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Predictive Multistage Vector Quantizer Design Using
Asymptotic Closed-Loop Optimization

Hosam Khalil and Kenneth Rose

Abstract—This correspondence builds on the asymptotic closed-loop ap-
proach to predictive vector quantizer design [1], and extends it to the de-
sign of predictive multistage vector quantizers for low bit rate video coding.
The design approach resolves longstanding shortcomings, in particular, de-
sign stability and empty-cell problems. Simulation results show substantial
gains over traditional design approaches.

Index Terms—Multistage vector quantization, predictive quantizer de-
sign, splitting.

I. INTRODUCTION

DIGITAL video data transmission over communication chan-
nels with limited bandwidth requires the use of lossy compression
techniques. Low bit rates, particularly in the range of 16-32 kbits/s,
are gaining in importance due to the Internet and wireless mobile
communications. Compression to achieve bit rates at this range
is considerably difficult, and it is not known with certainty which
fundamental compression technique is best suited for this task. The
most widely used approach to efficient video compression is based
on motion compensation, prediction and quantization. The prediction
residual is usually handled as a two-dimensional signal, much as if it
were a still image. The predominant residual compression approach
involves application of the discrete cosine transform (DCT), which is
the case in the major standards such as H.263 and MPEG.

Another approach to coding the prediction residual involves vector
quantization (VQ). Generally, there are several arguments in support of
VQ for video compression. Shannon’s theory implies that vector quan-
tizers are asymptotically optimal, where asymptotic here is in terms of
vector length (typical blocks in video coding correspond to long vec-
tors.) Another important argument is that VQ is a very general frame-
work and includes DCT compression as a special constrained case [2].
Thus, it may be argued that DCT can not outperform the best VQ.

However, there are two main objections to the use of VQ in
video coding. The first objection is concerned with complexity: VQ
complexity grows exponentially with the product of vector dimension
and rate. This problem can be alleviated by one of several possible
techniques to reduce search or memory complexity. Examples include
classified VQ (CVQ), tree-structured VQ (TSVQ), and multistage
VQ (MSVQ) [2]. Multistage VQ has been found to be a particularly
efficient technique, with acceptable search and memory complexity.
It has been widely adopted in speech coding standards and, more
recently, there have been reports on its applicability to image coding
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Fig. 1. Basic predictive video coding system based on a multistage quantizer.

[3], [4]. We believe that adoption of MSVQ in video coding (see
Fig. 1) may be beneficial, especially at low bit rates. It should further
be mentioned that even though the encoding complexity of a VQ-based
system is typically higher than that of H.263, the decoding complexity
is significantly lower, as it consists of simple table look-up operations.
This feature is particularly important in streaming applications.

The second objection appears in prediction-based applications: Pre-
dictive quantizer design is problematic, due to the destabilizing effect
of the prediction loop, and the design often fails to produce an optimal,
or even a good, quantizer. We previously proposed a solution to this
problem in [1] and [5], for the simpler case of single-stage predictive
vector quantizers (PVQ), which offers several attractive features, and
achieves significant gains over traditional design methods. Moreover,
the coding performance was competitive with H.263.

An additional pitfall of existing PVQ design algorithms is the
“empty-cell” problem, where an encoding cell loses its training data
to other cells. This phenomenon is aggravated by any instability in the
iterative design. In this correspondence, we also propose a selective
splitting codebook design algorithm that grows codebooks gradually
and optimally. The proposed selective splitting design is applied to
variable rate multistage vector quantizers, and is found to be effective
when incorporated into the predictive quantizer design approach [1].
Simulation results for video coding are provided.

II. PREDICTIVE QUANTIZER DESIGN

Obtaining a suitable training set for predictive quantizer design,
which accurately represents the true signal statistics, is quite a
challenging objective. In contrast with the standard quantizer, the
predictive quantizer operates on the prediction error. But since the
prediction is based on the reconstruction of past vectors (previous
reconstructed frames in the case of video), the prediction error depends
on the quantizer itself. The effective training set, i.e., the sequence of
prediction errors, is thus not fixed but changes whenever the quantizer
is modified, causing a complex interaction between the quantizer and
the training set used for its design. In this section, we give a short
overview of various predictive quantizer design approaches.

A. Open-Loop Approach

In [6], two techniques were introduced for predictive quantizer de-
sign and have been widely used since. The first technique, called the
open-loop (OL) approach, is the simplest. A training set of prediction
errors is extracted directly from the original, unquantized source vec-
tors. The approach is called “open-loop” because the reconstructed vec-
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tors are not fed back through the predictor. Given a set of source vectors,
X: fxng

N
n=0, a training set of prediction error vectors is generated,

TTT = feng
N
n=1, whereen = xn � ~xn = xn � P [xn�1], and where

P denotes prediction. The entire training set can be obtained in par-
allel, as there are no closed-loop dependencies. The quantizerQQQOL is
designed using the fixed training setTTT and an iterative algorithm such
as the generalized Lloyd algorithm (GLA [7]).

B. Closed-Loop Approach

The closed-loop approach (CL) appeared in several variants, in-
cluding its original version in [6] and the so-called “semi-closed-loop”
method in [2]. Both approaches use a real closed-loop system to
generate the prediction errors in an iterative fashion. Given a quantizer
at iteration i � 1, which we denote byQQQ(i�1), a training set of
prediction errors is generated for iterationi, TTT (i) = fe

(i)
n gNn=1 where,

e
(i)
n = xn � P [x̂

(i)
n�1], andx̂(i)n = P [x̂

(i)
n�1] +QQQ(i�1)(e

(i)
n ). Note that

we must alternate between the computation ofe
(i)
n and x̂(i)n for n =

1; 2; . . . ; N . Specifically, given the resulting set of prediction errors,
TTT (i), a new quantizer,QQQ(i), is designed. Next, a new sequence of
prediction errors is generated for iterationi+ 1, and so on. The initial
quantizer,QQQ(0), is usually chosen to be the outcome of the OL method.

Another approach to predictive quantizer design in [8] was based
on gradient approaches to jointly optimize quantizer and predictor.
However, in video coding applications, the predictor takes on the
form of motion compensation and thus need not be optimized in the
sense of [8].

C. Asymptotic Closed-Loop Approach

The main advantage of OL is that the training set,TTT , is fixed, and
we can design the quantizer by applying a standard optimization tech-
nique. Since the training set remains unchanged, the design algorithm
is ensured to converge to a locally optimal solution. However, during
the actual operation of the compression system, prediction must be
performed using reconstructed source vectors. This causes a statis-
tical mismatch, which is compounded by error build-up via feedback
through the prediction loop, and results in poor performance.

On the other hand, the CL training residuals are generated by the
same closed-loop coder that will be used in actual operation of the
system. Thus, the input residual error statistics are expected to be sim-
ilar to those used to train the quantizer. However, convergence of the
algorithm is not guaranteed, as the training set changes per iteration
in an unpredictable fashion, and hence the training algorithm must be
closely monitored to detect instability.

Motivated by such observations, we proposed the Asymptotic
Closed-Loop (ACL) [1] approach, which offered significantly
improved design stability leading to improved overall coding per-
formance. ACL capitalizes on the merits of OL and CL while
circumventing their drawbacks; it inherits the design stability of open-
loop techniques while ultimately optimizing the system for closed-loop
operation. The ACL procedure for quantizer design is explained next.

The main objective of the design procedure is to avoid accumulation
of errors due to mismatched quantization through the prediction loop.
Therefore, we base our prediction on the reconstructed vectors of the
previous iteration.The training set is, in effect, generated by

e
(i)
n = xn � P x̂

(i�1)
n�1 ; n = 1; 2; . . . ; N: (1)

Having collected the set of training vectors we optimize a new quan-
tizer,QQQ(i). The resulting quantizer is then used to generate the new set
of reconstruction vectors

x̂
(i)
n = P x̂

(i�1)
n�1 +QQQ

(i)
e
(i)
n ; n = 1; 2; . . . ; N: (2)

A major difference between ACL and CL is in the way the residuals
and reconstructions are generated in each iteration. In CL, we must
alternate between the computation ofe

(i)
n and x̂(i)n for each ofn =

1; 2; . . . ; N , before we proceed to the design of the quantizer. This
is dictated by the closed-loop operation of the feedback system. In
contrast, the ACL approach requires us to first calculatee

(i)
n for all

n = 1; 2; . . . ; N , then design the quantizer, and finally calculatex̂
(i)
n

for all n = 1; 2; . . . ; N .
Note that the quantizerQQQ(i) is used to encodeexactlythe same pre-

diction error vectors used for its design. Neglecting possible problems
of local optima, this is the best quantizer for these vectors. We are thus
assured that the resulting reconstruction is improved, and this results in
better prediction for the next iteration. Subject to the high-rate assump-
tion that smaller prediction errors lead to smaller quantization errors,
we obtain monotonic improvement throughout the process.

It is emphasized that the entire design is in open-loop mode since
we compute prediction errors for all elements of the sequence before
quantization. The consequence of using a fixed reconstructed set for
the prediction in each iteration becomes apparent by studying the dif-
ferent phases of the training procedure. At each iteration, the recon-
structed set, on which the prediction for the next iteration will be based,
is generated by applying the optimized quantizer and predictor based
on the previous fixed set. Since the new reconstructed set will better ap-
proximate the original input sequence, the distortion at each iteration
is generally decreasing, and we expect the process to converge. At con-
vergence, further iterations do not modify the training set. The quan-
tizer is hence assumed to have converged, i.e.,QQQ(i+1) = QQQ(i), which
immediately ensures that the reconstruction sequence is unchanged,
i.e., x̂(i+1)n = x̂

(i)
n , as well as the next-frame prediction sequence

P [x̂
(i)
n�1] = P [x̂

(i�1)
n�1 ]. This implies that the prediction may equiva-

lently be based on the reconstruction of the current iteration, instead
of on the reconstruction from the previous iteration. The procedure is
thus open-loop in nature, yet it asymptotically converges to optimiza-
tion of the closed-loop performance. The ACL procedure for the case
of PMSVQ design for video is illustrated in Fig. 2.

III. SELECTIVE SPLITTING QUANTIZER DESIGN

The design instability problems of the CL method are more pro-
nounced in the case of MSVQ. Training vectors that have accumulated
considerable error (as a result of the closed loop) will enforce undesir-
able modification of the codebooks in an effort to accommodate out-
liers. More specifically, the objective of the training algorithm is to ad-
just the parameters of the quantizer so as to minimize the training dis-
tortion. When vectors with excessive error accumulation are included
with the training set, the design algorithm will attempt to minimize the
coding distortion by allocating precious resources to unrepresentative
vectors. In MSVQ, the interaction between the stages results in further
sensitivity of stage codebooks to such misguided training set updates.
The instability of the design is clearly apparent as the degraded code-
books will produce greater errors in the next iteration which, in turn,
will further corrupt the codebooks. Moreover, this instability is a major
contributing factor to the empty cell phenomenon that undermines the
design procedure. The approach presented next is largely motivated by
the realization that a stable and effective training procedure for predic-
tive MSVQ (PMSVQ) is imperative for an efficient and competitive
coder.

The structure of the MSVQ encoder [9] consists of a cascade of VQ
stages as shown in Fig. 3. For aP -stage MSVQ, apth stage quan-
tizerQp, p = 1; 2; . . . ; P , is associated with a stage codebookCp.
Each stage codebookCp containsNp stage codevectorsyyyp; n, where
n = 1; 2; . . . ; Np. The set of stage quantizersfQ1; Q2; . . . ; QP g
are equivalent to a single quantizerQQQ, which is referred to as the di-
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Fig. 2. Proposed ACL procedure:x denotes the original framen, x̂
denotes then reconstructed frame at iterationi, ande denotes thenth
prediction error at iterationi.QQQ is the MSVQ trained on the prediction error
sequence from iterationi, and ê is the reconstructed prediction error after
quantization byQQQ . Note that the newly designedQQQ is used in the same
iteration i to generate new reconstructed vectors in preparation for the next
iterationi + 1. The main difference between this design and the CL design is
that there isno feedback; quantized prediction error is not fed back into the
closed-loop system.

Fig. 3. Block diagram of a multistage vector quantizer encoder.

rect-sum vector quantizer. The best set of stage codevectors to represent
an input vector can only be obtained with an exhaustive search. A well-
known and efficient approach for suboptimal search is theM -search
[10], and has been found to provide nearly optimal performance at a
small fraction of the complexity.

The target application of this work is low bit rate video coding, and
we must account for variation in local signal statistics. It is well known
that variable rate coders can adapt to changing statistics, and offer higher
compression efficiency than fixed rate coders. Hence, we propose to de-
sign a variable rate PMSVQ system for video compression. In this sec-
tion, we start with a brief review of traditional approaches to fixed rate as
wellasentropyconstrainedmultistagevectorquantizer (EC-MSVQ)de-
sign. We then propose a more efficient design approach based on selec-

Fig. 4. Training subset for use in re-optimization ofyyy . Only the shaded
vectors in training set use stage codevectoryyy (p = 2, n = 4, in this
example).

tive splitting. Finally, we embed this technique within the ACL method
of Section II to obtain the proposed EC-PMSVQ design method.

A. Overview of MSVQ and EC-MSVQ Design

Let us focus, for now, on the design of a nonpredictive MSVQ. The
procedure is initialized with a set ofP stage codebooks that are typi-
cally obtained by traditional sequential design [9]. It then iterates over
the stages and optimizes each stage codebook while keeping the re-
maining stages fixed [11]. The re-optimization of quantizerQp con-
sists of updating its codebook. The update of codevectoryyyp; n involves
only the training subset���p;np; np; n � XXX that selectsyyyp; n for its stagep
codevector (see Fig. 4). It is convenient to remove the effect of all
fixed stages from the training subset. Hence, for each training vector
xxx 2 ���p;np; np; n, we subtract the fixed codevectors’ contribution

'(xxx) = xxx � (QQQ(xxx)� yyyp; n) (3)

whereQQQ(xxx) denotes anM -search quantization ofxxx using the current
MSVQ. The outcome of this operation is a new training set�p; n =
f'(xxx); xxx 2 ���p;np; np; ng where the fixed codevectors’ influence has been
eliminated.

It is easy to see that minimum distortion is achieved by adjusting
yyyp; n to the centroid of�p; n

yyyp; nnew =
1

j�p; nj
'2�

': (4)

Noting further thatj�p; nj = j���p;np; np; nj, we may equivalently write the
update rule

�yyyp; n =
1

j���p;np; np; nj xxx2���
(xxx�QQQ(xxx)): (5)

This rule has a satisfying simple interpretation. The stage codevector
yyyp; n is chosen such that the expected reconstruction error of the cor-
responding training subset is zero-mean (unbiased).After optimizing
all codevectors in stagep, other stages are similarly optimized in order,
and then the whole procedure is repeated until the rate of change falls
below a prescribed threshold.

Design for entropy constrained MSVQ (EC-MSVQ) is an even more
challenging problem. Joint optimization of the stages, where each stage
design is performed using the ECVQ design method, was proposed
in [12]. As with standard ECVQ design [13], a Lagrangian formula-
tion is employed, where the encoding cost is a function of distortion
and encoding rate:L = D + �R. The Lagrangian multiplier,�, con-
trols the rate-distortion tradeoff, andR is estimated by the reconstruc-
tion entropy. The joint entropy of the VQ stages may be decomposed
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into smaller components by introducing conditional probabilities be-
tween stages. First-order conditioning is typically assumed for sim-
plicity, though optimality requires, in general, conditioning on all prior
stages.

The standard EC-MSVQ design starts with a fixed rate (� = 0)
MSVQ and modifies it into a variable rate MSVQ by increasing�
in a series of steps. There are two drawbacks to standard design of
EC-MSVQ: The computational complexity is considerable if the code-
books are large, and the final EC-MSVQ heavily depends on the ini-
tialization because the optimization may easily get trapped in a poor
local minimum.

To reduce the complexity of EC-MSVQ, the pairwise nearest
neighbor (PNN) algorithm [14] was extended to entropy constrained
quantizer optimization by Finamoreet al. [15] and then to EC-MSVQ
by Kossentiniet al.in [3]. In [15], the design procedure for single-stage
quantizers uses the entire training set as the initial codebook, and
recursively merges the pair of reproduction vectors that yields the least
increase in distortion, until the desired codebook size is reached. In [3],
the algorithm is extended to the case of multistage vector quantizers,
where a fixed rate MSVQ is used as initialization then a modified PNN
algorithm is consequently applied. The reduction in complexity, which
only affects the design stage, is normally achieved at the cost of some
degradation in subjective and objective performance of the quantizer.

B. Selective Splitting Approach to EC-MSVQ Design

To overcome complexity and initialization problems, we instead pro-
pose a selective splitting approach to the design of entropy constrained
quantizers. Our objective is two-fold: 1)directlyoptimize the codebook
to operate at the desired rate/distortion tradeoff, in contrast to [13], and
thereby reduce complexity and 2) improve the initialization. An early
use of the notion of splitting in the design of a fixed rate VQ was al-
ready made by Lindeet al. [7]. Splitting may be viewed as the logical
reverse of PNN, as selected codevectors are recursively split. The split-
ting mechanism we consider is closely related to the greedy splitting
approach of Riskin and Gray [16], which was developed for the design
of tree-structured VQ. However, here we use splitting as a means to im-
prove the initialization and reduce complexity, and not for imposing a
structure on the solution. We have used the selective splitting approach
for designing standard variable rate quantizers [17] and found it to out-
perform standard GLA-based designs of [7], [12], and [13].

The proposed procedure for EC-MSVQ design is as follows.

Step 1) Initialize theP stage codebooks, each with a single
vector. SetNp = 1; p = 1; . . . ; P .

Step 2) For all codebook entriesyyyp; n, p = 1; 2; . . . ; P ,n =
1; 2; . . . ; Np, test the cost effectiveness of a potential
split by calculating the decrease in Lagrangian cost

�Lp;n = �Dp; n � ��Rp; n (6)

where�Dp; n is the decrease in distortion and�Rp; n

is the increase in rate.
Step 3) Sort all entries of the codebooks in decreasing order

of �Lp;n.
Step 4) Starting at the top of the sorted list, codewords are split

one by one until a specified criterion is met (Np is
incremented accordingly).

Step 5) Given the new codebooks, we run anM -search en-
coding of the entire training set.

Step 6) For all stages, and all codebook entries of each stage,
update stage codevectors using (5).

Step 7) If target codebook sizes are achieved, stop. Otherwise,
go to Step 2.

The initialization in Step 1 consists of setting the single codevector of
the first codebook to the centroid of the entire input training set, while
the remaining codebooks each contains a single zero codevector. Step
2 evaluates therewardof each potential split,�Lp;n. For a codebook
entry yyyp; n, the calculation only involves the corresponding training
subset���p;np; np; n � XXX. A tentative split of stage codevectoryyyp; n results in
two codevectorsyyyp; n andyyyp; n . The training subset���p;np; np; n is accord-
ingly subdivided into two subsets,���p;np; np; n and���p; np; np; n or, equivalently,
the corresponding modified training subsets�p; n and�p; n . Note
that this subdivision is obtained by perturbing the original codevector
yyyp; n into two new vectors, and then optimizing the two new vectors
using (5) until convergence.

A split trades an increase in rate for decrease in distortion. We note
that a split ofyyyp; n, requires eachxxx 2 ���p;np; np; n to use approximately
one extra bit to differentiate the two different paths through the new
EC-MSVQ. We thus estimate the rate increase by�Rp; n = j���p;np; np; nj.
The corresponding decrease in distortion is calculated as

�Dp; n =
'2�

k'� yp; nk
2 �

'2�

k'� yp; n k
2

�
'2�

k'� yp; n k2: (7)

Although the rate cost of a split was roughly estimated, the exact de-
sign of theentropy-constrainedMSVQ must be performed while taking
into account the probability of quantizer outputs. To reduce complexity,
the probability Pr(iii) = Pr(i1; i2; . . . ; iP ) of a path in the EC-MSVQ
may be approximated by anmth order Markov model and most com-
monly by the first-order Markov model (m = 1):

Pr(i1; i2; . . . ; iP ) � Pr(i1)
P

p=2

Pr(ipjip�1):

At each iteration, and whenever splits occur, all transition probabilities
are updated.

The ACL algorithm utilizes the proposed selective splitting approach
to EC-MSVQ by performing the selective splitting each time a new
training set is generated, and a new quantizer is sought. With the new
training set, the current quantizer,fQ1; Q2; . . . ; QPg, may exhibit
empty cells in some or all of the stages, and the selective splitting al-
gorithm will optimally fill such cells with codevectors that operate at
the desired rate-distortion trade-off. As the ACL algorithm converges,
the number of empty cells that re-appear with each iteration diminish.
On the other hand, as evident from simulations, the CL algorithm may
continually require the selective splitting algorithm to fill empty cells.

IV. SIMULATION RESULTS

The proposed EC-PMSVQ design was tested in the context of low bit
rate video coding. We implemented a video codec where 8� 8 blocks
of residuals are used as vectors. The video sequences are in QCIF
format with a frame rate of 10 frames/s. The general structure of the
codec is as shown in Fig. 1. The system uses half-pixel motion compen-
sation, and is basically a simplified version of the H.263 scheme where
the DCT/quantization module was replaced with the EC-PMSVQ, and
each 8� 8 block is considered as a separate macroblock. After the first
frame, all frames are compressed in interframe mode. Other features of
H.263, such as bi-directional prediction and unrestricted motion vec-
tors, can be readily added to the final EC-PMSVQ system. However,
we disabled such features in the simulations to obtain a straightfor-
ward comparison of DCT with EC-MSVQ. The Lagrange multiplier�

is used to control the rate. In all our simulations, first-order conditional
Huffman codes are employed to generate variable length codewords.
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Fig. 5. Performance comparison in terms of average rate-distortion Lagran-
gian cost on thethirteen training sequences.Results are for the EC-PMSVQ
available at the end of each iteration. Both techniques are initialized with the
outcome of OL design. Note the gradual decrease in Lagrangian cost of the
ACL method, and the instability of the CL design procedure.

Fig. 6. Performance comparison in terms of average rate-distortion Lagran-
gian cost on thethree independent test sequences.Results are for the EC-
PMSVQ available at the end of each iteration. Both techniques are initialized
with the outcome of OL design. Note the stability and superiority of the ACL
approach.

In order for the EC-PMSVQ to be statistically representative, we
used a total of 13 video sequences in the training phase. Each video
sequence is of length 20 frames. The test set is composed of the
three independent (i.e., unused for training) video sequences, namely,
“Salesman,” “Claire,” and “Akiyo,” each also of 20 frames. In Figs. 5
and 6, we show the average rate-distortion Lagrangian cost incurred
over the training sequences and thetest sequences, respectively,
in normal closed-loop operating mode, at the end of each iteration
of the design procedure. Note that the ACL algorithm improves
with iterations, while the CL algorithm is very unstable. Notice in
particular how the CL algorithm becomes unstable right after its first

TABLE I
PERFORMANCECOMPARISON OFH.263AND THE VARIOUS DESIGNS OF

EC-PMSVQFOR THETEST IMAGE SEQUENCES“SALESMAN,” “C LAIRE,” AND

“A KIYO.” RESULTS FOREC-PMSVQ SHOWN ARE FOR THEFOLLOWING: 1) OL
METHOD, 2) CL METHOD AFTER FIRST ITERATION (HIGHEST TEST

PERFORMANCE), 3) CL METHOD AFTER THECOMPLETION OF THEITERATIVE

DESIGN, AND 4) ACL METHOD AFTERCOMPLETION OF THEITERATIONS. THE

COMPARISONIS IN TERMS OFPSNRIN DECIBELS, RATE IN Kbits/s,AND THE

RATE-DISTORTION LAGRANGIAN COST PERPIXEL

few iterations. These results are in terms of rate-distortion Lagrangian
(rather than PSNR) as it allows meaningful averaging over several
different input sequences with differing rate requirements.

Table I compares the performance of the various EC-PMSVQ de-
signs. Shown are the average PSNR over each of the individual test
sequences, the average bit rates, and the combined average Lagrangian
distortion. Bit rates shown are those for coding only the residual. We
show the system performance in four settings:

1) OL method;
2) CL method after the first iteration (highest test performance);
3) CL method after the completion of the iterative design;
4) ACL method after completion of the iterative design.

As pointed out earlier, even when the ACL and CL start with same exact
initial conditions, the CL method can become very unstable and the end
results become uncompetitive. On the other hand, ACL offers stable
performance throughout the iterations, and finally achieves a substan-
tial gain over the test sequences. Also, comparing the average rate-dis-
tortion LagrangianD+��R in Table I shows that improvements were
obtained in all test sequences. Here,D is measured in MSE andR in
bits/vector, while� is set to 30 (same value used for training.) For ref-
erence, H.263 coding results are shown for bit rates that almost match
those of the ACL results. It can be seen that gains of up to 0.4 dB can
be achieved.

The EC-PMSVQ design, in this case, involved two quantizers: one
quantizer optimized for blocks whose motion vector was zero, and an-
other quantizer optimized for blocks with nonzero motion. Note that
the switching information need not be conveyed to the receiver as it
is determined by the motion. The parameters used for both quantizers
are as follows:P = 3 stages,N = 64 vectors per stage, andM = 3

survivors for theM -search.
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V. CONCLUSIONS

This correspondence addresses the problem of predictive multistage
vector quantizer design for video coding. It extends our recent work
on predictive VQ and mitigates longstanding design shortcomings. In
particular, it resolves the design stability and empty cell problems.
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