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Abstract

Applications where packetized video is streamed over the
Internet, must be designed to achieve robustness to packet
loss as well as compression efficiency. Whenever possible,
the ideal solution to this problem is to jointly optimize the
adaptation of the compression and error protection strate-
gies to the network status, so as to minimize the expected
end-to-end distortion of reconstructed video at the receiv-
er. However, in the case of pre-compressed video streaming,
compression is performed without knowledge of the network
condition, and conversely, the delivery is performed with-
out access to the original signal. It is hence difficult for
the transmitter to estimate and minimize the end-to-end dis-
tortion during delivery. This paper addresses this problem
by deriving an algorithm which enables the transmitter, or
other intermediate nodes, to estimate the overall end-to-end
distortion while delivering pre-compressed video. This es-
timate fully accounts for the effects of (prior) quantizaton,
packet loss and error propagation, as well as error conceal-
ment. The accuracy of the estimate is demonstrated by sim-
ulation results. The algorithm requires storage of minimal
side-information that is computed during compression. The
algorithm is of low complexity, and is applicable to virtual-
ly all coding techniques, including the standard (predictive)
video coders. The paper also discusses the use of this esti-
mate to adapt a variety of packet-loss resilience techniques
for pre-compressed video streaming. The considerable po-
tential gains of this approach are illustrated via the example
of an FEC-based streaming video system.

1 Introduction

Internet-based packetized video streaming application-
s have attracted tremendous attention in recent years. The
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unreliable packet delivery through the Internet requires that
video streaming systems provide robustness to loss as well
as compression efficiency. While standard source-channel
coding algorithms [1] [2] can be used to optimize the deliv-
ery of live-content, they are incompatible with applications
which stream pre-compressed video. The main difficulty is
due to the fact that network conditions are unknown during
the compression stage. As an illustration, consider an ap-
plication that delivers “Video on Demand.” The raw video
content is compressed offline, and is stored on the server.
Network condition parameters such as bandwidth, pack-
et loss probabilities and delay jitter vary widely based on
the characteristics of the available links between the serv-
er and the client (receiver). They have significant effects
on system performance. Clearly, optimization of the error
resilience strategy during delivery has no access to the orig-
inal video. This represents a major difficulty in estimating
and minimizing the end-to-end distortion, which quantifies
the difference between the original signal and the decoder
reconstructed signal (after loss and error concealment). Fur-
ther, practical restrictions on server complexity preclude the
use of complex algorithms that perform requantization of
the source bitstream, or perform other modifications at the
source-syntax level. Instead, adaptation should be based on
simple transport-level tools, such as Forward Error Correc-
tion (FEC) or Automatic Retransmission reQuest (ARQ).
Note that similar constraints apply to other streaming video
applications such as transcoding at an intermediate node,
and Internet multicast.

The problem of robust streaming of pre-compressed
video has been addressed in [3] [4] [5] [6]. In [4], it was
recognized that the ideal resilience strategy at the server is
one which adapts to the actual bandwidth and packet loss
statistics of the network in order to minimize the expected
end-to-end distortion of reconstructed video at the receiver.
A Lagrangian Rate-Distortion (R-D) framework was pro-
posed to achieve the optimal adaptation strategy. But, the
practical usefulness of this framework is limited in the ab-
sence of a convenient method to compute the overall recon-
struction distortion. The task of computing end-to-end dis-



tortion is complicated by many inter-related factors. They
include (prior) quantization, effective packet loss statistics
which is a function of the network condition and the er-
ror resilience strategy, and error concealment. Further, the
use of inter-frame prediction in video coders results in s-
patial and temporal error propagation, and hence additional
inter-dependencies between packets. The problem of dis-
tortion estimation was rendered tractable in prior work by
either neglecting the effect of inter-frame error propagation
[5] [6], or by ignoring error concealment [4]. However, the
consequent inaccuracy in the distortion estimates can result
in poor adaptation strategies.

The main contribution of this paper is an efficient algo-
rithm that enables the transmitter to estimate the expect-
ed overall end-to-end distortion at the receiver. The algo-
rithm takes into account the effects of quantization, inter-
dependencies among packets through prediction and error
propagation, and error concealment. The algorithm requires
a small amount of side-information that is easily computed
during compression, and stored at the server. In addition
to its accuracy, the estimate provides another advantage. It
is linearly dependent on the packet loss statistics, and thus
allows for low-complexity R-D optimization of packet-loss
resilience strategies.

The paper is organized as follows: Section 2 introduces
notations and derives the decoder distortion estimate. Sim-
ulation results demonstrate its accuracy. Section 3 discusses
the integration of this estimate within an RD framework for
optimizing streaming efficiency and robustness. The poten-
tial for substantial performance gains is illustrated using the
example of a FEC-based robust delivery system.

2 End-to-end Distortion Estimation for pre-
Compressed Video

In this section, we analyze the problem of end-to-
end distortion estimation for a system that delivers pre-
compressed video. We then derive a first order estimation
algorithm as an efficient solution.

2.1 End-to-end Distortion

Without loss of generality, we assume that the com-
pressed video is packetized into independent groups of
packets (GOP). The expected distortion of each GOP can be
calculated independently as there is no dependency across
GOPs. However, packets within one GOP may depend on
each other due to prediction. Thus, the distortion for all
packets in one GOP must be calculated jointly.

Let there beN source packets per GOP. Letpi denote
the effective packet loss rate (PLR) of packeti. Note that
pi is a function of both the network conditions, and the

resilience strategy used for this packet. The resilience s-
trategy could involve retransmission of the packet, or the
use of error correction codes. The PLR vector for the en-
tire GOP is given by,P = fp0; p1; :::; pi; :::; pN�1g. S-
ince each packet can be either received correctly, or consid-
ered as lost, there is a total of2N possible events for each
GOP. The event vector of the entire GOP is represented by
B(k) = fb

(k)
0 ; b

(k)
1 ; :::; b

(k)
i ; :::; b

(k)
N�1g, wherek denotes the

index of the event (k = 1; 2; :::; 2N), and binary random
variableb(k)i denotes the status of theith packet in thekth

event. The packet is received correctly ifb
(k)
i = 0, and is

lost if b(k)i = 1 . The probability of thekth event vector is

given byp(k) =
QN�1

i=0 (1� pi)
(1�b

(k)
i

)pi
b
(k)
i .

Let f denote the value of some pixel in the original
video. Let ~f denote the corresponding reconstructed pix-
el at the receiver. Note that~f is in fact arandomvariable at
the transmitter since it depends on the effects of packet loss,
concealment and error propagation which are unknown to
the transmitter. However, it is important to note that the
decoder reconstruction is completely determined given the
event vector of the entire GOP. Thus, the decoder recon-
struction under thekth event,~f (k), can beexactly comput-
ed. The end-to-end distortion of this pixel under thekth
event is given byd(k) = (f � ~f (k))2. The overall distortion
of the GOP distortion under thekth event is

D(k) =
X

f2GOP

d(k): (1)

At the compression stage, the encoder can computeD(k)

for k = 1; 2; :::; 2N , and store these quantities as side-
information at the server.

During delivery, the probability of occurrence of event
Bk is given byp(k). Therefore, the expected overall distor-
tion of the receiver is given by

EfD(P)g =
2NX

k=1

p(k)D(k)

=

2NX

k=1

(

N�1Y

i=0

(1� pi)
(1�b

(k)
i

)pi
b
(k)
i )D(k): (2)

Note that this estimate isexact (i.e., without approxima-
tion). It considers all possible error events, and takes into
account the effects of compression, loss, error propagation
and error concealment.

In practical applications, this estimate has two major
drawbacks. First,2N real values (Dk) need to be stored as
side-information for each GOP. This imposes a large stor-
age requirement. Second, the expected distortion is a com-
plicated function of the individual packet loss rate as shown
in (2). Therefore, the use of this metric to optimize error re-
silience strategies involves a high computational complexi-
ty.
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Figure 1. PSNR vs. packet loss rate for model accuracy. QCIF sequence “carphone”. (a) single-layer
bitstream at 32kbps for 10fps. (b) three-layer bitstream at 32/64/96kbps for 10 fps. The packet loss
rate for the three layers in (b) are: case 1 (0%, 5%, 10%), case 2: (1%, 3%, 5%), case 3 (3%, 8%, 15%),
case 4: (5%, 10%, 95%), and case 5 (5%, 95%, 95%).

2.2 First-order Approximation through
Partial Derivatives

The objective of this section is to derive a simple ap-
proximation of the end-to-end distortion estimate. At the
cost of a slight loss of accuracy, this approximation allows
for substantial reduction in the amount of side-information,
and computational complexity.

We propose to use the first order Taylor expansion
of (2). Assume we expand the current GOP distortion
of (2) about a particularreference PLR vector, �P =
f�p0; �p1; :::; �pi; :::; �pj ; :::; �pN�1g. For example,�P could cor-
respond to the case when the loss probability is zero for all
packets in the GOP. For a PLR vectorP which is close to the
reference PLR, it is reasonable to approximate the expected
distortion of (2) via the first order Taylor series expansion.
Thus, we have

EfD(P)g � EfD( �P)g+

N�1X

i=0

@EfD(P)g

@pi
jP= �P(pi � �pi)

= EfD( �P)g+
N�1X

i=0


i(pi � �pi); (3)

where


i =
@EfD(P)g

@pi
jP= �P ; (4)

is the partial derivative of the expected distortion with re-
spect to the PLR of packeti. The value ofEfD( �P)g is
easily pre-computed for any given reference PLR�P via (2).
Similarly, 
i may be easily pre-computed for each packet
(Due to space constraints, the details are omitted here).

The number of reference PLRs determines the amount of
side-information needed for this “First Order Distortion Es-
timation” (FODE) model. Ifm reference PLRs are used, we
need to storem(N+1) quantities for each GOP, which rep-
resents a significant reduction in side-information over the
exact approach. This issue is further discussed in the sim-
ulation section. Further, note that the expected distortion
depends linearly on the PLRs, and all inter-dependencies
have been decoupled through the partial differential value

i.

2.3 Simulation Results

This subsection demonstrates the accuracy of FODE
through simulations. The source video bitstreams were gen-
erated by the standard H.263+ codec [8]. We consider both
the single layer coding system, and the scalable coding sys-
tem. The decoder uses the adjacent lower layer reconstruc-
tion if any enhancement layer packet is lost, or replaces
the lost base layer packet with information in the previous
frame. We implemented FODE to pre-calculate the partial
derivatives as side information. Using this side information,
we estimate the distortion values for different PLR vectors.
We compared these estimates to the actual distortion of re-
constructed video at the receiver. The actual distortion was
averaged over 50 realization of the network under the same
PLR conditions. An additional comparison was made to the
“Acyclic Dependent Distortion Estimation” (ADDE) pro-
posed in [4] where the effect of error concealment is ne-
glected.

Figure 1 shows the simulation results representing the
estimation accuracy under different PLR distribution. Fig-
ure 1 (a) gives the results for QCIF sequence “carphone” in



a single layer system. For the single layer system, we on-
ly use the all-zero reference PLR for the Taylor expansion,
�P = f0; 0; :::; 0; :::; 0g. We also simulated the performance
of a Second Order Distortion Estimation (SODE). These re-
sults demonstrate the high accuracy of FODE in comparison
to ADDE. The importance of accounting for the effect of er-
ror concealment is obvious. The second order correction of
SODE enables slightly better estimates than FODE at large
packet loss rates, but requires more side-information and
complexity.

Figure 1 (b) presents the results in a three-layer
system. For both the single-FODE model where only
the all-zero reference PLR is used, and the multi-
FODE model where additional reference PLRs are used.
These additional reference PLRS are now needed to
account for the case where enhancement layer pack-
ets are discarded at the transmitter to conserve bits.
The reference PLRs used in the multi-FODE model
are: �P0 = f(0; 0; 0); :::; (0; 0; 0); :::; (0; 0; 0)g,�P1 =
f(0; 0; 1); :::; (0; 0; 1); :::; (0; 0; 1)g, and �P2 =
f(0; 1; 1); :::; (0; 1; 1); :::; (0; 1; 1)g. The results demon-
strate the accuracy of FODE in scalable coders. Note that
the multi-FODE gives better approximation than the single-
FODE when the enhancement-layer packets are discarded
(as in case 4 and case 5 in Figure 1 (b)). But these gains
are achieved at the cost of more side information.

In summary, the simulation results show that FODE is
efficient in approximating the expected overall reconstruc-
tion distortion at the receiver. While a single reference PLR
is sufficient for non-scalable coding systems, multiple PLRs
may be needed for scalable coding systems.

3 RD-based Robust Delivery of pre-
Compressed Video

In this section, FODE is integrated into the RD frame-
work to optimize error-resilient schemes for delivery of pre-
compressed video. The potential performance gains are il-
lustrated using the example of scalable encoder and FEC-
based unequal error protection.

3.1 Optimized Delivery Schemes within
an RD Framework

Any adaptive error-resilience scheme provides a set of
policy choices,� 2 f�(0); �(1); :::; �(S)g, for each pack-
et. Depending on the resilience scheme, the policy choices
could be the number of retransmissions, or the strength of
error correction code. The effective loss rate,pi, for theith
packet, is a function of both the network condition and the
policy choice. The cost of the policy choicec(�), is usually
the total number of bits needed to send the original source
packet.

The policy vector for a group of (source) packet (GOP) is
defined as� = f�0; �1; :::; �i; :::; �N�1g. The correspond-
ing PLR vector and the cost vector are denoted byP(�),
andC(�).

The expected end-to-end distortion for a GOP can be es-
timated using FODE as

EfD(P(�))g � EfD( �P)g+

N�1X

i=0


i(pi(�i)� �pi): (5)

The total cost for the GOP is given by

C(�) =
N�1X

i=0

ci(�i): (6)

The optimal adaptive delivery scheme should then
choose the policy that minimizes the expected distortion
EfD(P(�))g while satisfying constraint on the costC(�).
This problem can be recast as an unconstrained minimiza-
tion of the Lagrangian,

EfD(P(�))g+ �C(�)

� EfD( �P)g+
N�1X

i=0

[
i(pi(�i)� �pi) + �ci(�i)]:

Note that the distortion estimate provided by FODE de-
pends linearly on the PLR. Thus, theoretically, the policies
can be chosen independently for each packet to minimize
the Lagrangian cost, and practically the optimization can be
done at any level with any structure at the convenience of
the adaptation scheme. This results in low computational
complexity of the optimization procedure.

3.2 Simulation Results

For the simulations, we consider a system of layered
coding with unequal transport prioritization to demonstrate
the superiority of our algorithm. The system consists of
a fully standard-compatible layered source coding for pre-
compression of the video signal, and unequal error protec-
tion through FEC on the packets of different layer at the
time of delivery . The systematic Reed-Solomon (RS) code
is adopted to generate redundant packets to combat packet
loss [2] [5] .

A five-layer bitstream for QCIF sequence “carphone” is
generated. Three online delivery schemes are compared.
The first is the RD optimized scheme using our multi-FODE
model (M-FODE-RD). The second uses only the single-
FODE model (S-FODE-RD). Both of them dynamically se-
lect the best error protection(n; k) code, given a fixedk, so
as to minimize the RD cost for packets in each layer. The
third scheme uses fixed unequal error protection (UEP) for
each layer, with more protection for lower layers, through
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Figure 2. PSNR vs. total bit rate for dif-
ferent delivery schemes. QCIF sequence
“carphone”, 10 fps, 5-layer bitstream at
16/64/112/240/496kbps.

RS codes (fixed-N). While the first two schemes can adapt
to any rate constraint, the fixed-N scheme can be used only
for certain target bit rates. The performance of the unpro-
tected source bitstream is also presented as a reference.

The three delivered bitstreams generated by those
schemes go through the same time-varying channels with
PLR in the range of1% � 20%. Figure 2 shows the decoder
distortion for each of them versus the bit rate. The results
illustrate that FODE-RD schemes achieve substantial gains
while maintaining more flexibility than the fixed-N scheme.
Note that multi-FODE-RD scheme yields only small gains
over single-FODE-RD scheme. This indicates that single
FODE may be sufficient for most practical applications.

4 Conclusion

The estimate of the end-to-end distortion is a funda-
mental issue in RD-optimized adaptive delivery of pre-
compressed video over lossy packet networks. We proposed
an algorithm to accurately calculate the overall end-to-end
distortion, which takes into account all the effects of the
encoder’s compression algorithm, the inter-dependencies a-
mong packets, the changing network statistics, the delivery
schemes and the error concealment used by the decoder. Its
accuracy is demonstrated through simulation results. More-
over, it only requires minimal side information. The distor-
tion estimate can be used to optimize various robust adapta-
tion strategies for delivery of pre-compression video. Fairly
low complexity in the optimization procedure is achieved
due to our linear estimation model. The potential perfor-
mance gains are illustrated using the example of a delivery
system that combines scalable coding with FEC-based error
protection.
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