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Abstract

In standard predictive video coders, intra-mode coding of
macroblocks (MBs) provides packet loss resilience, at the
cost of reduced compression efficiency. Conventional mode
selection algorithms are “greedy” as they focus on mini-
mization of distortion of current MB, while ignoring the ef-
fect of this selection on subsequent frames. This paper pro-
poses an algorithm for prescient mode selection: the coding
modes of MBs are chosen while taking into account the dis-
tortion of subsequent frames. The problem is formulated as
one of joint selection of MB coding modes, for a group of
pictures, so as to minimize the rate-distortion cost. The s-
traightforward solution based on dynamic programming re-
quires enormous computational complexity. We propose an
iterative algorithm which obtains a locally optimal solution
at feasible complexity. The total decoder distortion is com-
puted using recursive optimal per-pixel estimate (ROPE)
which accurately accounts for the effects of quantization,
packet loss, error propagation, and error concealment. Sim-
ulation results show consistent improvement over our pre-
vious “greedy” ROPE-RD mode selection, and substantial
gains over other (non-ROPE) mode selection schemes.

1. INTRODUCTION

In packet-switched networks, packets may be discarded at
intermediate nodes, or be considered lost due to long queu-
ing delays. In the case of predictive video coding, the pre-
diction loop propagates errors, and causes additional deteri-
oration of the performance. Mode selection is a “standard-
compatible” tool for mitigating the effects of packet loss.
Intra-mode coding of macroblocks (MBs) stops error prop-
agation while consuming more bits than inter-coding.

The problem of MB coding mode selection to balance
the tradeoff between compression efficiency and robustness
has received much attention [1] [2] [3]. While state-of-
the-art mode selection algorithms improve the robustness
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of video coders, they share a common limitation. They per-
form the optimization for each frame independently, and ig-
nore the effect of mode selection on subsequent frames.

In this work, we consider the problem of optimal MB
mode selection by a “prescient” encoder, which has access
to the current frame as well as to a limited number of subse-
quent frames. This problem is related to that of “dependent
quantization” [4], and can be formulated as one of joint MB
coding modes selection for a group of pictures. Solutions
based on dynamic programming are globally optimal, but
require enormous computational complexity. Instead, we
propose an iterative algorithm that guarantees a local op-
timal solution at feasible complexity. Moreover, we show
that the impact of mode selection on the distortion of future
frames can be approximated to achieve further reduction in
complexity. The scheme explicitly accounts for the impact
of quantization, packet loss as well as error propagation on
the total decoder distortion. This is achieved by an exten-
sion of the recursive optimal per-pixel estimate (ROPE) [2].

In section 2, we analyze the effect of the choice of MB
mode on subsequent frames. In section 3, we formulate the
joint optimization problem and derive an iterative solution.
ROPE is used in section 4 to achieve further simplification
of the algorithm. Simulation results in section 5 demon-
strate the performance gains.

2. DEPENDENT MODE SELECTION

The standard video coder employs inter-frame prediction to
remove temporal redundancies. Although inter-mode cod-
ing generally achieves higher compression efficiency, it is
more sensitive to channel errors as it promotes error propa-
gation.

It is widely recognized that adaptive intra-update is an
important tool for mitigating the effects of packet loss. How-
ever, state-of-art approaches for coding mode selection per-
form optimization of the MB coding modes of each frame
independently. Consequently, they neglect the impact of the
choice of current coding mode on the rate-distortion perfor-
mance in subsequent frames. We formulize this inter-frame
dependency by extending our error propagation model [2].

Let f in denote the value of pixeli in framen, and letf̂ in



represent its reconstruction at the encoder. The reconstruct-
ed value at the decoder, possibly after error concealment,
is denoted by~f in. For the encoder,~f in is a random vari-
able. Letfmn+1, f̂

m
n+1 and ~fmn+1 denote the original value,

encoder reconstruction and decoder reconstruction of pixel
m in framen+1, which is motion compensated from pixeli
in framen. Thus, the predictor used by the encoder for pixel
m is f̂ in. The corresponding predictor at the decoder is~f in.
If r̂mn+1 represents the corresponding quantized residual, the
encoder’s reconstruction is given bŷfmn+1 = r̂mn+1+ f̂ in. We
assume that temporal error concealment is used to recon-
struct this pixel in case of packet loss. Let this replacement
be ~fkn . If packet loss rate isp, we have

~fmn+1 = (1� p)fr̂mn+1 +
~f ing+ p ~fkn : (1)

Our goal, here, is to formulize how the coding mode of
framen affects the distortion at framen+ 1.

The overall expected decoder distortion, of pixelm in
framen+ 1, is
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~fmn+1)
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= �di!m
n!n+1 + d̂mn+1 +

~dmn+1: (2)

Here,d̂mn+1 and ~dmn+1 denote the quantization distortion and
the error concealment distortion for pixelm in framen+1.
More importantly,�di!m

n!n+1 represents the effect of distor-
tion propagation from framen. Note thatf̂ in and ~f in are
the predictors used by the encoder and decoder respective-
ly, and the propagation of distortion is due to the mismatch
between the two. If the MB containing pixeli in frame
n was intra-coded, the mismatch term would be strictly s-
maller than if it was inter-coded. Thus, the mode decision
in framen affects the distortion of framen + 1 and other
frames in the future. Further, the final approximation as-
sumes that the effect of quantization and error propagation
are additive. This approximation will be useful in section 4
to reduce the complexity of the optimization scheme.

3. OPTIMIZATION VIA ITERATIVE DESCENT
SEARCH

We now propose to optimize MB coding parameters while
accounting for the temporal dependency analyzed in the pre-
vious section. The coding mode and the quantization step
size are the parameters that can be optimized for each MB.

LetPm
n denote the coding parameters of MBm in frame

n. Let the set of the parameters of all the MBs in framen be
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Fig. 1. Temporal-spatial dependency. As parameter for cur-
rent MB changes, RD performance of some corresponding
MBs in the following frames changes too.

denoted byPn. For a group of pictures withL frames, the
problem is to select parametersfPn;Pn+1; :::;Pn+L�1g joint-
ly so that the total decoder distortion

Dn(Pn) +Dn+1(Pn;Pn+1) + ::: (3)

+Dn+L�1(Pn;Pn+1; :::;Pn+L�1)

is minimized, while satisfying the constraint on the rate,

Rn(Pn) +Rn+1(Pn;Pn+1) + ::: (4)

+Rn+L�1(Pn;Pn+1; :::;Pn+L�1) � Rbudget:

Note here that the rate-distortion performance of each frame
is dependent not only on the parameters of current frame,
but also on parameters of previous frames.

This constrained minimization problem can be recast to
an unconstrained minimization of

Jn + Jn+1 + :::+ Jn+L�1 =

Dn +Dn+1 + :::+Dn+L�1 + (5)

�(Rn ++�Rn+1 + :::+ �Rn+L�1);

where� is the Lagrangian multiplier. As this formulation
is similar to the problem of dependent quantization [4], dy-
namic programming can be used to search for the best com-
bination of coding mode and quantizer step size. However,
an extremely large number of states are required to accoun-
t for all possible combination of the parameters for all the
MBs. Due to motion compensation, the RD curve of each
MB may depend on the parameter choice of several MB-
s in the previous frame. If there areM MBs in a frame
andN choices for the quantizer step size, the number of
states for each frame is then(2N)M . Optimization over
L-frames introduces(2N)ML states. For example, if there
are 5 possible quantization step sizes for each MB, even Q-
CIF sequences would require1099L states. The enormous
computational complexity of dynamic programming makes
it impractical even if joint optimization is restricted to two
frames.

We next derive a low-complexity iterative algorithm to
jointly optimize MB parameters for a group of frames. Each



MB is associated, due to the spatio-temporal dependency in-
troduced by motion compensation, with some MBs in sub-
sequent frames. If the parameter of this MB is varied, while
fixing all other parameters of this group of pictures, the rate-
distortion performance of only the associated MBs are af-
fected. Figure 1 depicts this inter-frame dependency of MB-
s. Thus, the optimal choice of coding mode and quantiza-
tion step size for current MB, depends only on the RD cost
of encoding the current MB as well as those of the associ-
ated MBs in subsequent frames. Based on this observation,
we derive an iterative descent search algorithm:

� Step 1: Initialize parametersfP0
n;P

0
n+1; :::;P

0
n+L�1g.

In our simulations, we used ROPE-RD [2] to obtain
the initial parameter values.

� Step 2: Update parameter for each MB to minimizes
RD cost of encoding all associated MBs, for fixed
choice of parameters ofall other MBs. Let the pa-
rameter set at the end oftth iteration be denoted by
fPt

n;P
t
n+1; :::;P

t
n+L�1g.

� Step 3: Check for convergence: If parameters are i-
dentical with those of previous iteration, stop. Other-
wise, go back to step 2.

Note that the total RD cost of encoding the frame never
increases. Therefore, the algorithm produces a locally op-
timal set of parameters. The complexity of this algorithm
is linear in the number of choices per parameter (2N ), the
number of MBs per frame (M ), and the number of iterations
(T ). If A denotes the number of MBs in the next frame asso-
ciated with each MB in current frame (A is typically around
2), The complexity of the algorithm is2NTMAL�1. In
comparison, the the complexity of dynamic programming
is in the level of(2N)ML. In simulations, the algorithm
usually converged after4 � 6 iterations.

Note that this iterative algorithm is not specific to cod-
ing mode selection for packet loss resilience. In fact, it can
be applicable for parameter optimization for the general de-
pendent quantization [4] scenario, for both error free and
lossy channels.

4. SIMPLIFIED DESCENT SEARCH

In this section, we further reduce the complexity of iterative
search algorithm for mode selection. Note that the compu-
tationally intensive steps are the extra DCT and quantiza-
tion operations required to re-encode and compute the rate-
distortion performance of all associated MBs. To simplify
the algorithm, we approximate the total decoder distortion
as a combination of quantization distortion and error propa-
gation, as in equation (2). This allows explicit computation
of the impact of mode selection on the distortion of future
frames, without the need for re-encoding those MBs.

We present the derivation for the special case when only
one future frame is available for optimization. The exten-
sion to multiple frame dependcy is straightforward. Recall
that the inter-frame dependency in distortion can be cap-
tured explicitly by the predictor mismatch term. From (2),
we have

Dn +Dn+1 =
X

i2frame(n)

din +
X

m2frame(n+1)

dmn+1

�
X

i2frame(n)

(din + !i �d
i!m
n!n+1)

+
X

m2frame(n+1)

(d̂mn+1 +
~dmn+1)

= Dn + �Dn!n+1 + D̂n+1 + ~Dn+1: (6)

where!i is the number of pixels in framen+ 1 that is mo-
tion compensated by the pixeli in framen. Note that!i is
associated with the mode selection (and motion vector) of
framen + 1, while �di!m

n!n+1 is the result of coding mode
decision in framen. Therefore, the mismatch term is deter-
mined by the mode selection in both frames. The distortion
due to error concealment,~Dn+1, is independent of the cod-
ing mode in framen + 1. The dependency of the quanti-
zation distortion,D̂n+1, on the coding parameter of frame
n is small relative to the other terms, and can be neglect-
ed. Based on these observations, we derive the simplified
iterative algorithm to solve the unconstrained problem in e-
quation (5):

� Step 1: Initialize the parameter setsPn andPn+1.

� Step 2: For the givenPn+1, compute!i for each pixel
i in framen.

� Step 3: Select the coding parameters,Pn for framen,
to minimizeDn + �Dn!n+1 + ~Dn+1 + �Rn. This is
equivalent to minimizingJn + Jn+1 for fixedPn+1.

� Step 4: Select the coding parameters,Pn+1 for frame
n+1, to minimizeDn+1+�Rn+1. This is equivalent
to minimizingJn + Jn+1 for fixedPn.

� Step 5: If the mode selection convergence criteria is
not satisfied, go to step 2; Otherwise, stop.

Standard ROPE-RD based mode selection is used to exe-
cute step 3 and step 4 of the algorithm. As the impact of
mode selection on the distortion of future frames is explic-
itly computed, the DCT and quantization for framen + 1
are unnecessary when optimizing the parameters for frame
n. Thus, complexity is further reduced.

5. SIMULATION RESULTS

We call the proposed mode selection algorithm Prescien-
t ROPE-RD (PROPE-RD). We simulated both the iterative
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Fig. 2. PSNR vs. Packet loss rate for sequence “carphone”.

algorithm and its simplified approximation (denoted by suf-
fix ‘s’). We used a sliding window to form the group of
pictures, and hence maintained a fixed delay. We consid-
ered simple two-frame and three-frame dependency mod-
els. The algorithms were implemented by modifying the
UBC H.263+ coder [5]. The RTP payload format [6] is as-
sumed for packetization. A random packet loss generator is
used to drop packets at a specified loss rate. 250 frames of
the QCIF sequence “carphone” are compressed. The PSNR
of luminance reconstruction is computed and averaged over
30 different channel realizations (with different packet loss
patterns).

The PROPE-RD scheme is compared with another t-
wo non-ROPE mode selection approaches: (i) “Scattered
block intra-update” (SBIU) which arbitarily assigns MBs
to 1=p groups, and cyclically intra-updates one group per
frame, (ii) “block weighted distortion estimate” (BWDE)
[7] which performs an approximate computation of decoder
distortion. Figure 2 (a) presents the PSNR of decoder re-
construction at various packet loss rates. The PROPE-RD
schemes yield significant gains over the other two methods.

We further compared with our previous ROPE-RD ap-
proach, where the coding decision is made greedily for each
frame. Results in Figure 2 (b) demonstrates the additional
gain of around 0.2�0.7dB over ROPE-RD, depending on
the number of frames in the group of pictures and the accu-

racy of the calculation. These improvements are achieved
consistently for varying packet loss rate. Note that there is
gain even when the packet loss rate is 0%. This shows that
iterative search algorithm can be used for parameter opti-
mization in dependent quantization even when the channel
is loss free.

6. CONCLUSION

We proposed a “non-greedy” mode selection algorithm to
improve the robustness of video coding to packet loss. The
problem is formulated as one of joint optimization of the
coding parameters of a group of pictures. An iterative algo-
rithm is used to obtain a locally optimal set of parameters
at feasible complexity. The complexity of the algorithm can
be further reduced by approximating the total decoder dis-
tortion as sum of quantization and error propagation. ROPE
is used to precisely calculate the decoder distortion, and for
initializing the algorithm. Simulation results demonstrate
consistent gains over greedy ROPE-based mode selection,
and substantial gains over non-ROPE based mode selection
methods.
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