.

[2] D. Mukherjee, J. Han, J. Bankoski, R. Bultje, A. Grange,
J. Koleszar, P. Wilkins, and Y. Xu, “A technical
overview of vp9 - the latest open-source video codec,”
SMPTE Motion Imaging Journal, vol. 124, no. 1, pp.
44–54, 2015.

[3] G. J. Sullivan and R. L. Baker, “Efficient quadtree cod-
ing of images and video,” IEEE Transactions on Image
Processing, vol. 3, no. 3, pp. 327–331, 1994.

[4] H. Huang, J. W. Woods, Y. Zhao, and H. Bai, “Control-
point representation and differential coding affine-
motion compensation,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 23, no. 10, pp.
1651–1660, 2013.

[5] T. Wedi, “Adaptive interpolation filters and high-
resolution displacements for video coding,” IEEE
Transactions on Circuits and Systems for Video Tech-
nology, vol. 16, no. 4, pp. 484–491, 2006.

[6] H. Watanabe and S. Singhal, “Windowed motion com-
pensation,” in Proc. of the SPIE Conf. on Visual Com-
munications and Image Processing, pp. 582–589, 1991.

[7] S. Nogaki and M. Ohta, “An overlapped block motion
compensation for high quality motion picture coding,”
in Proc. IEEE International Symposium on Circuits and
Systems, vol. 1, pp. 184–187, 1992.

[8] M. T. Orchard and G. J. Sullivan, “Overlapped
block motion compensation: An estimation-theoretic
approach,” IEEE Transactions on Image Processing,
vol. 3, no. 5, pp. 693–699, 1994.

[9] Y.-W. Chen, T.-W. Wang, Y.-C. Tseng, W.-H. Peng, and
S.-Y. Lee, “A parametric window design for obmc with
variable block size motion estimates,” in Proc. Int.
Workshop Multimedia Signal Processing, 2009.

[10] H. Khalil, K. Rose, and S. L. Regunathan, “The asymp-
totic closed-loop approach to predictive vector quantizer
design with application in video coding,” IEEE transac-
tions on image processing, vol. 10, no. 1, pp. 15–23,
2001.

