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Toward Optimality in Scalable Predictive Coding

Kenneth RoseMember, IEEEand Shankar L. RegunathaBtudent Member, IEEE

_ Abstract—A method is proposed for efficient scalability in pre- - enhancement layer. This estimate ensures that the compressed
dictive coding, which overcomes known fundamental shortcom- residual (prediction error) of the lower layers is fully utilized. In
ings of the prediction loop at enhancement layers. The compres- yna case opredictive codingthis approach to scalability is sub-

sion efficiency of an enhancement-layer is substantially improved . . . - . .
by casting the design of its prediction module within an estima- optimal as there is potentially useful information available from

tion-theoretic framework, and thereby exploiting all information ~ Prior reconstructed samples at the enhancement layer, which
available at that layer for the prediction of the signal, and encoding could be used to improve the enhancement-layer estimate of the
of the prediction error. While the mostimmediately importantap-  current sample. A scalable coder that neglects the additional in-

plicationis in video compression, the method is derived inageneral 4mation available for enhancement-layer estimation can incur
setting and is applicable to any scalable predictive coder. Thus, the iqnifi t Ity i . ¢
estimation-theoretic approach is first developed for basic DPCM a significant penally in Compression performance.

compression and demonstrates the power of the technique in a N the specific case of (nonscalable) video coding, the stan-
simple setting that only involves straightforward prediction, scalar dard compression technique predicts the current frame from the

quantization, and entropy coding. Results for the scalable compres- motion-compensated previous frame prior to transformation and
sion of first-order Gauss—-Markov and Laplace-Markov signals il- - 4 antization (see Fig. 1). Scalable video coding, therefore, suf-
lustrate the performance. A specific estimation algorithm is then fers f the ab i d suboptimality [9]. Thi bl
developed for standard scalable DCT-based video coding. Simula- [€rS from the above mentioned suboptimality [9]. This problem
tion results show consistent and substantial performance gains due has also led to proposals of nonpredictive scalable video coding

to optimal estimation at the enhancement-layers. such as the three-dimensional coding approach [18]. However,
predictive coders are generally preferred in most practical ap-
|. INTRODUCTION plications because of their minimal requirements in terms of

i the Int t ire th 4 inf i coding is to use the previous enhancement layer reconstruction
cast over the Internet, require the compressed informa '0”_f6? prediction at both the base and enhancement layers [5], [9].
be smultaneoqsly_tran_sm|tted to mult.|ple receivers Over_d'é'ince the base-layer decoder does not have access to enhance-
ferent communication links. The evolving global Commun'carhent-layer reconstruction, this results indeft between en-

t|oq ngtwqu 'S, I fagt, a patphwork of tran§m|35|on r.nefd'acoderand decoder reconstruction at the base-layer. This method
which is highly nonuniform in its communication capabilities

dis ch terized b tvariati in the ch | band _&rovides efficient compression for the enhancement-layer, but
and IS characterized by vast varations in tn€ channet banawi 'é accumulating drift may lead to degradation in base-layer
available to different links and to the same link at different m

ts. M the feasible bit rate of h o serformance. While drift may not be a significant problem in
ments. ioreover, the teasible bil rate of €ach recever IS coll,,q applications [2], we follow the trend of recent standards
strained by its f:omputat'lonal power and memory capacity. o,oh a5 H.263+ and MPEG-4, and prefer to focus exclusively
fAk\).fcaltable bltstream IS ong thalt a||C|)WS fdeco?;ng atha var;e&(] drift-free coders that aim at true scalability, i.e., those that
of bit rates (and corresponding levels of quality), where hfchieve efficient compression at the enhancement-layer without

lower rate information streams are embedded within the higrl%mpromising the base-layer performance

rate bitstreams in a manner that minimizes redundancy. We are "this work. we develop aestimation-theoreti¢ET) ap-

ﬁ:gll\?;ly corcslr.?e’(,j bhetrteh with VI\(/hat 'St CO(T;]O?IY relfe(;red tol %Sroach to enhancement-layer prediction in scalable coders. This
bilit scaiabil y’f u ?;vor IS ex eln i€ 10 Include sca %rediction, or rather estimation, at the enhancement layer is
“Iyt\;]'a vanotus orms 0 own-sr?;np lngl. bility 110 h shown to be optimal in the sense that it minimizes the mean
nt Ie mos _corrmon approac dot scaa_tl Itr)( [10], entamt:g- uared prediction error given all the information available at
men a;ytt:]rs IS|mpybcompr|ess anl ratrrl]sml 3 ret(;]onz ru;: enhancement layer. In experiments, this optimality translates
errorto i € owglr t()l ase)f ayers. 3 0 enf wc:re‘ S’th € Pest g0 substantial gains in compression efficiency at the enhance-
.COTS ruc |Ion a:jla,l['ha e:o at‘.r IS used aseaima ord fe O;'r?' ment-layer. The method is first derived and explained in the sim-
inal signal, and the estimation error IS compressed for the n%)férand fundamental setting of two-layer differential pulse code
modulation (DPCM). It is then adopted to and demonstrated in
. . . the context of predictive DCT-based video coding with mul-
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Fig. 1. Sketch of generic predictive coding scheme. Transform (DCT/IDCT)

and MC modules are specific to video coding. _ Enhancement
DCT/Q |» Bits
A

at the other decoders. The application of estimation-theoretic
prediction to scalable video coding over packet loss channels i
pursued in [21]. 1Q/DCT
The paper is organized as follows. In Section Il we state, dis-
cuss, and motivate the problem. Section Il provides the deriva-
tion of our approach within an estimation-theoretic framework +
for the basic setting of a scalable DPCM coder. It also includes
simulation results "’?nd high .reSOIUtlon analysis .to SUbSFantl. |e. 2. Sketch of two-layer scalable (en)coder with P1 prediction at the
the performance gains. Section IV adopts the optimal eSUmat'Q&ancement-layer. Encoder of each layer contains the corresponding decoder
approach to the problem of DCT-based scalable video comprégdicated by dotted lines). Transform (DCT/IDCT) and motion compensation
sion. Simulation results demonstrate the performance advantéffe) modules are specific to video coding.
of our approach over standard scalable video coders. Base

*»Q—» DCT/Q  |pmnnnnnBIS

Il. PROBLEM AND MOTIVATION [

+ Enhancement
Reconstruction

Let us consider a two-layer scalable coder. The prediction IQIDCT
at the base-layer is that of a standard (nonscalable) coder, ar
is simply based on prior reconstructed base-layer samples. (I Original t*
the case of video coding, it consists of motion-compensating Frame ']/
the previous base-layer reconstructed frame). The main diffi-
culty arises at the prediction module for the enhancement-laye L—+ MC/Delay
where there are two candidate predictors. On the one hand,
is advantageous to predict the current sample (frame) from the
previousreconstructeénhancemenrtyer sample (frame) since Enhancement
the enhancement layer offers better quality of reconstructior ;Q—' DCT/Q 1+ By
than the base layer. On the other hand, one may employ th: -
base-layer prediction and complement it with the current com-
pressed base-layer residual (prediction error), i.e., an estimat
based on theurrent basdayer reconstruction. The two main ;L
existing approaches to enhancement-layer prediction amount t N

the exclusive use of either one of the above sources of informa +
tion:
L MC/Delay

P1:Discard the additional information available from prior
samples of the enhancement layer. Use the current base-

layer reconstruction as the estimate. In other words, the &ffl- 3. Sketch of two-layer scalable (en)coder with P2 prediction at the
' enhancement-layer. Encoder of each layer contains the corresponding decoder

hance_'mem layer directly compresses the base-llayer reC@ticated by dotted lines). Transform (DCT/IDCT) and motion compensation
struction error (e.g., [19]). A coding system using P1 faiMC) modules are specific to video coding.

enhancement-layer prediction is shown in Fig. 2.

P2: Discard the information contained in the compressed More sophisticated proposals are based on switching between
base-layer residual. Predict the current sample (framthese sources of information in order to adaptively select the
from prior enhancement-layer reconstructed samples (nmetter of the two. These include switching per macro-block as
tion-compensated frames) as in [7]. Note that in this capeoposed in the H.263+ [22] and MPEG-4 [24] standards and
the two layers are, in fact, separately encoded (simulcastitching per coefficient in the context of pyramid and subband
except for savings on shared side-information such gchniques [3], [17].

motion vectors. Fig. 3 shows a complete coding systemThe main observation is that all the above methods are re-
using P2 for enhancement-layer prediction. stricted to exploit only one of the available information sources

Base
Recongtruction

A

IQ/IDCT

Enhancement
Reconstruction
>
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(and hence discard the other) at any time instance. An impor-This estimate is computed by calculating the centroid of
tant exception to this rule can be found in MPEG-2's spatitthe interval (55’% +a,3% + b) with respect to the density
scalability [13], H.263+[22], MPEG-4 [24], where the enhancep (z, |25 _,, 2% _,,...)

ment predictor switches per macroblock between P1, P2, and a

. . o : 40 A N

weighted linear combination of the two. However, linear com- y fi%a znp (20|20 1. 2% 5. ) day

bination remains an ad-hoc method of combining the two in- In = "% o 3)
formation sources and requires transmission of the weights as fs;gﬁa p(nlih 1,805, .) dug

side-information.

The above provides direct motivation for the work describ(;g
in this paper. We propose an estimation-theoretic (ET) appro
which ensures that all sources of information available to t
enhancement-layer are optimally exploited.

Note that (2) and (3) are well approximated by standard pre-
ﬁtive coding. We have recast the derivation within an estima-
ﬁlgn—theoretic framework to prepare the approach for the case of
the enhancement-layer, where common practice differs consid-
erably from the optimal approach.
2) Enhancement-Layerln addition to the information
provided by the base-layer, the enhancement-layer decoder
Let us reformulate the problem as one edtimationand has access to prior enhancement-layer reconstructed sam-
codingof the current sample at the enhancement layer given BIES: #;,_1,%;,_,... Recall, further, that the compressed
available information. It is convenient to define the two sourcdXse-layer residual providgseciselythe information:z,, €
of information as: (i) enhancement-layer reconstruction of pridf~ + @, &5, + b). Thus, taking into account all the available
samples, and (i) values of all parameters and variables aséormation, the optimal enhancement-layer predictor is
ciated with the base-layer compression of the current sample
(including the reconstruction value, the compressed residual’™ —

and the quantization parameters). Note that we assume that .osonable to assume th4t_,, V¢ > 0 provide little or no

all releva_nt information from past base-layer reconstructiqﬁformaﬁon in addition to that contained &j, _,, and we there-
samples is subsumed by the enhancement-layer reconstruciig neglected to condition on prior base-layer reconstructed
of those samples. Finally, we assume the existence of a stadigmples.

tical model for the signal, which may be used for prediction. Hence, the ET predictor is computed by calculating the cen-
We will show that even naive models are sufficient to achie\gyid of the interval( %, + a, 4% + b) with respect to the density

I1l. ScALABLE DPCM CoDER DESIGN

E [zn|zn € (3) +a,30 +b) 801,35 _5,...] . (4)

significant gains in practical video coding systems. p(znlds 1,85 o, .. )

The prediction error at both the base and enhancement-layers
is assumed to be scalar quantized. The quantizer index is f;f:: 2o (20|51, 85, .. ) diy
encoded by a lossless entropy code and transmitted over T, = = . (5)
the channel. The distortion criterion is the commonly used f,;ibr,,,p(xn|$271,$2727---) dzy,

mean-squared error. We first focus on the optimal estimation .

(prediction) of the sample at the enhancement-layer, and thdpjs estimate is conditioned on prior enhancement-layer infor-

discuss the optimal entropy coding of its prediction error. ~ Mation but, at the same time, it is restricted to the quantiza-
tion interval determined by the base lay€hus, the enhance-

ment-layer ET predictor seeks the best estimate based on prior
enhancement-layer reconstruction, which is consistent with the
Let z,,, &}, and i, be the current sample, its base and erpantization interval specified by the current base-layéote
hancement-layer reconstruction values, respectively. that the estimate takes advantage of all sources of information
1) Base-Layer:The optimabaselayer predictor of the cur- available to the enhancement-layer. Note, further, that the best
rent sample is obtained by expectation over the conditional desstimate is a nonlinear combination of the available informa-

A. Estimation-Theoretic Predictor Derivation

sity p ($n|§72—17§72—27 . ) tion in contrast to the simple weighted average of P1 and P2 as
in [13].
i =B [z,)2 1,20 ... . (1)  The enhancement-layer encoder quantizes the residual
The base encoder quantizes the residual Ty = @n — Iy

b and transmits index®. Let (¢,d) be the quantization in-
" terval associated with index’. Hence,r{ € (¢, d) and
n € (5 + ¢, 28 + d). Itis convenient to define

7’2 =T, —
and transmits index’. Let (a,b) be the quantization interval *

associated with index, i.e.,r}, € (a,b). Clearly, the statement , _ . [#% +a,d5 +¢, f=min[@ +b a5 +d].

zn € (2% +a,2% +b) capturesall the informationprovided 6)
to the decoder om,, by the received residual index. Thereforeryg information provided by the two quantization intervals is
the optimal base-layer reconstruction is given by compactly expressed by the statement

&b = F[zn|zn € (72 + 0,35 +0),25_1.80_5,...]. (2) z, € (e, f). 7)
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The enhancement-layer reconstruction of the sample is given 4p(x, 15)
& = E [zp|v, € (e, f), 861,250, ] 8)
or
Je.py Tnp (znl|26 1,25 o, ..) day

Ty = . _ ) 9
f(e,f)p($n|$2_1,$2_2,---) dz,, ©)

The above ET predictor derivation is extended in a straigt
forward manner to the multilayer coding scenario as follow:
For prediction at thé&th enhancement layer, we use the corre
sponding layer’s reconstruction of previous samples while the
guantization interval over which we evaluate the expectationfj§- 4. Computation of ET predictor. The estimate is computed as centroid of
det ined by the quantization intervals of all the lavers bel the interval specified by the base-lay@t,+ 7, b + &7, ), with respect to the
) € erm"ne y . qu .'Z ont Vi Y > 0é’Mhancement-layer prediction pdf centeregigf_, .
it. The information provided by each lower layer specifies an
interval in whichz,, lies. Thus the overall information provided

Base
by all the lower layers is that,, lies in the intersection of all J’»@—»@» ------------ Bis . 1

these intervals. Let us denote this intervallhy Thus -

o wnpnlin (R, a(R), . Y
I, P@nlin_1(k), En2(k),...)dz,

Base
Reconstruction

& (k)

(10)

Original
Frame

B. A Special Case: The First-Order Markov Process | |
| DCT H MC/Delay I

To illustrate the workings of the procedure let us consider ti
important special case where the source is a first-order Mark
process Enhancement

Lp = PLp—1 + 2n (11) Enhancement

econstruction

where p is the correlation coefficient, and, is zero-mean, q §T H IDCT >
white, wide-sense stationary, and independentaf;, vV ¢ > 0. =<
Thebaselayer predictor becomes

i = E [z,]35_,] = pab_,. (12)

ET Pred
The above “commonly used” approximation is based on the ¢
sumption that quantization errors are zero-mean and nearly DCT H MC/Delay }c—i"
dependent, and that the “closed-loop” prediction error densiy

(prediction based on reconstructed samples) is approximated-y 5. sketch of two-layer scalable (en)coder with ET prediction at the
the “open-loop" prediction error density (based on unquantizedhacement-layer. Encoder of each layer contains the corresponding decoder

samples). These issues have been extensively discussed i?ﬁ@?fﬁiﬂlﬁggﬁ:g “;‘;z)c' ; ri?dsggrgéﬁlcw IDCT) and motion compensation
predictive coding literature (see [4], [6], and [11] for such treat- P g

ment). We will use the above simplifying approximation since o ) _

it allows the derivation of explicit analytic expressions for thé N€ formulation in (15) allows direct calculation of the ET pre-
various expectations, while noting that it is sufficient to demoflictor from the density(z,,). Fig. 4 illustrates that the ET pre-
strate substantial performance gains in the experiments. dictor can be obtained by computing the centroid of the quanti-

The base-layer reconstruction is zgtion interval obtained f_rom b_ase-layer with respect to the den-
sity p(z,) whose mean is derived from the previous enhance-
i =F [zp|z, € (3% +a,3% +b) 28] ment-layer reconstruction.
~pil | +E [2|2n € (a,b)]. (13) Finally, the enhancement-layer reconstruction is given by
The optimal enhancement-layer predictor becomes &5, = E [znlzn € (e, f), %5_1] (16)
i, = E [za|z, € (22 + 0,25 +0),2,_1].  (14) wherec and f are given in (6). This is conveniently approxi-
. . mated b
which may be closely approximated as y
7€ mpit | &5 & pis_ + F 2 € (e—pas_y, [ —pzs_y)] . (A7)
~b ~e ~b ~e . .
+E [Zn|2n € (xn +a—piy 8, +b— pxnfl)] . Fig. 5 shows a complete two-layer coding scheme that uses ET

(15) prediction at the enhancement-layer.
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We conclude the subsection by showing that the ET predictmompression performance can be achieved by conditional
degenerates to the conventional prediction schemes, P1 anddP®,0py coding, especially, for the Laplace—Markov process.
under certain limiting conditions. In principle, conditional entropy coding of the residual may

« Total Ratex Base-Layer Rate: If the total rate is approxa|SO be used with the conventional prediction method P1.
imately the same as base-layer rate, the quality of th&owever, the enhancement-layer residual in this case is simply
base-layer is comparable to that of the enhancement lajfé¢ base-layer reconstruction error, and its statistics show lesser
and thusz¢ _; in (14) may be replaced b/, _,. Hence variation with base quantizer interval. Therefore, conditional

entropy coding in conjunction with P1 prediction does not

i = E [z,|z, € (8 +a,2% +0),8%_] =2)  (18) provide significant compression gains, (as will be verified by

) ) ) . ) simulations), and, this may explain why it is not implemented
and the ET predictor is approximated by P1 in this casey, standard coding algorithms.

» Low Correlation: Ifp =~ 0 then time-prediction provides
little gain. It can be readily seen from (13) and (14) thgh  sjmulation Results

#¢ 22 #* . Thus, in this case too, P1 is nearly optimal.
Tn = Tn y op To demonstrate the performance of the proposed approach we

» Base-Layer Ratex Enhancement-Layer Rate: The base . ) .
guantizer is very coarse in comparison to the enhan %anlder me Ecalable codllngthof fl_rst-lortqler Gauss—l\/(;arkoyfand
ment-layer quantizer. Thus the quantization interval spei'f‘p ace-Markovsources. In fhe simuiations, we useda unitorm

fied by(a, b) is very large and captures almost all the pro threshold quantizer with a central dead zone. Such quantizers

ability of z,. We have from (15) are often used in image and video compression [16]. The rate is
o calculated as the first order entropy of the quantizer indices.

¢ a0 pit | + Elzn|zn € (—00,00)] = pit_, (19) Results compare the performance of scalable coders with the
following prediction methods at the enhancement-layer:

where the right hand side follows from the fact thatis 1) prediction using current base-layer reconstruction (P1)

zero-mean. Thus P2 approximates the ET predictor. but using only single entropy coder;

In summary, P1 and P2 provide close to optimal performance 2) prediction P1 where two conditional entropy coders are
for either extreme target rates or for extremely low correla- used:

tion. At most rates of practical interest and for most sources, 3) prediction from previous enhancement-layer reconstruc-

however, neither P1 nor P2 approximate the ET predictor well  tion (P2);

enough, and this is the main shortcoming of conventional scal-4) proposed estimation-theoretic (ET) prediction but using

able coders. only a single entropy coder;

5) ET prediction where the residual is encoded with two con-
ditional entropy coders.

Let us next consider the encoding of the prediction errqihe base-layer is identical in all coders, and the performance is
at the enhancement-layer. Recall that the optimal predicttiown for various enhancement-layer rates. Also provided for
(15) is computed by calculating the centroid of intervaleference is the performance of a nonscalable coder at the same
I = (&% 4+a—pz5_y,3 +b— pzS_,) with respect to the total rate.
conditional densityp(z,). Equivalently, it may be viewed as 1) Gauss—Markov ProcessThe zero-mean unit-variance

simple expectation with respect to the density obtained by truBauss—Markov process can be defined according to (11) which
cation ofp(z,) to the above interval, followed by normalizationwe repeat here

C. Conditional Entropy Encoding at the Enhancement-Layer

PE) oy, e ] —
p(2n|2n c I) _ fI p(z,,,)dz,,,’ Zn (20) Ly = PLp—1 + Zn (21)
otherwise.

7

wherez,,, andz, are stationary zero-mean Gaussian random
It follows that the density of the estimation erref, = z,, — 2%, processes with variances 1 ahe- p?, respectively.

is directly obtained as the zero-mean, shifted version of the denHigh-resolution  analysis for scalable coding of
sity in (20). Thus, the prediction error statistics may vary consiGauss—Markov sequences is given in the Appendix. It provides
erably depending on the position of the base quantizer interiasight into the performance difference between standard
(as shown in Fig. 4). The rate for encoding the residual at tpeediction methods P1 and P2, the potential for gains over
enhancement-layer can be substantially reduced by exploitihgm, and the circumstances under which such gains may
this fact viaconditional entropy coding be realized.

If we make the further approximation that Fig. 6 depicts the simulation results for the compression of
(25 4+a—p2s_y, @b +b—pit_|) = (a,b), then we may Gauss—Markov sequences. The signal-to-noise ratio (SNR)
condition the entropy directly on the base-quantizer index. lrersus enhancement-layer rate is shown for all the competing
our simulations, we used the simplified setting of two entropgpproaches. The base-layer rate is identical in all the coders.
coders for the enhancement-layer. One was designed for Hur reference, the performance of the nonscalable coder is
case of “zero” base quantizer index (selected quantizatishown. The proposed ET prediction provides significant gains
interval contains the origin). The other entropy coder wasver prediction methods P1 and P2. Note that the gains saturate
designed for the complementary case of “nonzero” indewith increasing bit rate. These results are in agreement with the
Our simulation results demonstrate that significant gains Imgh resolution analysis of the Appendix. Note, further, that
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Fig. 6. Performance of two-layer scalable DPCM coding for Gauss—Markdig. 7. Performance of two-layer scalable DPCM coding for Laplace—Markov
source withp = 0.99. SNR of enhancement-layer versus enhancement-laysource withp = 0.95. SNR of enhancement-layer versus enhancement-layer
rate (bits/sample) is shown for different prediction methods. For P1 and Edte (bits/sample) is shown for different prediction methods. For P1 and ET
prediction, solid lines and dashed lines show performance with single entrgmegdiction, solid lines and dashed lines show performance with single entropy
coder and two entropy coders respectively. Base-layer rate was 0.59 bits/samguder and two entropy coders respectively. Base-layer rate was 1.14 bits/sample.
Performance of nonscalable coder with the same total rate is indicated by do®edformance of nonscalable coder with the same total rate is indicated by dotted
line. line.

the gains due to conditional entropy coding are modest for thgility well above zero, the prediction is perfect in the absence
Gauss—Markov process. of quantization error feedback. For a given base-layer rate, the
2) Laplace-Markov ProcessThe zero-mean unit-varianceamount of quantization noise that is fed back via the predic-
Laplace—Markov process (see e.g., [4]) is defined as the fit&n loop in P1 is independent of the enhancement-layer rate.
order Markov process of (11) where the marginal density,0f On the other hand, the quantization noise that is fed back in ET
is Laplacian and P2 prediction decreases with increasing enhancement-layer
rate. Thus, the rate-distortion curve of P1 prediction differs con-
siderably in slope from ET and P2 prediction, and hence the
large gains at high rates. We finally note that conditional en-
and, thereforez,, has the distribution tropy coding in conjunction with ET prediction provides signif-
icant additional gains and performs almost as well as nonscal-

1 B .
pan) = 8(zn) + (1= ) seT2 V2 (23 able coding.

pa(Tn) = %eilxnlﬁ (22)

. ] . ) ) . IV. ScALABLE VIDEO CODER DESIGN
Consideration of this process is motivated by the observation

that speech, image and video signals possess marginal denshie&€rivation
that are closely approximated by Laplacian densities [12], [14], This section adopts the proposed ET approach for the
[16]. problem of scalable video compression. We restrict our atten-
We provide high-resolution analysis for scalable coding dion to predictive DCT-based coding because of its dominance
Laplace—Markov sequences in the Appendix. Fig. 7 summarizasall current standards, but it should be emphasized that the
the simulation results for Laplace—Markov sequences. The SIdRproach is general and applicable to virtually any form of
versus enhancement-layer rate is given for all the competing gpedictive coding.
proaches. The base-layer rate is identical for all coders. For adin standard predictive video coding, the frame is divided into
ditional reference, the performance of the nonscalable codemacroblocks. These blocks are coded either with interframe
shown. As expected, P1 outperforms P2 at small ratios of grediction (“intermode”), or without such prediction (“in-
hancement to base rate, and underperforms P2 at the otherteamode”). Intramode coding is used infrequently and, due to
treme. It is seen that ET prediction provides substantial gaitiee absence of time-prediction, does not represent a significant
over prediction methods P1 and P2. In particular, the gain owdrallenge for scalability. We, therefore, focus our attention on
P1 does not saturate and is asymptotically unbounded, as tve more important and interesting case of scalable coding of
pected from the high-resolution analysis of the Appendix . Oimtermode macroblocks.
intuitive explanation of the increasing gains hinges on the prop-For each intermode macroblock, a motion vector is trans-
erty of the Laplace—Markov sequence, which allows surprisiitted. Note that skipping a macroblock implies that its mo-
ingly good prediction. In particular, the innovation process detion vector is zero. At the base-layer, the previous reconstructed
sity of (23) is a mixture of a Laplacian and a delta function imblock is used as predictor. DCT is applied to the prediction error,
pulse. The presence of the delta function implies that, with proand the resulting transform coefficients are scalar quantized, en-
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tropy coded and transmitted. At the receiver, the residual is dgated with index:". The optimal base-layer reconstruction is
coded and added to the prediction to form reconstruction of thven by
current frame.

We propose to apply our estimation-theoretic (ET) paradigm it = E[n|3t_1, 20 € (@) +a,3) +0)].  (26)
for the prediction of the enhancement-layer block. We chose to
implement the estimate in the transform domain, i.e., predict thiée note that the optimal prediction and reconstruction for the
transform coefficients of the current block rather than the pixettmse-layer is nearly the same as that employed by standard video
themselves as is commonly done. The motion estimation/coooding schemes. The main advantage of the estimation-theoretic
pensation is performed in the pixel domain as usual, and thpproach is at the enhancement-layer.
corresponding block in the enhancement-layer reconstructioriThe enhancement-layer decoder has acces$ to, the cor-
of previous frame is identified. This block is transformed byesponding enhancement-layer reconstructed DCT coefficient
DCT. The transform coefficients are combined with quantizaf the previous frame. The optimal enhancement-layer predictor
tion information available, in the transform domain, from thés
base-layer reconstruction of the current block. This combina- . . b b
tion is performed within the ET framework to form the esti- &y, = E [zn]d;, 1 20 € (35 + 0,35, + )] @7)
mate of DCT coefficients of the current block. The predictiog,
error between the original DCT coefficients and the estimated
DCT coefficients is obtained and quantized. At the decoder, the ;e _ i,
quantized prediction error is added to the estimated DCT co- " "
efficients. An inverse DCT is applied to obtain the enhance- + E |z,
ment-layer reconstruction of the current block.

The DCT domain is more convenient for the ET predictor de- (28)

sign because the DCT coefficients of the residual are almost un- ) ) ) ) )
correlated. Further, the base-layer quantization interval of eddRte how the ET predictor combines information from prior en-

DCT coefficient is readily available. Thus, the predictor can J@@ncement-layer reconstruction, and from the base-layer quan-

independently implemented for each DCT coefficient with Virt_lza_tmn interval. The ephancement—layer'encher quantizes the

tually no loss of optimality. However, one additional DCT comtesidual,r;, =z, — &7, and transmits index®. Let (c, d)

putation is required for each block to calculate the transforRf the quantization interval associated with indéxand let

coefficients in the previous enhancement-layer reconstructién. 124X (&7, + a, 3}, + ] andf = nin (&7, + b, @5, + d] -The

Note that implementation of the prediction in the DCT domaififhancement-layer reconstruction of the DCT coefficient is

will produce no change in the performance of standard pre-

diction methods, P1 and P2 or H.263+. We re-emphasize that &5, = E [zn]d7, 1,20 € (e, f)] - (29)

the motion estimation/compensation for base and enhancement ] ]

layers are implemented in the pixel domain as in conventional T0 €valuate such expectations we employ an appropriate

video coders. Fig. 5 provides a sketch of the proposed codefProbabilistic model forz,,, the mnova_tlon error process. It is
We assume that the evolution of a DCT coefficient in tim@€ll known that the marginal density function of the DCT

(i.e., from frame to frame) can be modeled by the first-ord&P€fficient may be approximated by a Laplacian distribution
Markov process [16]. Hence, modelinge,, by a Laplace—Markov process, we

obtain the density of,,

70 € X (T0 4 a— 25 1,80 +b—35_1)|.

n—1»*n

Tn = PTn—1+ 2n (24) 1

p., (2) = p?6(2) + 5(1 - p2)ae_|Z|“. (30)
wherez,, is a DCT coefficient in the current frame amg_; is

the corresponding (after motion compensation) DCT coefficieMhe parameterg and« may be estimated from a training set.
in the previous frame. The transform coefficients are zero-mew@re found thatp ~ 1 for “low and intermediate frequency”
except for the DC coefficient. We assume thatis stationary, DCT coefficients. The ET prediction consists of computing the
and independent of,,_;. Note that our choice of notation is centroid of the quantization interval (specified by the base layer)
made so as to relate directly to the derivation in the previous seyith respect to the density of (30) for each DCT coefficient.
tion for the DPCM case. We now proceed in a similar fashiop closed form solution to the centroid computation is given in
While our model for interframe evolution of video is simple, iterms of the interval limits

is sufficiently accurate to allow ET prediction to achieve signif-

icant gains. se_tote L if s>0
. . . . $el® _geso 1 .
The optimal base layer predictor is given by B € (5,)) = 4 e - ift<0
b b b - (g(l_f)_im}(é;at)) , otherwise.
‘%n = E [$n|§7n—1] ~ p‘/i'nfl' (25) ’ ’ e (31)

Despite its imposing form, this expression is computationally
The base encoder quantizes the residufal= =, — #%, and benign. Therefore, the ET predictor can be implemented with a
transmits index”. Let (a, b) be the quantization interval asso-modest increase in complexity.
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TABLE | TABLE Il
PERFORMANCE OFTWO-LAYERSCALABLE CODERS WHICH DIFFER IN THEIR PERFORMANCE OFTWO-LAYERSCALABLE CODERS WHICH DIFFER IN THEIR
ENHANCEMENT-LAYER PREDICTION MODULE, AND NON-SCALABLE CODER. ENHANCEMENT-LAYER PREDICTION MODULE. ENCODED SEQUENCE
ENCODED SEQUENCE CARPHONEAT QCIF RESOLUTION. THE ENTRIES CARPHONRT QCIF RESOLUTION. THE ENTRIES PROVIDE THE AVERAGE PSNR
PrROVIDE THE AVERAGE PSNR (N dB) OF RECONSTRUCTEDFRAMES (IN dB) OF RECONSTRUCTEDFRAMES VERSUSTOTAL RATE OF BASE AND
VERSUSTOTAL RATE OF BASE AND ENHANCEMENT LAYERS (Kbps). ENHANCEMENT LAYERS (Kbps). TOTAL NUMBER OF FRAMES WAS 898 AT
ToTAL NUMBER OF FRAMES WAS 267 AT FRAME SKIP OF 3. FOR ALL FRAME SKIP OF3. FOR ALL THE METHODS THE BASE-LAYER RATE WAS FIXED
THE METHODS THE BASE-LAYER RATE WAS FIXED AT 32 Kbps,AND AT 16 Kbps,AND THE CORRESPONDINGPSNR Ws 29.30 dB

THE CORRESPONDINGPSNR WAS 31.52 dB

Rate | P1 P2 | H263+ | ET | Non-scalable
32 | 30.16 | 29.85 | 30.64 | 31.01 31.52
40 | 30.6230.78 | 31.52 | 31.86 32.37
48 | 31.07 | 31.66 | 32.25 | 32.61 33.16
64 | 31.84]33.07| 3351 | 33.78 34.46
128 | 34.21 | 36.54 | 36.81 | 36.98 37.68

Rate | P1 P2 [ H.263+ | ET | Non-scalable
64 | 3280|3199 | 33.26 | 33.70 34.46
80 | 3343|3341 ] 34.27 | 34.79 35.43
96 | 34.03 | 34.50 | 35.13 | 35.65 36.28
128 | 35.08 | 36.17 | 36.62 | 37.13 37.68
160 | 35.98 | 38.54 | 38.85 | 39.20 39.57

TABLE I TABLE IV
PERFORMANCE OFTWO-LAYERSCALABLE CODERS WHICH DIFFER IN THEIR PERFORMANCE OFTWO-LAYERSCALABLE CODERS WHICH DIFFER IN THEIR
ENHANCEMENT-LAYER PREDICTION MODULE, AND NON-SCALABLE CODER. ENHANCEMENT-LAYER PREDICTION MODULE. ENCODED SEQUENCE
ENCODED SEQUENCE SALESMANAT QCIF RESOLUTION. THE ENTRIES MOTHER-DAUGHTERAT QCIF RESOLUTION. THE ENTRIES PROVIDE THE
PROVIDE THE AVERAGE PSNR (N dB) OF RECONSTRUCTEDFRAMES AVERAGE PSNR (N dB) OF RECONSTRUCTEDFRAMES VERSUSTOTAL RATE
VERSUSTOTAL RATE OF BASE AND ENHANCEMENT LAYERS (Kbps). OF BASE AND ENHANCEMENT LAYERS (Kbps). TOTAL NUMBER OF FRAMES
ToTAL NUMBER OF FRAMES WAS 449 AT FRAME SKIP OF 3. FOR ALL WAS 898 AT FRAME SKIP OF 3. FOR ALL THE METHODS THE BASE-LAYER
THE METHODS, THE BASE-LAYER RATE WAS FIXED AT 32 Kbps,AND RATE WAS FIXED AT 64 Kbps,AND THE CORRESPONDINGPSNR Ws 34.36 dB

THE CORRESPONDINGPSNR Ws 34.02 dB

Rate | P1 P2 | H263+ | ET | Non-scalable
128 | 35.11 | 34.83 | 3547 | 36.05 36.97
160 | 35.52 | 36.03 | 36.29 | 36.92 37.85
192 | 35.92 | 36.94 | 37.10 | 37.67 38.51
224 13630 37.70 | 37.79 | 38.31 39.11
256 | 36.65 | 38.30 | 38.40 | 38.86 39.63
288 | 36.99 | 38.86 | 38.94 | 39.33 40.12
320 | 37.32|39.31 | 39.40 | 39.76 40.54
384 | 37.91 | 40.16 | 40.26 | 40.54 41.20

Rate | P1 P2 | H.263+ | ET | Non-scalable
64 | 34.66 | 3414 | 3596 | 36.71 37.65
80 |34.97(36.36| 37.23 | 38.18 39.03
96 | 35.26 | 37.71 | 38.57 | 39.63 40.16
128 § 35.81 | 40.16 | 40.51 | 41.72 42.07
160 | 36.40 | 42.03 | 42.35 | 42.77 43.09
192 136.99 | 43.03 | 43.27 | 43.65 43.76

The quantization interval of any DCT coefficient can be
determined from the quantized prediction error. It should
be noted that the recovered quantization interval may not hBe H.263+ scalable coder can choose one of three prediction
accurate if thresholding is performed on the DCT coefficients Btodes for each macroblock [22]
the base-layer. However, thresholding is usually less beneficial,1) prediction from current base-layer block;
and hence less likely to be used in scalable video coders, tharp) prediction from previous enhancement-layer reconstruc-
single-layer coders. It is also important in the ET implemen-  tion;
tation to account for the fact that the quantization interval 3) prediction from weighted sum of current base and pre-
around origin (dead band) is larger than the other quantization vious base-layer blocks.

intervals. The best prediction mode for each macroblock is sent as side
B. Simulation Result information. A similar prediction mode strategy is used in the
- simufation Results MPEG-4 [24] scalable coder.

We developed a test bed for scalable video coding by usingThe z,, model parameters for each DCT coefficient were es-
the publicly available H.263 coder [23]. The H.263 algorithnimated from a training set extracted from tkéss Americase-
was used for motion estimation, and for compression of thgence. The frame-skip was three, and we present the average
prediction error of the base and enhancement layers. The p&NR of the luminance component of reconstructed frames.
vanced motion compensation and arithmetic encoding optio&ignificant PSNR gains were also obtained in the chrominance

were turned off. components.)
The following prediction modules for the enhancement-layer Taples I-V shows the results fawo layer scalable com-
were implemented for the comparisons pression on the sequen@arphone The base-layer rate was
1) P1 (proposed in [19]); fixed at 16 Kbps and coded in an identical manner by all the
2) P2 (proposed in [7]); methods. PSNR results for the enhancement-layer are presented
3) an H263+ based coder; for various ratios of enhancement-layer to base-layer rates. It

4) proposed estimation-theoretic (ET) predictor. is easily seen that the proposed ET prediction outperforms all
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TABLE V

PERFORMANCE OFTWO-LAYERSCALABLE CODERS WHICH DIFFER IN THEIR

ENHANCEMENT-LAYER PREDICTION MODULE. ENCODED SEQUENCE LTSAT

QCIF ResoLUTION. THE ENTRIES PROVIDE THE AVERAGE PSNR (N dB) oF
RECONSTRUCTEDFRAMES VERSUSTOTAL RATE OF BASE AND ENHANCEMENT

LAYERS (Kbps). TOTAL NUMBER OF FRAMES WAS 487 AT FRAME SKIP OF 3.
FOR ALL THE METHODS THE BASE-LAYER RATE WAS FIXED AT 64 Kbps,AND

THE CORRESPONDINGPSNR WAs 27.18 dB

Rate | P1 P2 | H263+ { ET | Non-scalable
128 | 28.06 | 27.90 | 28.66 | 29.04 29.60
160 | 28.54 | 28.98 | 29.58 | 29.88 30.63
192 | 29.01 | 29.83 | 30.37 | 30.60 31.47
224 | 29.45 | 30.54 | 31.06 | 31.24 32.21
256 | 29.84 | 31.19 | 31.66 | 31.81 32.86
288 | 30.23 | 31.77 | 32.22 | 32.34 33.45
320 | 30.59 | 32.28 | 32.73 | 32.82 34.02
384 | 31.27)33.21 | 33.62 | 33.69 34.96

TABLE VI

PERFORMANCE OFMULTILAYERSCALABLE CODERS WITH DIFFERENT
PREDICTION METHODS AND NON-SCALABLE (SINGLE-LAYER) CODER
ENCODED SEQUENCE CARPHONEAT QCIF RESOLUTION. TOTAL NUMBER OF
FRAMES WAS 267 AT FRAME SKIP OF 3. THE ENTRIES INDICATE THE AVERAGE
PSNR (N dB) OF RECONSTRUCTEDFRAMES OF ALAYER VERSUS THETOTAL
RATE (IN Kbps) OF THAT LAYER. NOTE THAT THE TOTAL RATE INCLUDES
RATE OF ALL THE LAYERS UP TOTHIS LAYER

Layer | Rate | P1 P2 | H2634+ | ET | Non-scalable
1 16 |29.30 | 29.30 | 29.30 | 29.30 29.30
2 32 ]30.16 [ 29.85 | 30.64 | 31.01 31.52
3 48 {30.77 ( 29.85 | 31.38 | 31.98 33.16
4 64 13131 (2985 | 31.94 | 32.71 34.46
5 96 |3240(31.66| 3325 | 34.29 36.28
6 128 | 33.32 | 31.66 | 34.18 | 35.43 37.68
7 192 | 35.18 | 34.14 | 36.14 | 37.63 39.57
8 256 | 36.71 | 34.14 | 37.69 | 39.12 41.01
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TABLE VII
PERFORMANCE OFMULTILAYERSCALABLE CODERS WITH DIFFERENT
PREDICTION METHODS, AND NON-SCALABLE (SINGLE-LAYER) CODER.
ENCODED SEQUENCE SALESMANAT QCIF RESOLUTION. TOTAL NUMBER OF
FRAMES WAS 449 AT FRAME SKIP OF 3. THE ENTRIES INDICATE THE AVERAGE
PSNR (N dB) oF RECONSTRUCTEDFRAMES OF ALAYER VERSUS THETOTAL
RATE (IN Kbps) OF THAT LAYER. NOTE THAT THE TOTAL RATE INCLUDES
RATE OF ALL THE LAYERS UP TOTHIS LAYER

Layer | Rate | P1 P2 | H263+ | ET | Non-scalable
1 16 | 31.28 | 31.28 | 31.28 | 31.28 31.28
2 32 | 31.70 | 3147 | 32.33 | 32.87 34.02
3 48 | 32.02 | 31.47 | 33.09 | 34.16 36.22
4 64 | 3230|3147 3397 | 35.01 37.65
5 96 | 32.86 | 34.08| 35.63 | 37.59 40.16
6 128 | 33.43 | 34.08 | 37.32 | 39.30 42.07
7 192 | 34.57 | 37.60 | 40.10 | 42.08 43.09
8 256 | 35.72 | 37.60 | 42.18 | 43.62 44.99
TABLE VIII

PERFORMANCE OFMULTILAYERSCALABLE CODERS WITH DIFFERENT
PREDICTION METHODS, AND NON-SCALABLE (SINGLE-LAYER) CODER.
ENCODED SEQUENCE CONTAINERAT QCIF RESOLUTION. TOTAL NUMBER OF
FRAMES WAS 300 AT FRAME SKIP OF 3. THE ENTRIES INDICATE THE AVERAGE
PSNR (N dB) OF RECONSTRUCTEDFRAMES OF ALAYER VERSUS THETOTAL
RATE (IN Kbps) OF THAT LAYER. NOTE THAT THE TOTAL RATE INCLUDES
RATE OF ALL THE LAYERS UP TOTHIS LAYER

the competing approaches, and achieves substantial gains in re-

constructed PSNR of the enhancement layer. As expected (

Layer | Rate | P1 P2 | H.2634+ | ET | Non-scalable
1 16 | 31.18 | 31.18 | 31.18 | 31.18 31.18
2 32 | 31.73 | 3146 | 32.07 | 32.85 33.89
3 48 |32.20 | 3146 | 32.77 | 33.91 35.54
4 64 | 32.60  31.46 [ 33.30 | 34.68 36.72
5 96 | 33.38 | 33.80  34.76 | 3643 38.73
6 128 [ 34.12 ( 33.80 [ 35.76 | 37.69 39.93
7 192 [ 35.62  36.54 | 38.10 | 39.82 41.70
8 256 | 36.94 | 36.54 | 39.51 | 41.28 43.26
see

TABLE IX

Section 1lI-B), P1 outperforms P2 at small ratios of enhance- perrormANCE OFMULTILAYERSCALABLE CODERS WITH DIFFERENT

ment to base rate, and underperforms P2 at the other extre

The H.263+ predictor outperforms P1 and P2 and gradually af

proaches the performance of the proposed ET predictor at h
enhancement layer rates.

Tables VI-XIII show the performance fanultilayerscalable
coding on several video sequences of “video conference” ty
as well as “nonvideo conference” type. The base layer is ider
cally encoded for all competing methods as is evident from tl
first row of the Tables. Note that the ET predictor substantial
outperforms the other coders. It is important to emphasize he
the prediction gains of ET build up with the number of layer
and, in most cases, result in major performance improvemer
In all cases, the ET predictor provided gains between 0.5dB a
1.9 dB over H.263+ based prediction at the higher layers, a
much larger gains over P1 and P2.

For rough evaluation of the complexity costs of ET predic
tion, we recorded the execution time in the experiment. Tt

MERREDICTION METHODS AND NON-SCALABLE (SINGLE-LAYER) CODER
NCODED SEQUENCEHALL-OBJECTSAT QCIF RESOLUTION. TOTAL NUMBER
.~ OF FRAMES WAS 330 AT FRAME SKIP OF 3. THE ENTRIES INDICATE THE
ImERAGE PSNR (N dB) OF RECONSTRUCTEDFRAMES OF ALAYER VERSUS
THE TOTAL RATE (IN Kbps) OF THAT LAYER. NOTE THAT THE TOTAL RATE
INCLUDES RATE OF ALL THE LAYERS UP TOTHIS LAYER

ayer | Rate | Conventional Pred. | H.263+ based | ET

ayer | Rate | P1 P2 H.263+ ET | Non-scalable
1 16 | 32.50 32.50 32.50 32.50 32.50

2 32 | 3331 32.64 3413 34.70 34.87

3 48 | 33.83 32.64 35.17 36.16 36.88

4 64 | 34.26 32.64 36.11 37.27 38.28

5 96 | 35.10 34.95 37.94 3941 39.86

6 128 | 35.84 34.95 39.08 40.50 41.25

T 192 | 37.31 38.36 40.87 42.06 42.53

8 256 | 38.56 38.36 41.92 43.01 43.15
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TABLE X

PERFORMANCE OFMULTILAYERSCALABLE CODERS WITH DIFFERENT

PREDICTION METHODS, AND NON-SCALABLE (SINGLE-LAYER) CODER
ENCODED SEQUENCECOASTGUARDAT QCIF RESOLUTION. TOTAL NUMBER OF
FRAMES WAS 300AT FRAME SKIP OF 3. THE ENTRIES INDICATE THE AVERAGE
PSNR (N dB) OF RECONSTRUCTEDFRAMES OF ALAYER VERSUS THETOTAL

RATE (IN Kbps) OF THAT LAYER. NOTE THAT THE TOTAL RATE INCLUDES
RATE OF ALL THE LAYERS UP TOTHIS LAYER

Layer | Rate | P1 P2 | H263+ | ET | Non-scalable
1 16 | 2594 (2594 2594 | 25.94 25.94
2 32 126.61 | 2625 27.00 |27.14 27.63
3 48 | 27.12 | 26.25 | 27.58 | 27.81 28.97
4 64 | 27.57 | 2625 28.03 | 28.33 29.98
5 96 | 28.49 | 27.69 | 29.12 | 29.46 31.49
6 128 |29.28 | 27.69 | 29.89 | 30.29 32.74
7 192 | 30.91 | 29.47 | 31.59 | 31.96 34.69
8 256 | 32.22 | 29.47 | 32.86 | 33.18 36.23
TABLE XI

PERFORMANCE OFMULTILAYERSCALABLE CODERS WITH DIFFERENT
PREDICTION METHODS, AND NON-SCALABLE (SINGLE-LAYER) CODER
ENCODED SEQUENCE GRANDMAAT QCIF RESOLUTION. TOTAL NUMBER OF
FRAMES WAS 869 AT FRAME SKIP OF 3. THE ENTRIES INDICATE THE AVERAGE
PSNR (N dB) OF RECONSTRUCTEDFRAMES OF ALAYER VERSUS THETOTAL
RATE (IN Kbps) OF THAT LAYER. NOTE THAT THE TOTAL RATE INCLUDES
RATE OF ALL THE LAYERS UP TOTHIS LAYER

Layer | Rate [ P1 P2 | H263+ | ET | Non-scalable
1 16 | 34.48 | 3448 | 34.48 | 34.48 3448
2 32 | 3488|3466 3528 | 3587 36.85
3 48 | 35.22 | 3466 | 36.04 | 36.80 38.59
4 64 | 35.52 | 34.66 | 36.71 | 37.65 39.75
5 96 | 36.15 | 36.83 | 38.21 | 39.27 41.39
6 128 | 36.78 | 36.83 | 39.26 | 40.52 42.60
7 192 | 37.93 | 39.60 | 41.16 | 42.42 43.86
8 256 | 39.02 | 39.60 | 42.39 | 43.49 45.26
TABLE XII

PERFORMANCE OFMULTILAYERSCALABLE CODERS WITH DIFFERENT
PREDICTION METHODS, AND NON-SCALABLE (SINGLE-LAYER) CODER
ENCODED SEQUENCEMOTHER-DAUGHTERAT QCIF RESOLUTION. TOTAL
NUMBER OF FRAMES WAS 869 AT FRAME SKIP OF 3. THE ENTRIES INDICATE
THE AVERAGE PSNR (N dB) OF RECONSTRUCTEDFRAMES OF ALAYER
VERSUS THETOTAL RATE (IN Kbps) OF THAT LAYER. NOTE THAT THE TOTAL
RATE INCLUDES RATE OF ALL THE LAYERS UP TOTHIS LAYER

Layer | Rate | P1 P2 | H263+ | ET | Non-scalable
1 64 |[34.36 3436 | 3436 | 34.36 34.36
2 128 | 35.11 | 34.83 | 3547 | 36.05 36.97
3 192 | 35.71 | 34.83 | 36.22 | 37.07 38.51
4 288 | 36.55 | 36.03 | 37.31 | 38.40 40.12
5 384 | 37.31 | 36.03 | 38.17 | 39.36 41.20

overall complexity was observed to increase by 10% relative to

that of H.263+.
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TABLE Xl
PERFORMANCE OFMULTILAYERSCALABLE CODERS WITH DIFFERENT
PREDICTION METHODS, AND NON-SCALABLE (SINGLE-LAYER) CODER.
ENCODED SEQUENCELTSAT QCIF RESOLUTION. TOTAL NUMBER OF FRAMES
WAS 487 AT FRAME SKIP OF 3. THE ENTRIES INDICATE THE AVERAGE PSNR
(IN dB) OF RECONSTRUCTEDFRAMES OF ALAYER VERSUS THETOTAL RATE
(IN Kbps) oF THAT LAYER. NOTE THAT THE TOTAL RATE INCLUDES
RATE OF ALL THE LAYERS UP TO THISLAYER

Layer | Rate | P1 P2 | H263+ | ET | Non-scalable
1 64 |27.18 | 27.18 1 27.18 | 27.18 27.18
2 128 | 28.06 | 27.90 | 28.66 | 29.04 29.60
3 192 | 28.70 | 27.90 | 29.39 | 30.02 31.47
4 288 | 29.63 | 28.98 | 30.45 | 31.33 33.45
5 384 | 3041 | 28.98 | 31.24 | 32.30 34.96

V. SUMMARY AND CONCLUSIONS

This paper presents a new approach to optimal scalability
in predictive coding. The predictor is designed within an esti-
mation-theoretic framework. The current sample prediction is
optimal given both the past enhancement layer reconstruction
and all base-layer parameters and variables including the recon-
struction and quantization interval. To emphasize its generality,
the approach was first derived for the simple case of scalable
DPCM systems. Its potential was then demonstrated on the ap-
plication of scalable video coding. Simulation results show that
the proposed scalable coding technique offers substantial per-
formance gains over conventional approaches over a wide range
of bit rates. The gains increase with the number of layers.

Although ET prediction was applied to video coding here
in conjunction with standard DCT-based coding systems, it is
easily extendible to subband-based, and pixel-domain coders,
as is evident from the basic DPCM derivation. Work in progress
shows that ET prediction has applications in error concealment
for scalable video coding [21] and in scalable coding of stereo-
phonic (two-channel) audio [1]. Note that we have only con-
sidered conditional entropy encoding of the enhancement-layer
residual for the DPCM case. It has produced substantial gain
in the case of Laplacian—Markov sources, and achieved perfor-
mance close to that of nonscalable coding. The extension to con-
ditional entropy coding of DCT coefficients in scalable video
coders is a topic that deserves further study.

APPENDIX
HIGH-RESOLUTION ANALYSIS

A. Gauss—Markov Sequences

We derive asymptotic (high-rate) results for scalable DPCM
coding of a Gauss—Markov sequence. We first review the corre-
sponding nonscalable results [4]. For the Gauss—Markov source,
the prediction error possesses a normal density. #ndo? are
the differential entropy and variance of prediction error, we have

1
he = 5 log 27mec?. (32)
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If the prediction error is encoded by an optimal quantizer whosige differential entropy of the continuous (Laplacian) compo-
output entropy i, the quantization distortio® (by the Gish- nent. If this source is encoded by a quantizer of output entropy

Pierce result [8]) is R, the resulting distortion is given by [4]
1 e — — 2 20y (=MD
b= E22(le . (33) Dpcey = - 12p 2 e (40)

We also have that where(-) is the binary entropy function

ol =0l +p'D, (B4 H(a) = —alog(a)—(1—a)log(l—a), 0<a<1. (41)

wheres? is the variance of the innovation process (see (11)), andFor nonscalable DPCM coding of Laplace—Markov se-
D,, is the quantization distortion in the previous reconstructegience, we have
sample (used as predictor). 4

For a nonscalable codel,, = D, and hence, (32), (33) and D = Dpcm +p°D (42)

(34) may be combined to yield or equivalently

Te9g—2R ;2 2(h —(R—
6 z (35) _ 1 5 (g <1R_p?;<92>>>' (43)
12(1 + p?)

For a scalable coder, I1ét, andR. — R, be the entropy of the The differential entropy is given by
guantizer output atthe base and enhancement layers respectively.
The reconstruction distortion for the base-layer is given by hy = llog (2¢202) = llog (2¢2 (02 +p?D)).  (44)
2 € 2 ur

D=—"——"—.
1— %p22_2R

mey—2Ry 2
6 2 lops

b .
D° = [T (36) From(43) and (44), it follows that
6 2
o _ s o)
For prediction method P1, the reconstruction error of the base- s 2 (1—e®)
. . D= 6(14p7) (45)
layer is encoded by a quantizer of entraBy — R, at the en- o 2 2 _om=m(p?) "
. . e 2
hancement-layer. Thus, the distortion at the enhancement-layer 1= —6(1fp2)2 (=

IS Consider a two-layer scalable coder with base and enhance-
re9—2R, 2 — -
D — Dro-2R—Ry) _ =2 o2 @ ment layer rates oRb_ an_d R'i Ry. For the base-layer, the
r1 b 1_ m€ 29 2R, <2y 2R reconstruction distortion is given by

_ . R o (Ry="(®))
For prediction method P2, the previous enhancement-layer re- sy 2 (1%
construction is used as the estimate and the prediction error en- D' = U+r) TR (46)
coded by a quantizer of entrofdy. — R,. The corresponding 1— %2_2%1%%

distortion is given by
The enhancement-layer distortion for P1 is given by

(38) e 272% 9—2(R.—Ry)
e 6(1+,%)
Dpy =

we9—2(R.—Ry) 2
Do — 5 2 Lo g
r2 —

1— %pQQ—Q(RF—R;,) ’

5 47
The potential gains over P1 and P2 are limited by the per- 1 22 272% “7)

formance of the single-layer coder of rdte. It is therefore of T 6147

interest to consider this bound on the performance of the ET pmor prediction method P2, the corresponding distortion is
dictor as an indicator of circumstances under which large gains

_ _ 2
may be recouped. The corresponding distortion is given by 6(%22)2_2(1% <lf—ip;;(p >
e 14
meg—2R. ;2 Dpy = 2 5 _oUte—Ry—H(p2) " (48)
e _ 6 2 (39) 1 9 (1—p2)

min > — - T OG(1+2
1 2 29—2R; &+

It is easy to see that the potential performance gains over p1'he gains that can be qbtained by ET predictior_l are bounded
increase withR, , and decrease as— 0. Further, the gains de- PY the performance of a single-layer coder operating atiate
crease with increasingj,. The potential performance gains overl '€ corresponding distortion is given by

P2 increase witli, and decrease with increasidg. Further, 2 le=TG)
asR. — oo, all the distortion curves (in log scale) become par- e _ _6(1-1-/72)2 a (49)
allel with slope 2. These asymptotic results accurately predict i 1 2,2 2,2% ’

—F

T 61407

Again, the potential performance gains over P1 increase with
R., decrease gs — 0, and decrease with increasifiyy. Simi-

Here, we derive the corresponding asymptotic results for thely, the potential performance gains over P2 decrease with in-
scalable DPCM coding of Laplace—Markov process. Consideceeasingi. and increase with increasirg,. Further, as?, —
memory-less source whose pdfis given by (23) andélleenote oo, the distortion curves for P2 and the (nonscalable) bound (in

the simulation results presented in Fig. 6.

B. Laplace—-Markov Sequences
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log scale) become parallel with slopg(1 — p?). However, for  [17] T. K. Tan, K. K. Pang, and K. N. Ngan, “A frequency scalable coding
the Laplace—Markov process, it is important to note that the dis- ~ Scheme employing pyramid and subband techniquE&E Trans. Cir-

cuits Syst. Video Technpliol. 4, pp. 203—-207, Apr. 1994.

tortion curve of P1 decays much mas®wly, i.e., with slope |[18] D. Taubman and A. Zakhor, “Multirate 3-D subband coding of images,”

2. Thus the gains over P1 never saturate. The simulation resu

tS IEEE Trans. Image Processingp. 572-588, Sept. 1994.

presented in Fig. 7 verify these asymptotic results. [19] D. Wilson and M. Ghanbari, “Transmission of SNR scalable two layer

MPEG-2 coded video through ATM networks,” Rroc. 7th Int. Work-
shop Packet Videdvar. 1996, pp. 185-189.
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