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Toward Optimality in Scalable Predictive Coding
Kenneth Rose, Member, IEEE,and Shankar L. Regunathan, Student Member, IEEE

Abstract—A method is proposed for efficient scalability in pre-
dictive coding, which overcomes known fundamental shortcom-
ings of the prediction loop at enhancement layers. The compres-
sion efficiency of an enhancement-layer is substantially improved
by casting the design of its prediction module within an estima-
tion-theoretic framework, and thereby exploiting all information
available at that layer for the prediction of the signal, and encoding
of the prediction error. While the most immediately important ap-
plication is in video compression, the method is derived in a general
setting and is applicable to any scalable predictive coder. Thus, the
estimation-theoretic approach is first developed for basic DPCM
compression and demonstrates the power of the technique in a
simple setting that only involves straightforward prediction, scalar
quantization, and entropy coding. Results for the scalable compres-
sion of first-order Gauss–Markov and Laplace–Markov signals il-
lustrate the performance. A specific estimation algorithm is then
developed for standard scalable DCT-based video coding. Simula-
tion results show consistent and substantial performance gains due
to optimal estimation at the enhancement-layers.

I. INTRODUCTION

I T has become a common requirement of coding and trans-
mission systems to provide a scalable bitstream. Many ap-

plications, including multiparty video conferencing and multi-
cast over the Internet, require the compressed information to
be simultaneously transmitted to multiple receivers over dif-
ferent communication links. The evolving global communica-
tion network is, in fact, a patchwork of transmission media,
which is highly nonuniform in its communication capabilities,
and is characterized by vast variations in the channel bandwidth
available to different links and to the same link at different mo-
ments. Moreover, the feasible bit rate of each receiver is con-
strained by its computational power and memory capacity.

A scalable bitstream is one that allows decoding at a variety
of bit rates (and corresponding levels of quality), where the
lower rate information streams are embedded within the higher
rate bitstreams in a manner that minimizes redundancy. We are
chiefly concerned here with what is commonly referred to as
“SNR scalability,” but the work is extendible to include scala-
bility via various forms of down-sampling.

In the most common approach to scalability [10], enhance-
ment layers simply compress and transmit the reconstruction
error of the lower (base) layers. In other words, the best re-
construction available so far is used as anestimatefor the orig-
inal signal, and the estimation error is compressed for the next
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enhancement layer. This estimate ensures that the compressed
residual (prediction error) of the lower layers is fully utilized. In
the case ofpredictive coding, this approach to scalability is sub-
optimal as there is potentially useful information available from
prior reconstructed samples at the enhancement layer, which
could be used to improve the enhancement-layer estimate of the
current sample. A scalable coder that neglects the additional in-
formation available for enhancement-layer estimation can incur
a significant penalty in compression performance.

In the specific case of (nonscalable) video coding, the stan-
dard compression technique predicts the current frame from the
motion-compensated previous frame prior to transformation and
quantization (see Fig. 1). Scalable video coding, therefore, suf-
fers from the above mentioned suboptimality [9]. This problem
has also led to proposals of nonpredictive scalable video coding
such as the three-dimensional coding approach [18]. However,
predictive coders are generally preferred in most practical ap-
plications because of their minimal requirements in terms of
delay and memory and, further, because they allow straight-
forward incorporation and exploitation of motion compensa-
tion. An alternate approach to scalability in predictive video
coding is to use the previous enhancement layer reconstruction
for prediction at both the base and enhancement layers [5], [9].
Since the base-layer decoder does not have access to enhance-
ment-layer reconstruction, this results in adrift between en-
coder and decoder reconstruction at the base-layer. This method
provides efficient compression for the enhancement-layer, but
the accumulating drift may lead to degradation in base-layer
performance. While drift may not be a significant problem in
some applications [2], we follow the trend of recent standards
such as H.263+ and MPEG-4, and prefer to focus exclusively
on drift-free coders that aim at true scalability, i.e., those that
achieve efficient compression at the enhancement-layer without
compromising the base-layer performance.

In this work, we develop anestimation-theoretic(ET) ap-
proach to enhancement-layer prediction in scalable coders. This
prediction, or rather estimation, at the enhancement layer is
shown to be optimal in the sense that it minimizes the mean
squared prediction error given all the information available at
the enhancement layer. In experiments, this optimality translates
into substantial gains in compression efficiency at the enhance-
ment-layer. The method is first derived and explained in the sim-
pler and fundamental setting of two-layer differential pulse code
modulation (DPCM). It is then adopted to and demonstrated in
the context of predictive DCT-based video coding with mul-
tiple layers of scalability. The coders we develop in this work
are tailored toward the broadcast scenario, i.e., in the context
of two-layer scalable coding we assume that the base-layer bit-
stream is received error free for a subset of decoders, while both
base and enhancement layer bitstreams are received error free
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Fig. 1. Sketch of generic predictive coding scheme. Transform (DCT/IDCT)
and MC modules are specific to video coding.

at the other decoders. The application of estimation-theoretic
prediction to scalable video coding over packet loss channels is
pursued in [21].

The paper is organized as follows. In Section II we state, dis-
cuss, and motivate the problem. Section III provides the deriva-
tion of our approach within an estimation-theoretic framework
for the basic setting of a scalable DPCM coder. It also includes
simulation results and high resolution analysis to substantiate
the performance gains. Section IV adopts the optimal estimation
approach to the problem of DCT-based scalable video compres-
sion. Simulation results demonstrate the performance advantage
of our approach over standard scalable video coders.

II. PROBLEM AND MOTIVATION

Let us consider a two-layer scalable coder. The prediction
at the base-layer is that of a standard (nonscalable) coder, and
is simply based on prior reconstructed base-layer samples. (In
the case of video coding, it consists of motion-compensating
the previous base-layer reconstructed frame). The main diffi-
culty arises at the prediction module for the enhancement-layer
where there are two candidate predictors. On the one hand, it
is advantageous to predict the current sample (frame) from the
previousreconstructedenhancement-layer sample (frame) since
the enhancement layer offers better quality of reconstruction
than the base layer. On the other hand, one may employ the
base-layer prediction and complement it with the current com-
pressed base-layer residual (prediction error), i.e., an estimate
based on thecurrent base-layer reconstruction. The two main
existing approaches to enhancement-layer prediction amount to
the exclusive use of either one of the above sources of informa-
tion:

P1:Discard the additional information available from prior
samples of the enhancement layer. Use the current base-
layer reconstruction as the estimate. In other words, the en-
hancement layer directly compresses the base-layer recon-
struction error (e.g., [19]). A coding system using P1 for
enhancement-layer prediction is shown in Fig. 2.
P2: Discard the information contained in the compressed
base-layer residual. Predict the current sample (frame)
from prior enhancement-layer reconstructed samples (mo-
tion-compensated frames) as in [7]. Note that in this case
the two layers are, in fact, separately encoded (simulcast)
except for savings on shared side-information such as
motion vectors. Fig. 3 shows a complete coding system
using P2 for enhancement-layer prediction.

Fig. 2. Sketch of two-layer scalable (en)coder with P1 prediction at the
enhancement-layer. Encoder of each layer contains the corresponding decoder
(indicated by dotted lines). Transform (DCT/IDCT) and motion compensation
(MC) modules are specific to video coding.

Fig. 3. Sketch of two-layer scalable (en)coder with P2 prediction at the
enhancement-layer. Encoder of each layer contains the corresponding decoder
(indicated by dotted lines). Transform (DCT/IDCT) and motion compensation
(MC) modules are specific to video coding.

More sophisticated proposals are based on switching between
these sources of information in order to adaptively select the
better of the two. These include switching per macro-block as
proposed in the H.263+ [22] and MPEG-4 [24] standards and
switching per coefficient in the context of pyramid and subband
techniques [3], [17].

The main observation is that all the above methods are re-
stricted to exploit only one of the available information sources
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(and hence discard the other) at any time instance. An impor-
tant exception to this rule can be found in MPEG-2’s spatial
scalability [13], H.263+ [22], MPEG-4 [24], where the enhance-
ment predictor switches per macroblock between P1, P2, and a
weighted linear combination of the two. However, linear com-
bination remains an ad-hoc method of combining the two in-
formation sources and requires transmission of the weights as
side-information.

The above provides direct motivation for the work described
in this paper. We propose an estimation-theoretic (ET) approach
which ensures that all sources of information available to the
enhancement-layer are optimally exploited.

III. SCALABLE DPCM CODER DESIGN

Let us reformulate the problem as one ofestimationand
codingof the current sample at the enhancement layer given all
available information. It is convenient to define the two sources
of information as: (i) enhancement-layer reconstruction of prior
samples, and (ii) values of all parameters and variables asso-
ciated with the base-layer compression of the current sample
(including the reconstruction value, the compressed residual,
and the quantization parameters). Note that we assume that
all relevant information from past base-layer reconstruction
samples is subsumed by the enhancement-layer reconstruction
of those samples. Finally, we assume the existence of a statis-
tical model for the signal, which may be used for prediction.
We will show that even naive models are sufficient to achieve
significant gains in practical video coding systems.

The prediction error at both the base and enhancement-layers
is assumed to be scalar quantized. The quantizer index is
encoded by a lossless entropy code and transmitted over
the channel. The distortion criterion is the commonly used
mean-squared error. We first focus on the optimal estimation
(prediction) of the sample at the enhancement-layer, and then
discuss the optimal entropy coding of its prediction error.

A. Estimation-Theoretic Predictor Derivation

Let , and be the current sample, its base and en-
hancement-layer reconstruction values, respectively.

1) Base-Layer:The optimalbase-layer predictor of the cur-
rent sample is obtained by expectation over the conditional den-
sity

(1)

The base encoder quantizes the residual

and transmits index . Let be the quantization interval
associated with index , i.e., . Clearly, the statement

capturesall the informationprovided
to the decoder on by the received residual index. Therefore,
the optimal base-layer reconstruction is given by

(2)

This estimate is computed by calculating the centroid of
the interval with respect to the density

(3)

Note that (2) and (3) are well approximated by standard pre-
dictive coding. We have recast the derivation within an estima-
tion-theoretic framework to prepare the approach for the case of
the enhancement-layer, where common practice differs consid-
erably from the optimal approach.

2) Enhancement-Layer:In addition to the information
provided by the base-layer, the enhancement-layer decoder
has access to prior enhancement-layer reconstructed sam-
ples: Recall, further, that the compressed
base-layer residual providespreciselythe information:

. Thus, taking into account all the available
information, the optimal enhancement-layer predictor is

(4)

It is reasonable to assume that provide little or no
information in addition to that contained in , and we there-
fore neglected to condition on prior base-layer reconstructed
samples.

Hence, the ET predictor is computed by calculating the cen-
troid of the interval with respect to the density

(5)

This estimate is conditioned on prior enhancement-layer infor-
mation but, at the same time, it is restricted to the quantiza-
tion interval determined by the base layer.Thus, the enhance-
ment-layer ET predictor seeks the best estimate based on prior
enhancement-layer reconstruction, which is consistent with the
quantization interval specified by the current base-layer. Note
that the estimate takes advantage of all sources of information
available to the enhancement-layer. Note, further, that the best
estimate is a nonlinear combination of the available informa-
tion in contrast to the simple weighted average of P1 and P2 as
in [13].

The enhancement-layer encoder quantizes the residual

and transmits index . Let be the quantization in-
terval associated with index . Hence, and

. It is convenient to define

(6)
The information provided by the two quantization intervals is
compactly expressed by the statement

(7)
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The enhancement-layer reconstruction of the sample is given by

(8)

or

(9)

The above ET predictor derivation is extended in a straight-
forward manner to the multilayer coding scenario as follows.
For prediction at the th enhancement layer, we use the corre-
sponding layer’s reconstruction of previous samples while the
quantization interval over which we evaluate the expectation is
determined by the quantization intervals of all the layers below
it. The information provided by each lower layer specifies an
interval in which lies. Thus the overall information provided
by all the lower layers is that lies in the intersection of all
these intervals. Let us denote this interval by. Thus

(10)

B. A Special Case: The First-Order Markov Process

To illustrate the workings of the procedure let us consider the
important special case where the source is a first-order Markov
process

(11)

where is the correlation coefficient, and is zero-mean,
white, wide-sense stationary, and independent of .

Thebase-layer predictor becomes

(12)

The above “commonly used” approximation is based on the as-
sumption that quantization errors are zero-mean and nearly in-
dependent, and that the “closed-loop” prediction error density
(prediction based on reconstructed samples) is approximated by
the “open-loop” prediction error density (based on unquantized
samples). These issues have been extensively discussed in the
predictive coding literature (see [4], [6], and [11] for such treat-
ment). We will use the above simplifying approximation since
it allows the derivation of explicit analytic expressions for the
various expectations, while noting that it is sufficient to demon-
strate substantial performance gains in the experiments.

The base-layer reconstruction is

(13)

The optimal enhancement-layer predictor becomes

(14)

which may be closely approximated as

(15)

Fig. 4. Computation of ET predictor. The estimate is computed as centroid of
the interval specified by the base-layer,(a+ ~x ; b+ ~x ), with respect to the
enhancement-layer prediction pdf centered at�x̂ .

Fig. 5. Sketch of two-layer scalable (en)coder with ET prediction at the
enhacement-layer. Encoder of each layer contains the corresponding decoder
(indicated by dotted lines). Transform (DCT/IDCT) and motion compensation
(MC) modules are specific to video coding.

The formulation in (15) allows direct calculation of the ET pre-
dictor from the density . Fig. 4 illustrates that the ET pre-
dictor can be obtained by computing the centroid of the quanti-
zation interval obtained from base-layer with respect to the den-
sity whose mean is derived from the previous enhance-
ment-layer reconstruction.

Finally, the enhancement-layer reconstruction is given by

(16)

where and are given in (6). This is conveniently approxi-
mated by

(17)

Fig. 5 shows a complete two-layer coding scheme that uses ET
prediction at the enhancement-layer.
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We conclude the subsection by showing that the ET predictor
degenerates to the conventional prediction schemes, P1 and P2,
under certain limiting conditions.

• Total Rate Base-Layer Rate: If the total rate is approx-
imately the same as base-layer rate, the quality of the
base-layer is comparable to that of the enhancement layer
and thus in (14) may be replaced by . Hence

(18)

and the ET predictor is approximated by P1 in this case.
• Low Correlation: If then time-prediction provides

little gain. It can be readily seen from (13) and (14) that
Thus, in this case too, P1 is nearly optimal.

• Base-Layer Rate Enhancement-Layer Rate: The base
quantizer is very coarse in comparison to the enhance-
ment-layer quantizer. Thus the quantization interval speci-
fied by is very large and captures almost all the prob-
ability of . We have from (15)

(19)

where the right hand side follows from the fact thatis
zero-mean. Thus P2 approximates the ET predictor.

In summary, P1 and P2 provide close to optimal performance
for either extreme target rates or for extremely low correla-
tion. At most rates of practical interest and for most sources,
however, neither P1 nor P2 approximate the ET predictor well
enough, and this is the main shortcoming of conventional scal-
able coders.

C. Conditional Entropy Encoding at the Enhancement-Layer

Let us next consider the encoding of the prediction error
at the enhancement-layer. Recall that the optimal predictor
(15) is computed by calculating the centroid of interval

with respect to the
conditional density . Equivalently, it may be viewed as
simple expectation with respect to the density obtained by trun-
cation of to the above interval, followed by normalization

otherwise.
(20)

It follows that the density of the estimation error, ,
is directly obtained as the zero-mean, shifted version of the den-
sity in (20). Thus, the prediction error statistics may vary consid-
erably depending on the position of the base quantizer interval
(as shown in Fig. 4). The rate for encoding the residual at the
enhancement-layer can be substantially reduced by exploiting
this fact viaconditional entropy coding.

If we make the further approximation that
, then we may

condition the entropy directly on the base-quantizer index. In
our simulations, we used the simplified setting of two entropy
coders for the enhancement-layer. One was designed for the
case of “zero” base quantizer index (selected quantization
interval contains the origin). The other entropy coder was
designed for the complementary case of “nonzero” index.
Our simulation results demonstrate that significant gains in

compression performance can be achieved by conditional
entropy coding, especially, for the Laplace–Markov process.

In principle, conditional entropy coding of the residual may
also be used with the conventional prediction method P1.
However, the enhancement-layer residual in this case is simply
the base-layer reconstruction error, and its statistics show lesser
variation with base quantizer interval. Therefore, conditional
entropy coding in conjunction with P1 prediction does not
provide significant compression gains, (as will be verified by
simulations), and, this may explain why it is not implemented
in standard coding algorithms.

D. Simulation Results

To demonstrate the performance of the proposed approach we
consider the scalable coding of first-order Gauss–Markov and
Laplace–Markov sources. In the simulations, we used a uniform
threshold quantizer with a central dead zone. Such quantizers
are often used in image and video compression [16]. The rate is
calculated as the first order entropy of the quantizer indices.

Results compare the performance of scalable coders with the
following prediction methods at the enhancement-layer:

1) prediction using current base-layer reconstruction (P1)
but using only single entropy coder;

2) prediction P1 where two conditional entropy coders are
used;

3) prediction from previous enhancement-layer reconstruc-
tion (P2);

4) proposed estimation-theoretic (ET) prediction but using
only a single entropy coder;

5) ET prediction where the residual is encoded with two con-
ditional entropy coders.

The base-layer is identical in all coders, and the performance is
shown for various enhancement-layer rates. Also provided for
reference is the performance of a nonscalable coder at the same
total rate.

1) Gauss–Markov Process:The zero-mean unit-variance
Gauss–Markov process can be defined according to (11) which
we repeat here

(21)

where , and are stationary zero-mean Gaussian random
processes with variances 1 and , respectively.

High-resolution analysis for scalable coding of
Gauss–Markov sequences is given in the Appendix. It provides
insight into the performance difference between standard
prediction methods P1 and P2, the potential for gains over
them, and the circumstances under which such gains may
be realized.

Fig. 6 depicts the simulation results for the compression of
Gauss–Markov sequences. The signal-to-noise ratio (SNR)
versus enhancement-layer rate is shown for all the competing
approaches. The base-layer rate is identical in all the coders.
For reference, the performance of the nonscalable coder is
shown. The proposed ET prediction provides significant gains
over prediction methods P1 and P2. Note that the gains saturate
with increasing bit rate. These results are in agreement with the
high resolution analysis of the Appendix. Note, further, that
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Fig. 6. Performance of two-layer scalable DPCM coding for Gauss–Markov
source with� = 0:99. SNR of enhancement-layer versus enhancement-layer
rate (bits/sample) is shown for different prediction methods. For P1 and ET
prediction, solid lines and dashed lines show performance with single entropy
coder and two entropy coders respectively. Base-layer rate was 0.59 bits/sample.
Performance of nonscalable coder with the same total rate is indicated by dotted
line.

the gains due to conditional entropy coding are modest for the
Gauss–Markov process.

2) Laplace–Markov Process:The zero-mean unit-variance
Laplace–Markov process (see e.g., [4]) is defined as the first
order Markov process of (11) where the marginal density of
is Laplacian

(22)

and, therefore, has the distribution

(23)

Consideration of this process is motivated by the observation
that speech, image and video signals possess marginal densities
that are closely approximated by Laplacian densities [12], [14],
[16].

We provide high-resolution analysis for scalable coding of
Laplace–Markov sequences in the Appendix. Fig. 7 summarizes
the simulation results for Laplace–Markov sequences. The SNR
versus enhancement-layer rate is given for all the competing ap-
proaches. The base-layer rate is identical for all coders. For ad-
ditional reference, the performance of the nonscalable coder is
shown. As expected, P1 outperforms P2 at small ratios of en-
hancement to base rate, and underperforms P2 at the other ex-
treme. It is seen that ET prediction provides substantial gains
over prediction methods P1 and P2. In particular, the gain over
P1 does not saturate and is asymptotically unbounded, as ex-
pected from the high-resolution analysis of the Appendix . Our
intuitive explanation of the increasing gains hinges on the prop-
erty of the Laplace–Markov sequence, which allows surpris-
ingly good prediction. In particular, the innovation process den-
sity of (23) is a mixture of a Laplacian and a delta function im-
pulse. The presence of the delta function implies that, with prob-

Fig. 7. Performance of two-layer scalable DPCM coding for Laplace–Markov
source with� = 0:95. SNR of enhancement-layer versus enhancement-layer
rate (bits/sample) is shown for different prediction methods. For P1 and ET
prediction, solid lines and dashed lines show performance with single entropy
coder and two entropy coders respectively. Base-layer rate was 1.14 bits/sample.
Performance of nonscalable coder with the same total rate is indicated by dotted
line.

ability well above zero, the prediction is perfect in the absence
of quantization error feedback. For a given base-layer rate, the
amount of quantization noise that is fed back via the predic-
tion loop in P1 is independent of the enhancement-layer rate.
On the other hand, the quantization noise that is fed back in ET
and P2 prediction decreases with increasing enhancement-layer
rate. Thus, the rate-distortion curve of P1 prediction differs con-
siderably in slope from ET and P2 prediction, and hence the
large gains at high rates. We finally note that conditional en-
tropy coding in conjunction with ET prediction provides signif-
icant additional gains and performs almost as well as nonscal-
able coding.

IV. SCALABLE VIDEO CODER DESIGN

A. Derivation

This section adopts the proposed ET approach for the
problem of scalable video compression. We restrict our atten-
tion to predictive DCT-based coding because of its dominance
in all current standards, but it should be emphasized that the
approach is general and applicable to virtually any form of
predictive coding.

In standard predictive video coding, the frame is divided into
macroblocks. These blocks are coded either with interframe
prediction (“intermode”), or without such prediction (“in-
tramode”). Intramode coding is used infrequently and, due to
the absence of time-prediction, does not represent a significant
challenge for scalability. We, therefore, focus our attention on
the more important and interesting case of scalable coding of
intermode macroblocks.

For each intermode macroblock, a motion vector is trans-
mitted. Note that skipping a macroblock implies that its mo-
tion vector is zero. At the base-layer, the previous reconstructed
block is used as predictor. DCT is applied to the prediction error,
and the resulting transform coefficients are scalar quantized, en-
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tropy coded and transmitted. At the receiver, the residual is de-
coded and added to the prediction to form reconstruction of the
current frame.

We propose to apply our estimation-theoretic (ET) paradigm
for the prediction of the enhancement-layer block. We chose to
implement the estimate in the transform domain, i.e., predict the
transform coefficients of the current block rather than the pixels
themselves as is commonly done. The motion estimation/com-
pensation is performed in the pixel domain as usual, and the
corresponding block in the enhancement-layer reconstruction
of previous frame is identified. This block is transformed by
DCT. The transform coefficients are combined with quantiza-
tion information available, in the transform domain, from the
base-layer reconstruction of the current block. This combina-
tion is performed within the ET framework to form the esti-
mate of DCT coefficients of the current block. The prediction
error between the original DCT coefficients and the estimated
DCT coefficients is obtained and quantized. At the decoder, the
quantized prediction error is added to the estimated DCT co-
efficients. An inverse DCT is applied to obtain the enhance-
ment-layer reconstruction of the current block.

The DCT domain is more convenient for the ET predictor de-
sign because the DCT coefficients of the residual are almost un-
correlated. Further, the base-layer quantization interval of each
DCT coefficient is readily available. Thus, the predictor can be
independently implemented for each DCT coefficient with vir-
tually no loss of optimality. However, one additional DCT com-
putation is required for each block to calculate the transform
coefficients in the previous enhancement-layer reconstruction.
Note that implementation of the prediction in the DCT domain
will produce no change in the performance of standard pre-
diction methods, P1 and P2 or H.263+. We re-emphasize that
the motion estimation/compensation for base and enhancement
layers are implemented in the pixel domain as in conventional
video coders. Fig. 5 provides a sketch of the proposed coder.

We assume that the evolution of a DCT coefficient in time
(i.e., from frame to frame) can be modeled by the first-order
Markov process

(24)

where is a DCT coefficient in the current frame and is
the corresponding (after motion compensation) DCT coefficient
in the previous frame. The transform coefficients are zero-mean
except for the DC coefficient. We assume thatis stationary,
and independent of . Note that our choice of notation is
made so as to relate directly to the derivation in the previous sec-
tion for the DPCM case. We now proceed in a similar fashion.
While our model for interframe evolution of video is simple, it
is sufficiently accurate to allow ET prediction to achieve signif-
icant gains.

The optimal base layer predictor is given by

(25)

The base encoder quantizes the residual, , and
transmits index . Let be the quantization interval asso-

ciated with index . The optimal base-layer reconstruction is
given by

(26)

We note that the optimal prediction and reconstruction for the
base-layer is nearly the same as that employed by standard video
coding schemes. The main advantage of the estimation-theoretic
approach is at the enhancement-layer.

The enhancement-layer decoder has access to, the cor-
responding enhancement-layer reconstructed DCT coefficient
of the previous frame. The optimal enhancement-layer predictor
is

(27)

or

(28)

Note how the ET predictor combines information from prior en-
hancement-layer reconstruction, and from the base-layer quan-
tization interval. The enhancement-layer encoder quantizes the
residual, , and transmits index . Let
be the quantization interval associated with index, and let

and . The
enhancement-layer reconstruction of the DCT coefficient is

(29)

To evaluate such expectations we employ an appropriate
probabilistic model for , the innovation error process. It is
well known that the marginal density function of the DCT
coefficient may be approximated by a Laplacian distribution
[16]. Hence, modeling by a Laplace–Markov process, we
obtain the density of

(30)

The parameters and may be estimated from a training set.
We found that for “low and intermediate frequency”
DCT coefficients. The ET prediction consists of computing the
centroid of the quantization interval (specified by the base layer)
with respect to the density of (30) for each DCT coefficient.
A closed form solution to the centroid computation is given in
terms of the interval limits

if

if

otherwise.

(31)
Despite its imposing form, this expression is computationally
benign. Therefore, the ET predictor can be implemented with a
modest increase in complexity.
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TABLE I
PERFORMANCE OFTWO-LAYERSCALABLE CODERS, WHICH DIFFER IN THEIR

ENHANCEMENT-LAYER PREDICTION MODULE, AND NON-SCALABLE CODER.
ENCODED SEQUENCE: CARPHONEAT QCIF RESOLUTION. THE ENTRIES

PROVIDE THE AVERAGE PSNR (IN dB) OF RECONSTRUCTEDFRAMES

VERSUSTOTAL RATE OF BASE AND ENHANCEMENT LAYERS (Kbps).
TOTAL NUMBER OF FRAMES WAS 267 AT FRAME SKIP OF 3. FOR ALL

THE METHODS, THE BASE-LAYER RATE WAS FIXED AT 32 Kbps,AND

THE CORRESPONDINGPSNR WAS 31.52 dB

TABLE II
PERFORMANCE OFTWO-LAYERSCALABLE CODERS, WHICH DIFFER IN THEIR

ENHANCEMENT-LAYER PREDICTION MODULE, AND NON-SCALABLE CODER.
ENCODED SEQUENCE: SALESMANAT QCIF RESOLUTION. THE ENTRIES

PROVIDE THE AVERAGE PSNR (IN dB) OF RECONSTRUCTEDFRAMES

VERSUSTOTAL RATE OF BASE AND ENHANCEMENT LAYERS (Kbps).
TOTAL NUMBER OF FRAMES WAS 449 AT FRAME SKIP OF 3. FOR ALL

THE METHODS, THE BASE-LAYER RATE WAS FIXED AT 32 Kbps,AND

THE CORRESPONDINGPSNR WAS 34.02 dB

The quantization interval of any DCT coefficient can be
determined from the quantized prediction error. It should
be noted that the recovered quantization interval may not be
accurate if thresholding is performed on the DCT coefficients at
the base-layer. However, thresholding is usually less beneficial,
and hence less likely to be used in scalable video coders, than
single-layer coders. It is also important in the ET implemen-
tation to account for the fact that the quantization interval
around origin (dead band) is larger than the other quantization
intervals.

B. Simulation Results

We developed a test bed for scalable video coding by using
the publicly available H.263 coder [23]. The H.263 algorithm
was used for motion estimation, and for compression of the
prediction error of the base and enhancement layers. The ad-
vanced motion compensation and arithmetic encoding options
were turned off.

The following prediction modules for the enhancement-layer
were implemented for the comparisons

1) P1 (proposed in [19]);
2) P2 (proposed in [7]);
3) an H263+ based coder;
4) proposed estimation-theoretic (ET) predictor.

TABLE III
PERFORMANCE OFTWO-LAYERSCALABLE CODERS, WHICH DIFFER IN THEIR

ENHANCEMENT-LAYER PREDICTION MODULE. ENCODED SEQUENCE:
CARPHONEAT QCIF RESOLUTION. THE ENTRIESPROVIDE THE AVERAGE PSNR

(IN dB) OF RECONSTRUCTEDFRAMES VERSUSTOTAL RATE OF BASE AND

ENHANCEMENT LAYERS (Kbps). TOTAL NUMBER OF FRAMES WAS 898AT

FRAME SKIP OF3. FOR ALL THE METHODS, THE BASE-LAYER RATE WAS FIXED

AT 16 Kbps,AND THE CORRESPONDINGPSNR WAS 29.30 dB

TABLE IV
PERFORMANCE OFTWO-LAYERSCALABLE CODERS, WHICH DIFFER IN THEIR

ENHANCEMENT-LAYER PREDICTION MODULE. ENCODED SEQUENCE:
MOTHER–DAUGHTERAT QCIF RESOLUTION. THE ENTRIES PROVIDE THE

AVERAGE PSNR (IN dB) OF RECONSTRUCTEDFRAMES VERSUSTOTAL RATE

OF BASE AND ENHANCEMENT LAYERS (Kbps). TOTAL NUMBER OF FRAMES

WAS 898AT FRAME SKIP OF 3. FOR ALL THE METHODS, THE BASE-LAYER

RATE WAS FIXED AT 64 Kbps,AND THE CORRESPONDINGPSNR WAS 34.36 dB

The H.263+ scalable coder can choose one of three prediction
modes for each macroblock [22]

1) prediction from current base-layer block;
2) prediction from previous enhancement-layer reconstruc-

tion;
3) prediction from weighted sum of current base and pre-

vious base-layer blocks.

The best prediction mode for each macroblock is sent as side
information. A similar prediction mode strategy is used in the
MPEG-4 [24] scalable coder.

The model parameters for each DCT coefficient were es-
timated from a training set extracted from theMiss Americase-
quence. The frame-skip was three, and we present the average
PSNR of the luminance component of reconstructed frames.
(Significant PSNR gains were also obtained in the chrominance
components.)

Tables I–V shows the results fortwo layer scalable com-
pression on the sequenceCarphone. The base-layer rate was
fixed at 16 Kbps and coded in an identical manner by all the
methods. PSNR results for the enhancement-layer are presented
for various ratios of enhancement-layer to base-layer rates. It
is easily seen that the proposed ET prediction outperforms all
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TABLE V
PERFORMANCE OFTWO-LAYERSCALABLE CODERS, WHICH DIFFER IN THEIR

ENHANCEMENT-LAYER PREDICTION MODULE. ENCODED SEQUENCE: LTSAT

QCIF RESOLUTION. THE ENTRIES PROVIDE THE AVERAGE PSNR (IN dB) OF

RECONSTRUCTEDFRAMES VERSUSTOTAL RATE OF BASE AND ENHANCEMENT

LAYERS (Kbps). TOTAL NUMBER OF FRAMES WAS 487AT FRAME SKIP OF 3.
FOR ALL THE METHODS, THE BASE-LAYER RATE WAS FIXED AT 64 Kbps,AND

THE CORRESPONDINGPSNR WAS 27.18 dB

TABLE VI
PERFORMANCE OFMULTILAYERSCALABLE CODERS WITH DIFFERENT

PREDICTION METHODS, AND NON-SCALABLE (SINGLE-LAYER) CODER.
ENCODED SEQUENCE: CARPHONEAT QCIF RESOLUTION. TOTAL NUMBER OF

FRAMES WAS 267AT FRAME SKIP OF 3. THE ENTRIES INDICATE THE AVERAGE

PSNR (IN dB) OF RECONSTRUCTEDFRAMES OF A LAYER VERSUS THETOTAL

RATE (IN Kbps)OF THAT LAYER. NOTE THAT THE TOTAL RATE INCLUDES

RATE OF ALL THE LAYERS UP TOTHIS LAYER

the competing approaches, and achieves substantial gains in re-
constructed PSNR of the enhancement layer. As expected (see
Section III-B), P1 outperforms P2 at small ratios of enhance-
ment to base rate, and underperforms P2 at the other extreme.
The H.263+ predictor outperforms P1 and P2 and gradually ap-
proaches the performance of the proposed ET predictor at high
enhancement layer rates.

Tables VI–XIII show the performance formultilayerscalable
coding on several video sequences of “video conference” type
as well as “nonvideo conference” type. The base layer is identi-
cally encoded for all competing methods as is evident from the
first row of the Tables. Note that the ET predictor substantially
outperforms the other coders. It is important to emphasize how
the prediction gains of ET build up with the number of layers
and, in most cases, result in major performance improvements.
In all cases, the ET predictor provided gains between 0.5 dB and
1.9 dB over H.263+ based prediction at the higher layers, and
much larger gains over P1 and P2.

For rough evaluation of the complexity costs of ET predic-
tion, we recorded the execution time in the experiment. The

TABLE VII
PERFORMANCE OFMULTILAYERSCALABLE CODERS WITHDIFFERENT

PREDICTION METHODS, AND NON-SCALABLE (SINGLE-LAYER) CODER.
ENCODED SEQUENCESALESMANAT QCIF RESOLUTION. TOTAL NUMBER OF

FRAMES WAS 449AT FRAME SKIP OF 3. THE ENTRIESINDICATE THE AVERAGE

PSNR (IN dB) OF RECONSTRUCTEDFRAMES OF A LAYER VERSUS THETOTAL

RATE (IN Kbps)OF THAT LAYER. NOTE THAT THE TOTAL RATE INCLUDES

RATE OF ALL THE LAYERS UP TOTHIS LAYER

TABLE VIII
PERFORMANCE OFMULTILAYERSCALABLE CODERS WITHDIFFERENT

PREDICTION METHODS, AND NON-SCALABLE (SINGLE-LAYER) CODER.
ENCODED SEQUENCECONTAINERAT QCIF RESOLUTION. TOTAL NUMBER OF

FRAMES WAS 300AT FRAME SKIP OF 3. THE ENTRIESINDICATE THE AVERAGE

PSNR (IN dB) OF RECONSTRUCTEDFRAMES OF A LAYER VERSUS THETOTAL

RATE (IN Kbps)OF THAT LAYER. NOTE THAT THE TOTAL RATE INCLUDES

RATE OF ALL THE LAYERS UP TOTHIS LAYER

TABLE IX
PERFORMANCE OFMULTILAYERSCALABLE CODERS WITHDIFFERENT

PREDICTION METHODS, AND NON-SCALABLE (SINGLE-LAYER) CODER.
ENCODED SEQUENCEHALL-OBJECTSAT QCIF RESOLUTION. TOTAL NUMBER

OF FRAMES WAS 330AT FRAME SKIP OF 3. THE ENTRIES INDICATE THE

AVERAGE PSNR (IN dB) OF RECONSTRUCTEDFRAMES OF A LAYER VERSUS

THE TOTAL RATE (IN Kbps)OF THAT LAYER. NOTE THAT THE TOTAL RATE

INCLUDES RATE OF ALL THE LAYERS UP TOTHIS LAYER
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TABLE X
PERFORMANCE OFMULTILAYERSCALABLE CODERS WITH DIFFERENT

PREDICTION METHODS, AND NON-SCALABLE (SINGLE-LAYER) CODER.
ENCODEDSEQUENCECOASTGUARDAT QCIF RESOLUTION. TOTAL NUMBER OF

FRAMES WAS 300AT FRAME SKIP OF 3. THE ENTRIES INDICATE THE AVERAGE

PSNR (IN dB) OF RECONSTRUCTEDFRAMES OF A LAYER VERSUS THETOTAL

RATE (IN Kbps)OF THAT LAYER. NOTE THAT THE TOTAL RATE INCLUDES

RATE OF ALL THE LAYERS UP TOTHIS LAYER

TABLE XI
PERFORMANCE OFMULTILAYERSCALABLE CODERS, WITH DIFFERENT

PREDICTION METHODS, AND NON-SCALABLE (SINGLE-LAYER) CODER.
ENCODED SEQUENCEGRANDMAAT QCIF RESOLUTION. TOTAL NUMBER OF

FRAMES WAS 869AT FRAME SKIP OF 3. THE ENTRIES INDICATE THE AVERAGE

PSNR (IN dB) OF RECONSTRUCTEDFRAMES OF A LAYER VERSUS THETOTAL

RATE (IN Kbps)OF THAT LAYER. NOTE THAT THE TOTAL RATE INCLUDES

RATE OF ALL THE LAYERS UP TOTHIS LAYER

TABLE XII
PERFORMANCE OFMULTILAYERSCALABLE CODERS, WITH DIFFERENT

PREDICTION METHODS, AND NON-SCALABLE (SINGLE-LAYER) CODER.
ENCODED SEQUENCEMOTHER–DAUGHTERAT QCIF RESOLUTION. TOTAL

NUMBER OF FRAMES WAS 869AT FRAME SKIP OF 3. THE ENTRIES INDICATE

THE AVERAGE PSNR (IN dB) OF RECONSTRUCTEDFRAMES OF A LAYER

VERSUS THETOTAL RATE (IN Kbps)OF THAT LAYER. NOTE THAT THE TOTAL

RATE INCLUDES RATE OF ALL THE LAYERS UP TOTHIS LAYER

overall complexity was observed to increase by 10% relative to
that of H.263+.

TABLE XIII
PERFORMANCE OFMULTILAYERSCALABLE CODERS, WITH DIFFERENT

PREDICTION METHODS, AND NON-SCALABLE (SINGLE-LAYER) CODER.
ENCODEDSEQUENCELTSAT QCIF RESOLUTION. TOTAL NUMBER OFFRAMES

WAS 487AT FRAME SKIP OF 3. THE ENTRIES INDICATE THE AVERAGE PSNR
(IN dB) OF RECONSTRUCTEDFRAMES OF A LAYER VERSUS THETOTAL RATE

(IN Kbps) OF THAT LAYER. NOTE THAT THE TOTAL RATE INCLUDES

RATE OF ALL THE LAYERS UP TO THISLAYER

V. SUMMARY AND CONCLUSIONS

This paper presents a new approach to optimal scalability
in predictive coding. The predictor is designed within an esti-
mation-theoretic framework. The current sample prediction is
optimal given both the past enhancement layer reconstruction
and all base-layer parameters and variables including the recon-
struction and quantization interval. To emphasize its generality,
the approach was first derived for the simple case of scalable
DPCM systems. Its potential was then demonstrated on the ap-
plication of scalable video coding. Simulation results show that
the proposed scalable coding technique offers substantial per-
formance gains over conventional approaches over a wide range
of bit rates. The gains increase with the number of layers.

Although ET prediction was applied to video coding here
in conjunction with standard DCT-based coding systems, it is
easily extendible to subband-based, and pixel-domain coders,
as is evident from the basic DPCM derivation. Work in progress
shows that ET prediction has applications in error concealment
for scalable video coding [21] and in scalable coding of stereo-
phonic (two-channel) audio [1]. Note that we have only con-
sidered conditional entropy encoding of the enhancement-layer
residual for the DPCM case. It has produced substantial gain
in the case of Laplacian–Markov sources, and achieved perfor-
mance close to that of nonscalable coding. The extension to con-
ditional entropy coding of DCT coefficients in scalable video
coders is a topic that deserves further study.

APPENDIX

HIGH-RESOLUTION ANALYSIS

A. Gauss–Markov Sequences

We derive asymptotic (high-rate) results for scalable DPCM
coding of a Gauss–Markov sequence. We first review the corre-
sponding nonscalable results [4]. For the Gauss–Markov source,
the prediction error possesses a normal density. Ifand are
the differential entropy and variance of prediction error, we have

(32)
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If the prediction error is encoded by an optimal quantizer whose
output entropy is , the quantization distortion (by the Gish-
Pierce result [8]) is

(33)

We also have that

(34)

where is the variance of the innovation process (see (11)), and
is the quantization distortion in the previous reconstructed

sample (used as predictor).
For a nonscalable coder, , and hence, (32), (33) and

(34) may be combined to yield

(35)

For a scalable coder, let and be the entropy of the
quantizer output at the baseand enhancement layers respectively.
The reconstruction distortion for the base-layer is given by

(36)

For prediction method P1, the reconstruction error of the base-
layer is encoded by a quantizer of entropy at the en-
hancement-layer. Thus, the distortion at the enhancement-layer
is

(37)

For prediction method P2, the previous enhancement-layer re-
construction is used as the estimate and the prediction error en-
coded by a quantizer of entropy . The corresponding
distortion is given by

(38)

The potential gains over P1 and P2 are limited by the per-
formance of the single-layer coder of rate. It is therefore of
interest to consider this bound on the performance of the ET pre-
dictor as an indicator of circumstances under which large gains
may be recouped. The corresponding distortion is given by

(39)

It is easy to see that the potential performance gains over P1
increase with , and decrease as . Further, the gains de-
crease with increasing . The potential performance gains over
P2 increase with and decrease with increasing . Further,
as , all the distortion curves (in log scale) become par-
allel with slope 2. These asymptotic results accurately predict
the simulation results presented in Fig. 6.

B. Laplace–Markov Sequences

Here, we derive the corresponding asymptotic results for the
scalable DPCM coding of Laplace–Markov process. Consider a
memory-less source whose pdf is given by (23) and letdenote

the differential entropy of the continuous (Laplacian) compo-
nent. If this source is encoded by a quantizer of output entropy

, the resulting distortion is given by [4]

(40)

where is the binary entropy function

(41)

For nonscalable DPCM coding of Laplace–Markov se-
quence, we have

(42)

or equivalently

(43)

The differential entropy is given by

(44)

From(43) and (44), it follows that

(45)

Consider a two-layer scalable coder with base and enhance-
ment layer rates of and . For the base-layer, the
reconstruction distortion is given by

(46)

The enhancement-layer distortion for P1 is given by

(47)

For prediction method P2, the corresponding distortion is

(48)

The gains that can be obtained by ET prediction are bounded
by the performance of a single-layer coder operating at rate.
The corresponding distortion is given by

(49)

Again, the potential performance gains over P1 increase with
, decrease as , and decrease with increasing. Simi-

larly, the potential performance gains over P2 decrease with in-
creasing and increase with increasing . Further, as

, the distortion curves for P2 and the (nonscalable) bound (in
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log scale) become parallel with slope . However, for
the Laplace–Markov process, it is important to note that the dis-
tortion curve of P1 decays much moreslowly, i.e., with slope
2. Thus the gains over P1 never saturate. The simulation results
presented in Fig. 7 verify these asymptotic results.
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