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Abstract

The basic vector quantization (VQ) technique employed in video coding belongs to the cate-
gory of predictive vector quantization (PVQ), as it involves quantization of the (motion compen-
sated) frame prediction error. It is well known that the design of PVQ suffers from fundamental
difficulties, due to the prediction loop, which have an impact on the convergence and the stability
of the design procedure. In this paper we propose an approach to PVQ design that enjoys the
stability of open-loop design while it ensures ultimate optimization of the closed-loop system.
The method is derived for general predictive quantization, and we demonstrate it on video com-
pression at low bit rates, where it provides substantial improvement over standard open and
closed loop design techniques. Further, the approach outperforms standard DCT-based video

coding.
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I. INTRODUCTION

Most video coding systems use predictive coding and are composed of two main functional
modules: the frame prediction module, and the prediction error (residual) compression module
(see Fig. 1). The objective of the first module is to exploit the temporal redundancy that
exists between consecutive frames by predicting the contents of the current frame from the
previous frame. Block-based motion compensation (whose parameters are transmitted as side-
information) is used in this module to achieve better approximation of the current frame. The
second module is the lossy part of the codec where the prediction error, or residual, is compressed
to the appropriate bit rate.

The prediction residual is usually handled as a two-dimensional signal and, more specifically,
as if it were a still image. The predominant residual compression approach involves application
of the Discrete Cosine Transform (DCT), and this is the method of choice in the major standards
including H.263 [1] and MPEG [2|. An important justification for the use of DCT in still image
compression hinges on the assumption that the signal can be well modeled as a Gauss-Markov
process with a high autocorrelation coefficient. It has been shown that the performance of the
optimal (Karhunen-Loeve) transform on such a signal is closely approximated by that of DCT

[3]. Wavelet and subband decomposition have also been proposed for coding the prediction
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error residual [4] [5]. The success of these techniques in compression of images is due to their
decorrelation and energy compaction properties.

However, the above arguments which build on statistical characteristics of still images, do not
hold for the prediction residual of video signals whose statistical characteristics are considerably
different. In fact, it may be argued that once an effective motion compensation is performed, the
remaining residual exhibits too little correlation to warrant further application of a decorrelating
transform. It is, therefore, plausible that an approach to direct compression of the residual,
which takes into account the actual signal statistics, would provide substantial gains. Interesting
alternatives to main-stream DCT-based coders are based on matching pursuits [6] and wavelets
[7118]-

We pursue a known alternative approach for direct compression of prediction residuals, which
is based on vector quantization (VQ). There has been prior work on vector-quantization of the
residual [9],[10],[11]. In [9], a variable block size scheme is used where the motion compensated
residual is divided into blocks of varying sizes to suit activity levels. In [10], the randomness
of prediction residuals was considered, and a stochastic VQ scheme was proposed. Simulation
results in these papers were not compared to standards. Other schemes were proposed in [12]
but performance was reported to be inferior to the then-current standard.

There are several arguments in support of VQ for video compression. Shannon’s theory implies
that vector quantizers are asymptotically optimal, where asymptotic here is in terms of vector
length. (Note, in particular, that typical block sizes in video coding correspond to long vectors.)
Another important argument is that VQ is a very general framework and subsumes, for example,
DCT compression as a special constrained case [13]. Thus, it may be argued that DCT can not
outperform the best VQ. On the other hand, there exist various objections to the use of VQ in
video coding. One major difficulty is that of complexity. The V(Q complexity grows exponentially
with the product of vector dimension and rate. Structurally-constrained VQ methods have
reduced search and/or memory complexity, but their performance is inevitably compromised.
However, it is important to note that for very low bit rate compression, which is our target
area, even unconstrained V(Q would be manageable. Another major objection is concerned with
difficulties in the design of VQ for video coding applications. Predictive VQ (PVQ) design is
problematic, and the design often fails to produce an optimal (and often even a good) VQ.

It is our premise here that suboptimal PV(Q design is a major stumbling block on the way to a
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truly competitive VQ approach for video coding. We hence propose to attack this fundamental
problem. We first review traditional design methods and explain the difficulties in the training
procedure (Section 2). We develop a novel approach to solve the PV(Q design problem in Section
3. An extension to the design of entropy constrained PVQ is outlined in Section 4. In Section 5,
we provide simulation results as experimental evidence that PV(Q is indeed an attractive approach

for video coding.

II. CONVENTIONAL PREDICTIVE VECTOR QUANTIZER DESIGN

A major issue in PVQ design involves the need to obtain a stable training set that accurately
represents the true signal statistics. To clarify this difficulty, consider the design of a regular VQ
system, where the quantizer directly encodes source samples. It is possible via the generalized
Lloyd algorithm (GLA [14]) to iteratively adjust the quantizer parameters while decreasing the
distortion, as computed over the training set, until convergence. In contrast with standard
VQ, the PVQ system operates on the prediction error. But since the prediction is based on the
reconstruction of past samples (previous reconstructed frame in the case of video), the prediction
error depends on the quantizer itself. Clearly, the “effective training set” which is the sequence
of prediction errors, is not fixed but changes every time the quantizer parameters are modified.
In [15], two techniques were introduced for PVQ design and have been widely used since. In this
section, we briefly sketch these approaches. The presentation is geared toward emphasizing the
unresolved issues, and highlighting points of distinction with respect to the approach proposed

in this paper.

A. Open-loop approach

This simple approach is depicted in Fig. 2. A training set of prediction error vectors is generated
by using the original, unquantized source vectors for prediction. It is called “open-loop” (denoted
by OL) because the reconstructed vectors are not fed back through the predictor. Specifically,

given a set of original samples, X : {9, z1, 9, -,z N}, we generate the required training set via
tn:xn_P{mnfl]a ’I’L:1,2,...,N, (1)

where P is the prediction operator.
The main advantage of the OL approach is that the training set, T : {¢1, 2, -, tn} is fixed.
Therefore, we can design the PVQ by applying a standard optimization technique such as GLA.
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Since the training set remains unchanged, the design algorithm is guaranteed to converge to at
least a locally optimal solution.

However, the OL approach suffers from a serious shortcoming. The decoder does not have
access to the original source vector for prediction. Therefore, during the actual operation of the
compression system, prediction is performed using reconstructed source vectors. Thus, the train-
ing set of prediction errors is statistically different from the prediction errors to be quantized in
practice. The statistical mismatch, which is further amplified by feedback through the prediction

loop, leads to poor performance.

B. Closed-loop approach

To alleviate the statistical mismatch problem of the OL method, a closed-loop approach, de-
noted by CL, was presented in [15]. Fig. 3 shows the main steps. Here, a closed-loop (real) system
is used to generate the prediction errors in an iterative fashion. Given a quantizer at iteration
i — 1, which we denote by QU= a training set of prediction errors T : {tgi),tgi), e ,t%)}, is

generated for iteration i:

1) = on — Pl (2)

where
i) = Play) 1) + Q0 (en — Pliy) ). (3)
Equations 2 and 3 are sequentially calculated for each n = 1,2,..., N. For this set of prediction

errors, a new quantizer, Q. is optimized. Next, a new sequence of prediction errors is generated
for iteration 7 4+ 1, and so on.

The initial quantizer Q(® is usually chosen to be the outcome of the OL method. Since the
training residuals were generated by the same closed-loop coder that will be used in the actual
mode of operation, the input residual error statistics are expected to be similar to those used to
train the quantizer. However, convergence of the algorithm is not guaranteed, as the training
set changes every iteration in an unpredictable fashion. The instability of the CL method is
amplified at very low bit rates as will be demonstrated in the results section.

A notable alternative closed-loop method is the stochastic approach of Chang and Gray [16].
Another approach is the more recent constrained optimization of Rizvi and Nasrabadi [17].
However, it is generally known that the problem has not been satisfactorily solved as yet [11],

13], [18].
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C. Summary of shortcomings

The relative merits of the CL design versus the OL design are not clear. Although OL training
has a fixed training set, and hence is ensured to converge, it is mismatched with the true mode
of operation of the quantizer. On the other hand, the central design difficulty of the CL training
technique is that quantization errors are fed back through the prediction loop, thus making the
training of the quantizer a highly unstable procedure. In particular, the actual effective training
set (the sequence of prediction errors) of CL is encoded by a quantizer optimized for the training
set of the previous iteration. Due to the feedback loop, the effect of this mismatch builds up
to large deviation in the statistics, and tends to confuse the design procedure. CL training
“ignores” the above difficulty and iterates as if an improvement of the quantizer for the current

set of prediction errors ensures better performance on the prediction errors of the next iteration.

III. PROPOSED METHOD: ASYMPTOTIC CLOSED-LOOP APPROACH

The objective of the proposed design approach is to enjoy the best of both worlds, namely,
to enjoy the design stability of the open-loop mode while ultimately optimizing the system for
closed-loop operation. To achieve this, we propose the following procedure (illustrated in Fig. 4).

Let us first introduce some mathematical notation to facilitate the algorithm description. The
main objective is to avoid accumulation of errors due to mismatched quantization through the
prediction loop. We therefore base our prediction on the reconstructed samples of the previous

iteration. The training set is, in effect, generated by
@ _ - (i—1) _
ty) = xn — Pz, _1'], n=12---,N. (4)

Having collected the set of training samples, we optimize a new quantizer Q% (via GLA). The

new quantizer is then used to generate the new set of reconstruction samples based on

#0 = P+ QD (e, — PRV, n=1,2,--,N. (5)

n—1 n

Compare equation (4) with equation (1) for standard open-loop, and (2) for the closed loop
design. The CL design alternates between equations (2) and (3) with every n before moving to
the next iteration. In our approach, execution of (4) is done for the entire sequence, without the
effect of quantization error accumulation. We then calculate (5) for all n, before moving on to

the next iteration.
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Note that the quantizer Q® is used to encode ezactly the same prediction error vectors used
for its design. Neglecting the possible local-optimality of the quantizer design algorithm, this
is the best quantizer for these vectors. We are thus assured that the resulting reconstruction is
improved, and this results in better prediction. Under the reasonable (and common) assump-
tion that smaller prediction errors lead to smaller quantization error, and vice versa, we obtain
monotonic improvement throughout the process.

Note that the entire design is in open-loop mode since we compute prediction errors for the
entire sequence before quantization. As the distortion is generally decreasing, we expect the

process to converge. At convergence, further iterations do not modify the quantizer

QU =QV, (6)
which immediately ensures that the reconstruction sequence is fixed,

B =20, (7)

n

and that the next-frame prediction sequence is fixed:

P ] = P2l (8)

n

This implies that the prediction would be unchanged if it were based on the reconstruction of the
current iteration, instead of on the reconstruction from the previous iteration. In other words,
the procedure is asymptotically equivalent to closed-loop design. But the algorithm is running
at all times in open loop! We thus have developed a procedure which is “open-loop” in nature,
yet converges to optimization of the closed-loop performance. We hence refer to this approach
as the asymptotic closed-loop (ACL) approach.

The algorithm for ACL design of PV(Q can be summarized as:

Step 1. Apply an initial PVQ to the training sequence of source samples to obtain a recon-
structed sequence, with the corresponding sequences of next-sample prediction, and predic-
tion error.

Step 2. Design an optimal V() for the current sequence of prediction errors.

Step 3. Apply the current VQ to quantize the prediction errors used in its design.

Step 4. Add the sequence of quantized prediction errors to the next-sample-prediction se-

quence to obtain a new reconstructed sequence.

DRAFT



IEEE TRANSACTIONS ON IMAGE PROCESSING, FINAL VERSION 8

Step 5. Apply prediction to the reconstructed sequence to generate a next-sample-prediction
sequence.
Step 6. Subtract the prediction sequence from the original sequence to generate the new
sequence of prediction errors.
Step 7. Go to Step 2.
As our assumption (better quantization results in better prediction and vice versa) is not
perfectly valid, in our experiments, the algorithm terminates in a small limit cycle instead of
perfect convergence. However, this appears to have no practical significance (more on this issue

in the results section).

IV. VARIABLE RATE PREDICTIVE VECTOR QUANTIZER DESIGN

For simplicity and clarity, the main ideas have been presented so far in the context of fixed-rate
PVQ design. As the target application in the experimental part of the work is low bit rate video
coding, we must account for variation in local signal statistics. It is well known that variable rate
coders can adapt to changing statistics, and offer higher compression efficiency than fixed rate
coders. Hence, we propose to design a variable rate PVQ system for video compression. The
design algorithm described above can be easily adapted for this purpose by incorporating in Step 2
an appropriate technique for optimizing entropy-constrained quantizers. An entropy-constrained
optimization produces variable length codewords, where code vectors of higher probability are
assigned shorter codewords, so as to minimize the expected rate.

The standard optimization technique for entropy-constrained vector quantizers consists of a
known modification of GLA which we will refer to as entropy-constrained GLA (EC-GLA) [19].
A Lagrangian formulation is employed, where the cost of encoding is a function of distortion
and encoding rate: L = D 4+ AR. The Lagrangian multiplier, A\, controls the rate-distortion
trade-off. The standard EC-GLA starts with a fixed rate (A=0) codebook and modifies it into a
variable rate codebook by increasing A in a series of steps. There are two drawbacks to standard
EC-GLA. The computational complexity can be considerable if the codebook is large. Further,
the final codebook heavily depends on the initialization, and the optimization may easily get
stuck in a poor local minimum.

To reduce the complexity of EC-GLA, the pairwise nearest neighbor (PNN) algorithm [20]

was extended to entropy constrained quantizer optimization by Finamore et al.[21] This design
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procedure uses the entire training set as the initial codebook, and recursively merges the pair of
reproduction vectors that yields the least increase in distortion, until the desired codebook size
is reached. The reduction in complexity is normally achieved at the cost of some degradation in
performance of the codebook.

We instead propose a selective splitting approach to improve the optimization of entropy
constrained quantizers. Our objective is two fold : (i) directly optimize the codebook to operate
at the desired rate/distortion trade-off, in contrast to [19], and thereby reduce complexity, and
(ii) improve the initialization. In a logical reverse of PNN, selected codevectors are recursively
split. The splitting mechanism is closely related to the greedy splitting approach of Riskin and
Gray [22], which was developed for the design of tree-structured VQ. However, we use splitting
as a means to improve the initialization and reduce complexity, and not for imposing a structure
on the solution. The selective splitting approach was used by us for designing standard variable
rate quantizers and was found to outperform standard EC-GLA [23]. Here, it is applied to our
primary objective of designing optimal variable rate PVQ for video compression. At the end of
this section, we explain the additional advantages offered by selective splitting for PVQ design.

We now summarize the selective splitting approach for designing entropy-constrained quantiz-

ers.

Selective Splitting Approach :
Step 1. Initialize the codebook to contain only the centroid vector of the entire training set.
Step 2. For all entries ¢; of the codebook, test for the cost effectiveness of a potential split by

calculating

AL; = AD; — MAR; 9)

where AL; is the decrease in Lagrangian cost, AD; is the decrease in distortion, and AR; is
the increase in rate.

Step 3. Sort and list all entries of the codebook in decreasing order of AL;.

Step 4. Starting at the top of the sorted list, split codewords one by one until a specified
criterion is met. Insert the new codewords into the codebook.

Step 5. Given the codebook, run EC-GLA over the entire training set.

Step 6. If target codebook size is achieved, stop. Otherwise, go to Step 2.

Comments and Observations:
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¢ In Step 2, we first calculate the distortion D; of the training subset T; associated with code-
vector i. Then we split the codevector into two new vectors, and apply GLA to T; producing
two training subsets T; and T;”. For these two subsets, we calculate the corresponding dis-
tortions D;" and D;”. We then evaluate AD; = D; — (D;' + D;"). If the number of vectors in
T; is N;, we assume (for simplicity) that we need an extra bit for each vector in 7} resulting
in a rate increase of AR; = N; bits.

o A “healthy” split is ensured by testing for AL;. Clearly, a negative AL; indicates a counter-
productive split, while large positive values of AL; indicate advantageous splits.

o The complexity of testing for a codeword split is not excessive, as the training samples
considered are only the subset associated with the codevector. The number of splits per
iteration of Step 4 can be either predetermined, or vary depending on the current versus
target codebook size. In general, the number of splits per iteration determines the tradeoff
between quality and complexity.

e Step 5 allows rectification of “near-sighted” or overly greedy splits of individual codewords,
as the whole training set is reconsidered. Usually, a couple of iterations are sufficient to
ensure convergence.

¢ We re-emphasize that selective splitting is used in Step 2 of the PVQ design algorithm for
optimizing the entropy-constrained PVQ (ECPVQ) codebook. An important advantage of
this algorithm for ECPVQ design is that it facilitates execution of Step 2 of the ACL method.
When a new Q) is designed, we use the Q(~1) as an initialization to speed up the algorithm.
Some of its entries may become unused, and the selective splitting approach naturally solves
this problem by dropping those unused vectors, and creating new ones by splitting existing

codevectors.

V. SIMULATION RESULTS

The proposed PVQ design is tested in the context of both synthetic sources and very low bit

rate video coding.

A. Experiments on Synthetic Sources

A synthetic source process of first-order Gauss-Markov vectors was generated with intra-vector

and inter-vector correlation coefficients of 0.9. A first-order predictor is used in the PVQ design.
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We present results for two target bit rates: i) 0.83 bits/sample (referred to as low bit rate) and
ii) 1.5 bits/sample (high bit rate).

Fig. 5 shows the average distortion over the training set and its evolution with the iterations.
In the low bit rate case, the CL design becomes very unstable after a few iterations. The
performance of the codebooks obtained via ACL design remains stable throughout the design
process.

In Fig. 6, we present the corresponding results for the case of high bit rate. Here we note
that both the CL and ACL designs are stable (though the CL design displays more pronounced
oscillations). These results support our premise that the accumulation of errors is the main cause
of difficulties in PVQ design. When the available bit rate is high, the accumulation of error is
greatly reduced and thus, the traditional design approach is not severely affected.

It is interesting to note that the curve for the ACL method is much smoother than that of the
CL method. Also, at low bit rates, the simple OL design may outperform the CL design if the

latter training procedure is allowed to run long enough.

B. Experiments on Video Sequences

In the second set of experiments, we evaluate the proposed PV(Q) design on video sequences.
VQ-based techniques in video coding applications are mainly employed at very low bit rates. It
is thus expected that the CL design approach will meet with considerable training difficulties due
to accumulation of errors. In this subsection, we compare traditional approaches to the proposed
ACL design.

We implemented a video codec where 8 x 8 residual blocks are used as vectors. The video
sequences are in QCIF format and the frame rate is 10 frames/sec. The general structure of the
codec is as shown in Fig. 1. The system uses half-pixel motion compensation, and is basically a
“bare-bones” H.263 scheme where the DCT/quantization module was replaced with the ECPVQ),
and where each 8 x 8 block is considered as a separate macroblock. After the first frame, all
frames are compressed in interframe mode. This simplification has the sole purpose of focusing
the results on predictive coding and eliminating unrelated factors, but all features of H.263 can
be readily added to the VQ system. The Lagrange multiplier A is used to control the rate. In
all our simulations, Huffman codes are employed to generate variable length codewords.

Two main experiments with video have been performed. In the first experiment, a total of
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30 frames (luminance component) of the sequence Carphone were used as the training sequence.
We design an ECPVQ using each of the OL, CL, and ACL techniques described in Section 3.
Fig. 7 compares the performance of ECPVQ designed by the proposed ACL design method with
that of the standard CL design. The PSNR shown is that of the actual closed-loop performance
of the coder using an ECPVQ obtained at each iteration and is equal to the average PSNR
over the training video sequence. Note that both systems start their iterations by designing an
OL-designed codebook, and thus have the same performance at the first iteration. Both systems
improve performance in the first few iterations. However, the CL design algorithm leads to
gradual accumulation of error in the system and causes the subsequent drop in overall PSNR.
On the other hand, the proposed ACL approach shows persistent improvements, and eventually
provides performance that is superior by several dB. For reference, it should be mentioned that
the corresponding “bare-bones” H.263 (with the standard DCT module) achieved PSNR of about
31 dB which is significantly below the performance of our ECPVQ. The bit-rate was fixed at
about 12 kb/s for transmitting the prediction residual of this QCIF sequence. All other side
information (including motion vectors) required rate identical for all coders. It is important
to note the instability of the CL algorithm even within the training set. One may notice that
the near-monotonic improvement of ACL with iterations is punctuated by occasional drops in
PSNR. The reasons for this behavior are the suboptimalities in motion compensated prediction
and minor fluctuations in rate.

The effective convergence of the ACL algorithm can be demonstrated as follows. Recall that
the codebook of the previous iteration is used as initialization for the design of the codebook of
the current iteration. When any of the codebook vectors becomes unused and gets dropped, the
algorithm will fill up the empty codebook entry by selectively splitting additional vectors. The
number of unused codevectors at each iteration is a good indication of how well the codebook
is converging. Ideally, as the codebook approaches convergence, a minimal number of vectors
will be dropped and updated, i.e. virtually all vectors will be retained. Fig. 8 shows the relative
percentage of vectors that become unpopulated at each iteration. The decreasing percentage of
unpopulated vectors indicates that the ACL algorithm is converging. Also included in the graph
is a demonstration of the instability of the CL approach. It can be seen that almost 40% of the
codebook entries become unpopulated in any CL iteration, indicating that further iterations are

not producing representative training sets, nor will they lead to convergence of a good codebook.
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So far, we have considered the performance on the training set so as to emphasize the power of
the proposed ACL optimization technique over conventional ECPVQ design methods. We next
present results demonstrating performance outside the training set. In this second experiment,
in order for the ECPVQ to be statistically representative, we used a total of 13 video sequences
in the training phase. Each video sequence is of length 20 frames. The test set is composed
of the three independent (i.e., unused for training) video sequences, namely, Salesman, Claire,
and Akiyo, each also of 20 frames. Table 1 compares the performance of H.263 with that of
the various ECPVQ designs. Bit rates shown are those for coding the residual. The ECPVQ
design, in this case, involved two codebooks: one codebook optimized for blocks whose motion
vector was zero, and another codebook optimized for blocks with nonzero motion. Note that the
switching information need not be conveyed to the receiver as it is determined by the motion.
(One can design more codebooks conditioned on the motion vector, but two codebooks seem to
represent a reasonable compromise between compression performance, computational complexity,
and storage requirements.) Codebook sizes were of about 12,000 and 2,000, with average bit rates
of 3.5 and 1.5 bits/vector, respectively. The CL and ACL ECPV(Q designs were stopped after 25
iterations. The H.263 bit rate was controlled so as to match that of the ECPVQ system designed
by the ACL approach.

For the ECPVQ results, we show the system performance in five settings: i) OL method alone
is used, ii) CL method after only one iteration, iii) CL method after two iterations, iv) CL method
after the completion of the iterative design, and finally, v) ACL method after completion of the
iterative design. It is worthwhile to note that, in this case, OL can outperform CL on the test set.
In fact, CL’s instability is such that further iterations are detrimental to its performance. On the
other hand, ACL with the exact same initial conditions offers stable performance throughout the
iterations, and finally achieves gains of 0.2-0.5 dB over H.263 over the test sequences. Table 1
also provides the average rate-distortion Lagrangian D + A % R. Considerable improvements
were obtained in all test sequences. Table 2 summarizes the results of Table 1 giving averages
over the combined test sequences. We opted to show Lagrangians rather than PSNRs as they
can be meaningfully averaged over several different input sequences. For completeness, Table 3
also provides the Lagrangian averages when each ECPV(Q design is used to encode the training
sequences. In this case, the ACL design of ECPVQ provides major improvements over H.263.

The evolution of the CL and ACL performance with the number of iterations is shown in Fig. 9.
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Figures 10 and 11 give subjective comparisons of a sample frame from the two sequences
Carphone and Akiyo, respectively. While blocking artifacts are clearly visible in the H.263 coded
Carphone frame, this effect is significantly reduced in the ACL-designed ECPVQ coded frame.
For the Akiyo frame, it can be seen that some of the fine details of the image are better reproduced
by the ECPVQ coder, while H.263 causes blurring of such regions, (See, e.g., the earring and
the eyes). Note that the complexity of ECPV(Q system for low bit rate coding can be reduced
by exploiting the fact that a large fraction of residual blocks get quantized to zero. Other fast

methods also exist in the literature (see e.g., [24]).

VI. CONCLUSION

This paper describes a new approach to training predictive vector quantizers, which does not
suffer from the statistical mismatch typical of OL training algorithms, nor from the instability of
CL approaches. The proposed iterative ACL algorithm is open-loop in nature but asymptotically
optimizes the closed-loop system. Simulation results were presented for a simple ECPV(Q system
for video coding, and showed the superiority of the proposed design algorithm over conventional
approaches. Further results demonstrate that ACL-designed PV(Q video compression system
outperforms standard DCT-based video coding. It is expected that test set performance will be
further improved by more extensive training with longer training sets. An important extension
under investigation is that of adaptive PV(Q which can exploit variation in local statistics. We
are also examining the use of multi-stage codebooks in the design and use of PVQ to further

reduce complexity.
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Fig. 1. A basic predictive video coding system.
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Fig. 2. Open-loop (OL) procedure: z,, denotes original sample n, and t,, denotes prediction error n. P

represents the predictor operator.
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Fig. 3. Closed-loop (CL) procedure: x,, denotes original vector n, ﬁf
vector at iteration i, and tsf) denotes the n* prediction error at iteration i. Q) is the vector
quantizer trained on prediction error sequence from iteration i, and E£Z ) is tgf ) quantized by QU~1).
The design of Q{9 cannot proceed until all tSf ), forn=1,2,.--, N, have been collected and the newly

designed Q™ will only be used in the next iteration i + 1.
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Fig. 4. Proposed ACL procedure: x,, denotes original vector n, aﬁg ) denotes the n'" reconstructed sample

at iteration i, and tgf ) denotes the nt" prediction error at iteration i. Q¥ is the vector quantizer

trained on prediction error sequence from iteration i, and ¢

n

is t;i) quantized by Q®. Note that

the newly designed Q) is used in the same iteration i to generate new reconstructed vectors in

preparation for the next iteration ¢+ 1. The main difference between this design and the CL design is

that there is NO FEEDBACK; quantized prediction error is not fed back into the closed-loop system.
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Fig. 5. Performance comparison of standard OL and CL designs and the proposed ACL approach to
PVQ design at low bit rate. Average Distortion over the synthetic first-order Gaussian-Markov training
sequence is shown for the PVQ available at the end of each iteration. Both designs start from the
same initial point using the outcome of OL design. Note how the CL design improves output initially

but becomes unstable after a few iterations. The ACL design remains stable throughout all iterations.
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Fig. 6. Performance comparison of standard OL and CL design and the proposed ACL approach to PVQ
design at high bit rate. Average Distortion over the synthetic first-order Gaussian-Markov training
sequence is shown for the PVQ available at the end of each iteration. Both designs start from the
same initial point using the outcome of OL design. Notice that in this experiment, high coding rate

allows even the CL design to be stable.
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Fig. 7. Performance comparison of standard CL design and the proposed ACL approach to PV(Q design.

Average PSNR on the training sequence Carphone is shown for the PVQ available at the end of each

iteration. Both designs start from the same initial point using the outcome of OL design.
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Codebook Convergence
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Fig. 8. Percentage of codevectors per codebook that become unused (and thus dropped) on updating the
training set. Note that many more vectors in the CL design get dropped in every iteration indicating

that its convergence capability is rather limited.
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Fig. 9. Performance comparison of standard CL design and the proposed ACL approach to PV(Q design.
Average Lagrangian cost on the training sequences using the PVQ available at the end of each iteration
is shown. Both techniques initially use the outcome of a simple OL design as initialization. Note the
gradual decrease in average Lagrangian distortion of the ACL method indicating improvements in the

quantizer design. On the other hand, the CL design procedure is unstable.
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(c) DRAFT

Fig. 10. Subjective comparison of a frame of the Salesman sequence: (a) Original, (b) H.263, and (c)
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(c) DRAFT

Fig. 11. Subjective comparison of a frame of the Akiyo sequence: (a) Original, (b) H.263, and (c) ECPVQ.
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TABLE 1

27

PERFORMANCE COMPARISON OF H.263 AND PV(Q FOR THE TEST IMAGE SEQUENCES “SALESMAN,”

“CLAIRE,” AND “AKIYO.” THE PV(Q RESULTS SHOWN ARE FOR THE FOLLOWING: 1) OL METHOD, II)

CL METHOD AFTER ONE ITERATION (CL(})), 1) CL METHOD AFTER TWO ITERATIONS (CL®), 1v)

CL METHOD AFTER COMPLETION OF ITERATIONS (CL(2) AND V) ACL METHOD AFTER

COMPLETION OF ITERATIONS. THE COMPARISON IS IN TERMS OF PSNR IN DB, RATE IN KB/s, AND

THE RATE-DISTORTION LAGRANGIAN PER PIXEL (LOWER VALUES ARE BETTER).

Sequence | Coder | Design | PSNR | Rate | D + AR
Salesman | H.263 30.15 | 9.40 70.07
PVQ | OL 30.23 | 8.99 | 68.73

CLM | 29.21 | 9.28 | 69.29

CL® | 29.36 | 9.97 | 83.20

CL(# | 28.24 | 17.67 | 111.47

ACL | 30.41 | 9.37 | 66.56

Claire H.263 3454 | 6.57 | 28.04
PVQ | OL 34.74 | 6.04 | 26.59

CLM | 3473 | 6.28 | 26.85

CL® | 34.14 | 6.38 | 30.13

CL(®% | 32.03 | 9.46 | 48.21

ACL | 35.02 | 6.53 | 25.60

Akiyo H.263 32.67 | 7.04 | 40.70
PVQ | OL 32.98 | 6.81 | 38.08

CLM | 32.90 | 6.89 | 38.81

CL® | 3170 | 7.27 | 49.70

CL(®) | 30.20 | 12.89 | 72.30

ACL | 33.15| 7.02 | 37.00
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TABLE II
PERFORMANCE COMPARISON OF H.263 AND PV(Q) averaged OVER ALL THREE test IMAGE SEQUENCES
“SALESMAN,” “CLAIRE,” AND “AKIY0.” THE PVQ RESULTS SHOWN ARE FOR THE FOLLOWING: I)
OL METHOD, 11) CL METHOD AFTER ONE ITERATION (CL(), 111) CL METHOD AFTER TWO
ITERATIONS (CL(?)), 1v) CL METHOD AFTER COMPLETION OF ITERATIONS (CL(2) anp v) ACL
METHOD AFTER COMPLETION OF ITERATIONS. RESULTS SHOWN HERE ARE SUMMARIZED FROM TABLE

1, AND ARE AVERAGE RATE-DISTORTION LAGRANGIAN PER PIXEL OVER ALL THREE TEST SEQUENCES.

Coder | Design | Average D + AR

H.263 46.27

PVQ | OL 44.47
cL® 44.65
CL® 54.34
CL®) 77.33
ACL 43.05

TABLE III

PERFORMANCE COMPARISON OF H.263 AND PV(Q averaged OVER ALL 13 training IMAGE
SEQUENCES. THE PV(Q RESULTS SHOWN ARE FOR THE FOLLOWING: I) OL METHOD, 1I) CL METHOD
AFTER ONE ITERATION (CL(V), 111) CL METHOD AFTER TWO ITERATIONS (CL(?)), 1v) CL METHOD

AFTER COMPLETION OF ITERATIONS (CL(2%) AND V) ACL METHOD AFTER COMPLETION OF
ITERATIONS. RESULTS ARE IN TERMS OF AVERAGE RATE-DISTORTION LAGRANGIAN PER PIXEL OVER

ALL 13 TRAINING IMAGE SEQUENCES.

Coder | Design | Average D + AR

H.263 71.39

PVQ | OL 55.87
CLW 55.17
CL® 59.58
CL(#) 80.69
ACL 38.67
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