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ABSTRACT

This paper is concerned with performance optimization of
point-to-point communication of scalable video over lossy
networks. A variant of the recursive optimal per-pixel es-
timate (ROPE) is developed and embedded within a rate-
distortion (RD) optimized mode selection scheme for SNR
scalable video coding. The system allows predicting the
current base layer frame from past enhancement layer frame
data. Drift management and adaptive bit rate allocation
are both RD optimized within this framework. The ROPE
method ensures accurate estimation (at the encoder) of the
overall decoder distortion, which is critical to the substan-
tial performance gains achieved. A low complexity layer
sequential optimization scheme is proposed as well, which
approximates the more complex joint optimization scheme,
while maintaining most of the performance gains.

1. INTRODUCTION

Scalable coding is a natural paradigm for video transmission
over lossy networks, which offers means to mitigate the ef-
fects of packet loss [1]. In designing a predictive scalable
video coding system, an important issue is whether to use
the enhancement layer information for prediction [2]. Its
use enables better prediction and hence improves the cod-
ing gain. However, if the enhancement layer information is
lost during transmission, the incurred mismatch between de-
coder and encoder will trigger error propagation via predic-
tion and thus degrade the reconstructed video quality. This
is the so-called “drift” problem. Drift is usually viewed as
highly undesirable and most recent standards, such as H.263
and MPEG4, favor “no-drift” scalable coding. Recently,
however, there has been a growing interest in approaches
that attempt to optimize the trade-off between some allowed
drift and improved compression ef£ciency [3][4][5][6].
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The typical communication setting, considered in much
of the traditional scalable video coding literature, consists
of independent channels with differing capacities. To cater
to all these various channels, a coarse but acceptable base
layer video quality is necessary, and bit rates of the base
and enhancement layers are determined by the channel ca-
pacities. However, in the work described herein we are con-
cerned with point-to-point communication through a stan-
dard lossy network, which means that only one channel is
considered. The scalable setting here is simply a means to
packetize the data into packets of differing importance and
thereby enable better throughput. Obviously, in this setting
there is no need to impose preclusion of drift in prediction
or to pre-specify the bit rates of different layers prior to en-
coding. Instead, we allow drift and adaptively allocate bit
rate to the layers per frame. Our line of investigation here
is primarily motivated by: (i) optimization of the error re-
silience performance achievable by scalable coding; (ii) the
crucial importance of accurate overall distortion estimation
for effective drift management and bit rate allocation.

The proposed approach takes as starting point the ba-
sic macroblock (MB)-based SNR scalable video coding sys-
tem. Our coding framework allows utilization of enhance-
ment layer information for prediction at both the base and
enhancement layers, which offers improved prediction but
also entails greater risks of damage due to packet loss and
drift. Drift management and adaptive bit rate allocation
are implemented in conjunction with RD optimized coding
mode selection for each MB. In RD optimization, the crit-
ical dif£culty is to obtain an accurate estimate of the end-
to-end distortion. Much research work has been dedicated
to this problem in recent years (see, e.g., [7][8]). This work
builds on and extends the ROPE method of [8], which pro-
vides an accurate estimate by taking into account the effects
of quantization, packet loss, and error concealment.

The paper is organized as follows. Section 2 re-derives
the recursion formulae of ROPE while allowing for unre-
stricted prediction from the enhancement layer. The resul-
tant distortion estimate is embedded within an RD frame-
work in Section 3. Section 4 summarizes the simulation
results.



2. END-TO-END DISTORTION ESTIMATION FOR
A SCALABLE CODER

For simplicity but without implied loss of generality, we
make the following assumptions. The data of one frame
is carried in one packet. Thus, the pixel loss rate equals the
packet loss rate. We model the channel as a Bernoulli pro-
cess with packet loss rate p for the enhancement layer. For
the base layer, we assume that the packet loss rate is zero.

Assuming the mean squared error criterion, the overall
expected distortion levels of pixel i in frame n, at the base
and enhancement layers, are given by
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Here f i
n is the original pixel value. The reconstructed val-

ues at the decoder, possibly after error concealment, are
denoted by f̃ i

n(b) and f̃ i
n(e), respectively, which are ran-

dom variables for the encoder. For future use we also let
f̂ i

n(b) and f̂ i
n(e) denote the encoder reconstruction at the

base and the enhancement layers, respectively. Recursion
formulae to compute the £rst and second-order moments of
the decoder reconstruction variables, which determine the
expected distortion in (1) and (2), are derived below.

2.1. Base Layer Recursion

At the base layer there are three available coding modes:
Intra-mode, Inter-mode prediction from the previous base
layer frame (“Inter B → B”), and Inter-mode prediction
from the previous enhancement layer frame (“Inter E →
B”). Note that there is no packet loss in the base layer.
Thus, we have:

• Intra mode:
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Here êi
n(b) denotes the quantized residue. Due to motion

compensation, pixel i in the current MB is predicted from
pixel j in the previous base layer frame or from pixel k in
the previous enhancement layer frame.

2.2. Enhancement Layer Recursion

The three enhancement layer modes are: Intra-mode, Inter-
mode prediction from the current base layer frame (“Up-
ward”), and Inter-mode prediction from the previous en-
hancement layer frame (“Inter E → E”). In the case of
packet loss in the enhancement layer, we use base layer in-
formation at the same position for fallback. In other words,
the upward error concealment is used.

• Intra mode:
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3. RD OPTIMIZED MODE SELECTION FOR
SCALABLE CODING

The distortion estimate provided by ROPE is then incorpo-
rated into an RD framework to select the coding mode and
quantization step size for each MB, in order to minimize the
overall decoder distortion for the given total bit rate.

The RD optimization problem is typically recast as an
unconstrained minimization of the Lagrangian function,
J = D + λR, where λ is the Lagrange multiplier [9]. Note
that contributions from different individual MB’s to this cost
are additive. Therefore, J can be independently minimized
for each MB.

3.1. Joint Optimization

Obviously, the globally optimal mode selection can only be
obtained by jointly optimizing over all the possible mode
combinations of the base layer MB and the enhancement
layer MB, which however involves a non-trivial complexity



cost. In joint optimization, the coding mode and quantiza-
tion step size per MB are determined by

min
mode

{JMB(e)} =

min
mode

{DMB(e) + λ·(RMB(e) + γ·RMB(b))}. (9)

Here, RMB(e) and RMB(b) are the bit rates consumed by
the enhancement layer and the base layer, respectively. The
estimated enhancement layer distortion of the MB is de-
noted by DMB(e) and can be expressed as:

DMB(e) =
∑

i∈MB

di
n(e), (10)

where di
n(e) is calculated via ROPE. Moreover, γ is a coef-

£cient whose purpose is to account for the possible bit rate
increase incurred by the protection of the base layer, such
as error correcting codes (ECC) or re-transmission. In the
case of simple retransmission, γ = 2. The total bit rate is
controlled by λ, which is updated frame by frame using the
“buffer status” as in [8].

3.2. Sequential Optimization

Joint optimization involves a substantial increase in com-
plexity, which grows exponentially with the number of lay-
ers. We next propose a low complexity variant, namely, se-
quential optimization, which optimizes the layers sequen-
tially.

• For the base layer:

min
mode

{JMB(b)} = min
mode

{DMB(b) + λ·(γ·RMB(b))} (11)

• For the enhancement layer:

min
mode

{JMB(e)} = min
mode

{DMB(e) + λ·(γ·RMB(e))} (12)

Note that RMB(b) is determined by (11). It is therefore
omitted in (12).

4. SIMULATION RESULTS

Our simulation system is based on the UBC H.263+ codec
with two-layer scalability [10]. A sequence is £rst encoded
into an H.263 bitstream given the packet loss rate and total
bit rate. The bitstream is decoded after undergoing packet
loss, whose pattern is randomly generated at the prescribed
packet loss rate. System performance is quanti£ed by the
mean luminance PSNR of the sequence. In experiments,
we use 150 frames and 50 different packet loss patterns.
We assume that simple retransmission is used with γ = 2.
Tests were performed on the QCIF sequences Carphone and
Salesman.
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Fig. 1. PSNR vs. packet loss rate. Frame rate: 30fps. Total
bit rate: 300kbps.

Fig. 1 shows the importance of allowing drift. Our pro-
posed joint optimization method is identi£ed as “B&E drift”
as it allows prediction from the previous enhancement layer,
for both current base and enhancement layer frames. In the
similar way, we label the other two reference methods as “E
drift” and “no drift”. Note that all the three methods employ
joint optimization. The proposed sequential optimization
scheme is also included as “sequential opt.”. It is identical
to “B&E drift” in all respects, except that it optimizes the
layers sequentially.

From Fig. 1, it is easy to see that for both sequences
and at all packet loss rates the proposed joint optimization
method offers the best PSNR performance. We conclude
that allowing and managing drift is bene£cial as long as
the end-to-end distortion is accurately estimated and taken
into account. In particular, for both sequences and at all
packet loss rates, the PSNR gains of the proposed “B&E
drift” over “E drift” range from 0.78dB to 2.80dB. The gains
of “E drift” over “no drift” range from 0.65dB to 2.59dB.
We further observe that the proposed sequential optimiza-
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Fig. 2. PSNR vs. packet loss rate. Frame rate: 30fps. Total
bit rate: 300kbps.

tion scheme also consistently outperforms the two reference
methods as well. It clearly captures much of the gain of the
joint optimization scheme, while the complexity ratio (mea-
sured in encoding time) is approximately 1:13. Neverthe-
less, joint optimization does provide non-trivial gains over
sequential optimization at low packet loss rates, e.g., 5%.

Fig. 2 shows the importance of accurate distortion esti-
mation in effective drift management and adaptive bit rate
allocation. The £rst three methods in Fig. 2 are the same
as in Fig. 1, all of which employ ROPE-RD optimization.
The reference method “QDE-RD” employs the Quantiza-
tion Distortion Estimate (QDE) for RD joint optimization,
but identical in all other respects to the proposed “B&E
drift” method. QDE estimates the decoder distortion sim-
ply as the quantization distortion. Thus, the packet loss im-
pact is ignored. From Fig. 2, it is obvious that the proposed
ROPE-RD method always largely outperforms the QDE-
RD method. Moreover, at high packet loss rates, the inac-
curate estimate of the QDE method results in worse perfor-
mance than the “no drift” ROPE-RD method. This demon-
strates that the performance of drift management is critically

dependent on the quality of the encoder’s end-to-end distor-
tion estimate. It hence substantiates the importance of the
proposed ROPE approach.

5. CONCLUSION

In the context of point-to-point scalable video transmission
over lossy networks: (i) Decoder drift due to packet loss
and prediction should be controlled but not altogether disal-
lowed; (ii) Bit rates of different layers should be adaptively
allocated per frame; and (iii) Reaping the full bene£ts of
drift management and adaptive bit rate allocation requires
accurate estimation of end-to-end distortion.
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