244 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 1, JANUARY 2003

Predictive Vector Quantizer Design Using
Deterministic Annealing

Hosam Khali] Member, IEEEand Kenneth Rosd-ellow, IEEE

Abstract—A new approach is proposed for predictive vector
quantizer (PVQ) design, which is inherently probabilistic, and is
based on ideas from information theory and analogies to statistical
physics. The approach effectively resolves three longstanding
fundamental shortcomings of standard PVQ design. The first
complication is due to the PVQ prediction loop, which has a
detrimental impact on the convergence and the stability of the
design procedure. The second shortcoming is due to the piecewise
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constant nature of the quantizer function, which makes it difficult Encoder Decoder
to optimize the predictor with respect to the overall reconstruction
error. Finally, a shortcoming inherited from standard VQ design Fig. 1. Basic predictive vector quantizer system.

is the tendency of the design algorithm to terminate at a locally,
rather than the globally, optimal solution. We propose a new PVQ
design approach that embeds our recent asymptotic closed-loop achieve better efficiency. Examples for such VQ structures

(ACL) approach within a deterministic annealing (DA) frame-  include finite-state VQ, classified VQ, and predictive VQ. The
work. The overall DA-ACL method profits from its two main  |ateris the quantizer structure of interest in this paper. While the

components in a complementary way. ACL is used to overcome . - . .
the first difficulty and offers the means for stable quantizer design complexity of predictive VQ may notbe significantly higher than

as it provides an open-loop design platform, yet allows the PvQ that of conventional memoryless VQ, the performance gains are
design algorithm to asymptotically converge to optimization of the often considerable.

closed-loop performance objective. DA simultaneously mitigates A predictive vector quantizer (PVQ) is basically a predictor in
or eliminates the remaining design shortcomings. Its probabilistic tandem with a memoryless vector quantizer. The system, hence,

framework replaces hard quantization with a differentiable . . . . o
expected cost function that can be jointly optimized for the predicts an incoming vector and then quantizes the prediction

predictor and quantizer parameters, and its annealing schedule €rror. The quantization is performed by finding in the codebook
allows the avoidance of many poor local optima. Substantial the best codevector with respect to a predefined distortion
performance gains over traditional methods have been achieved measure. Only the codevector index needs to be transmitted, as
in the simulations. the decoder has an exact copy of the codebook. In order for the
Index Terms—Closed-loop design, deterministic annealing, decoder to reconstruct the vectors correctly, it must be able to

open-loop design, predictive vector quantizer design. duplicate the encoder prediction. Therefore, the prediction must
only depend on past reconstructed vectors that are known to both
I. INTRODUCTION encoder and decoder. In other words, PVQ is a feedback system.

) ) ) The PVQ structure is depicted in Fig. 1. Although the PVQ

A VECTOR quantizer (VQ) is a structure that implementsy,ctyre is simple and well-understood, its design is problem-
a many-to-one (lossy) mapping of data from one domaig}ic and standard methods often fail to produce optimal (or even
to another. A main use of VQ has been in the compressmnggod) predictors and quantizers. The feedback loop creates a
data for storage or transmission over communication channglgypiex relationship between predictor and quantizer. To de-
VQ has successfully found its way into several speech codiggy, the quantizer, a representative training set of prediction er-
standards [1]-[3] and has also found application in imaggs js needed, but to obtain the prediction errors, we must run
and video compression [4]-[7]. Such sources usually exhiljfe system in closed-loop, which implies dependence on both
considerable temporal dependencies. Quantizers with memgp hredictor and the quantizer to be designed. Further, there are
offer a natural means to remove temporal redundancies &by questions concerning the design of the predictor. Clearly,
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updating the training set and quantizer given a fixed predictor.

An alternative (closed loop) design algorithm was presented by Obtain Input Sequence

Chang and Gray [9], where both predictor and quantizer are {XO’)Q ’X2"~"XN}
jointly optimized, but in general, such design approaches exhibit ¢

significant stability problems especially at low bit rates. We re- ~ - - 1
cently proposed an approach in [10]-[12] called the asymptotic Design Predictor

closed-loop (ACL) algorithm, which solves the stability prob-

lems over all bit rates. The method is open-loop in nature and
thus inherently stable. However, the designed system asymptot- ¢
ically approaches closed-loop operation and effectively a feed-
back system is designed to produce a realistic PVQ system. A

N N
AOL = z xn xn—l(z xn—l -xn-—l )_]
N J

n=l1 n=1

Generate Training Set
n=N

brief review of the traditional approaches and their strengths and T={x,— AoL X o
weaknesses will be presented in Section Il.

In this paper, we propose a PVQ design method that signifi- ¢
cantly outperforms all of the above methods. The new approach [ Design Quantizer Q ]
(DA-ACL) embeds the ACL method within a deterministic an- ¢
nealing (DA) framework. The overall DA-ACL method benefits
from its two main components in a complementary way. ACL Exit with Ao, and Q

offers the means for stable quantizer design as it is performed
in open-loop but asymptotically converges to the closed-loéfy. 2. Flow diagram for an implementation of the OL training procedure.
system. DA offers two benefits: Its probabilistic framework

replaces hard quantization with a differentiable cost funaio{ﬂidean spaceR". The predictor approximates the next

that can be jointly optimized for the predictor and quantizeﬁr] ut vector z,.; given past reconstructed vectors as

parameters; gnd its annealing schedule helps in avoiding mairi%rl — f(#n,dn_1,...). Afirst-order linear vector predictor
poor local optima.

: " . is used for simplicityz,,+1 = Az,, whereA is ak x k matrix.
Incontrastwithtraditional methods, the DA-ACL algorithmwe encodey aZsigl}l/s ?c;rtlhe erronr vectes — z, — %, an index
- n n

propose does notrequire initialization of codebooks or predicti?n — ~(e,). The decodep assigns to index, a reproduction
parameters asits outcomeisindependentofinitialization. Various uez ; ﬂ(t ). Given a sequence of input vectors, the index
et v o et B econsiucton sequencs, and coresponding

_ S . ediction sequence, are defined recursively in as
[13], [14]. To implement DA within a procedure for PVQ deS|gn?] quence, Y

werandomizethe encodingrule ofthe predictive quantizer system

and seektominimize the expected distortion costsubjecttoaspec- n = '{(e”) = '_7(””" ~ &n)
ified level of randomness measured by the Shannon entropy. The T, = Ty + Blin)
degree of randomness is parameterized by the “temperature” of T = ALy,

the configuration (The temperature isthe physical analogue ofthe

Lagrange multiplier relating distortion/energy and entropy). Th&lthough~y andg are important for system implementation, it is

temperatureisgradually lowered, andthe systemisreoptimizedatvenient for compression performance analysis to make ab-

eachtemperature. Thisisanannealing process consisting of mairaction of the index and define instead the quantizer function

taining the system at isothermal equilibrium while gradually re(-), which takes in the prediction error and produces its recon-

ducing the temperature. Atthe limitof zerorandomness, the algnructed valueé,, = Q(e,.) = B(vy(e..)).

rithm directly minimizes the average distortion cost, and a deter-The objective of a PVQ design algorithm is to obtain a pre-

ministic encoder is obtained. dictor and quantizer which are matched to the source to be com-
The paper is organized as follows. In Section Il, we state tieessed, i.e., which minimize the reconstruction distortion.

PVQ problem and outline known design algorithms as well as

ACL. In Section Ill, we derive the new DA-ACL design algo-B. Open- and Closed-Loop Approaches

rithm. In Sections IV and V, we present simulation results and

conclusions, respectively. A flow diagram for the open-loop (OL) method of [8] is

shownin Fig. 2. Both predictor and quantizer are designed based
on the originaunquantizedource vectors. The auto-regressive
Il. PROBLEM FORMULATION AND KNOWN APPROACHES predictor is obtained from the autocorrelation of the input source
In this section, we briefly state the problem, review existing’ denotes transposition):
techniques, and point out their shortcomings as motivation for

the proposed approaches. N N -t
Aor, = RlRal = Z T,z | Zzn_le%l .
n=1 n=1

A. Problem 1)

A typical PVQ system is shown in Fig. 1. L&t = {x,,}_, A training set of prediction error vecto = {e, } \_, is gen-
be a vector-valued source over the-dimensional Eu- erated from theoriginal source vectorse, = z, — Z, =
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Obtain Input Sequence which is exacerbated by feedback through the prediction loop,
} results in poor performance. In the case of CL, since the
02 Xir Xa> Xy training residuals were generated by a closed-loop coder, their
statistics may be expected to be similar to those that will be
m observed in practice. However, convergence of the algorithm
is not guaranteed, as the training set changes from iteration
o " - ~ to iteration in an unpredictable fashion, and the predictor is
Design Predictor not re-optimized for a new quantizer. In fact, the CL system
A, = ix,,x:, .(ix,, ) sometimes exhibits catastrophically unstable behavior.
~ v - C. Steepest Descent (SD) Approach
OL< Generate Training Set The previous two methods implicitly assume that the bit
T“‘):{ X = Ac X o rate is sufficiently high so that open-loop design of the pre-
_ dictor is adequate. Two gradient algorithms for designing
¢ predictive vector quantizers were developed by Chang and
\_ [ Design Quantizer Q% } Gray [9]: the steepest descent algorithm and the stochastic
Te gradient algorithm. Both of these methods, which are based
— on known adaptive filtering techniques, attempt to jointly
optimize quantizer and predictor. We briefly summarize the
— steepest descent (SD) algorithm since it is less complex than
Generate Training Set the stochastic gradient method, and yields similar performance
T‘” ={le,=x,— Ao )Ac”. ye [9]. This method proposes to improve over the CL method by
A0 Q) P including optimization of the predictor. Since updates to the
X =14CL-XH—I+Q e,) predictor affect the training residual and thereby the quantizer,
¥ which in turn impacts the training set and the predictor, a joint
[ Design Quantizer Q% ] optlmlzat|on is needed. Such joint .optlmlzatlo'n is ach|eV(_ed
through an iterative procedure (see Fig. 4 for an implementation
o example).
@ The predictor in this case varies from iteration to iteration

Asp = AY. Given a quantizer at iteration— 1, which is

Yes . )
denoted byQ“~", a training set of prediction errofE®" =

Exit with A¢, and 0 {e$)YN_, is generated for iteratiof) where
(1) — _ 2@ &0
Fig. 3. Flow diagram for an implementation of the CL training procedure. e, =T, —AVE, )

and

z, — Aorxn—1. The design of),; consists of a straightfor-
ward VQ design procedure given the training Fet

In the closed-loop (CL) approach of [8] (shown in Fig. 3)A necessary condition for predictor optimality is satisfied by
a closed-loop (real) system is used to generate the predictiequiring the gradient of the average distortion to vanish:
errors for thequantizer desigin an iterative fashion. The pre- N
dictor, however, is designed using the open-loop method, i.e., o . 1 2
Act = Aor. Given a quantizer at iteration- 1, which we de- VaD(z,%) =V 4 Algréo N 2_:1 [ = 2" = 0. (4)
note byQ(“l), a training set of prediction errors is generated "=
for iterations, T = {e{)}_,, wheree!) = z,, — Ac.3\”,, To solve (4), Chang and Gray make the assumption that modi-
andz) = Ac;% | + Q0D (). We use OL as the initial- Y9 A9 will only affect £ via the first term of (3), i.e., ef-
ization: Q© = Q fects propagating through the quantizer in the second term of (3)
QY = Qpr.
The main advantage of OL over CL is that its training sdpay be neglected. This simplifying approximation is justifiable

T is fixed. Therefore, we can design the PVQ by applyinWhen changes are so small that no quantized value gets modi-

a standard optimization technique such as GLA [15] Singgd’ in other words, when the system is virtually converged. It

the training set remains unchanged, the design algorithm|slsnot easily justified otherwise. Subject to this approximation,

expected to converge to a locally optimal solution. Howevetrr?e optimal predictor is
the decoder does not have access to the original source vector A — p@) R(i)_l (5)

for prediction. Therefore, during the actual operation of the

compression system, prediction must be performed using whereP” andR* are the cross and auto correlation matrices
constructedsource vectors. Thus, the training set of prediction

N
errors is statistically different from the prediction errors the () — 1 _ 0=, NONA
PO= 52 (- eD) (&) @

&) = AVz), + QU (). 3)

guantizer will eventually encounter. This statistical mismatch,
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Fig. 4. Flow-diagram for an implementation of the SD training procedure. Fig. 5. Flow diagram of the ACL training procedure.

and D. Asymptotic Closed-Loop (ACL) Design
N
R® — 1 Z”’(L ) (ﬁ(i) 1)"‘ @) Motivated by the shortcomings of existing methods, we re-
N " " cently proposed the asymptotic closed-loop (ACL) approach
' [10], [11], which offers improved design stability. ACL design
where, by assumptiore,ﬁf) in (6) may be computed using theenjoys the best of both worlds, namely, it inherits the design sta-
availableA¢—1) . bility of open-loop techniques while ultimately optimizing the
Using T and the newA”, an optimizedQ®) is obtained. system for closed-loop operation. In [10] and [11], our objective
Again, OL is used for the initialization, such trﬁfo) = Q,.. Was quantizer design only and did not include optimization of
For better stability, after calculating a new predictor, an uphe predictor, as the predictor in video coding applications usu-
dated training set is generated using the new predictor (amlty takes the fixed form of motion compensation. In [12], we
latest quantizer) before the new quantizer is designed. Similagypposed an improvement to the basic ACL algorithm where the
an updated reconstructed sequence is generated using the qugawntizer and predictor are jointly optimized, making the algo-
guantizer (and latest predictor) before the predictor is updateithm applicable to a wider array of applications. In this paper,
In spite of these precautions, there is a fundamental stabilige employ the term ACL to refer to the latter, more general ver-
problem, as there is complex interaction between predictor asidn. The ACL procedure for PVQ design is illustrated in Fig. 5
guantizer. While reducing the update step size does improve #ral is explained later in more detail as it is an important compo-
stability, it does not significantly improve the final results. Iment of the proposed deterministic annealing design approach.
fact, in several PVQ applications, the improvement obtained byThe main objective of the design procedure is to avoid ac-
SD over the simpler CL method was reported as insignificaatimulation, through the prediction loop, of errors due to mis-
[4]1, [9]. matched quantization. We therefore base our prediction on the



248 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 1, JANUARY 2003

reconstructed vectors of th@evious iteration By basing pre-  We next calculate the new set of reconstructed vectors by

diction on an “older” version of reconstructed vectors, the pre- e 3 A (i—1) P

diction residuals are in effect calculated in open loop, and we &) = A&7 + QW (e)). (12)

can thus circumvent the destabilizing effects of the feedbacklgf th d d he initializati f th

the closed-loop system. As a direct consequence of this “effec e re_construc_te ?e} (?“ preipar(ei tl% initia |iza'g|on of the
next iteration. AssigQ 1 = QW AGTH0 = A® incre-

tively open-loop” approach, a monotonic optimization proce- . . .
y op P app ' P P menti, and reset = 1. Iterate algorithm until a convergence

dure is possible for jointly optimizing both quantizer and pre-_ _. . - , . . — i)
dictor (for the given set of fixed vectors on which predictioeteSt_IS S(itlslf;ed and exitthe routine wihcr, = 4 » and

is based). Once such quantizer and pr_ed|ctor are optlml'zed, Note that in (12), the predictod® and quantize® are
improved set of reconstructed vectors is produced (also in open -
e used to encode based eractlythe same prediction error and
loop). The new set of reconstructed vectors is fixed for the nex . ;
o . . reconstructed vectors used for their design. Those are the best
design iteration, and the steps are repeated until convergence,” . . ; .
X .. predictor and quantizer for this setting, and thus ensure that the

To start the algorithm, a set of reconstructed vectors at iter-

ationi — 0 {jgo)}gzo is needed. This can be obtained usind €% reconstructed set better approximates the original. Under

for example, an Ol -generated sequence. As with the SD algrggsonable assumptions, this results in a better prediction base

rithm, iteration countef is incremented with each update of th or .th? next iteration. Consequently, we expect nearly mono
. onic improvement throughout the process.
reconstructed set. For each reconstructed set, the predictor a . o .
ote that the entire design is in open-loop mode since we

guantizer are iteratively optimized. Denote the prediction resigam Ute prediction errors for the entire sequence before quan-
uals and total distortion at iteratiarachievable by the current pute p q q

. . . tization. As the distortion is generally decreasing, we expect the
predictor and quantizer as follows: . .
process to approach convergence. Let us next consider the im-

e — ¢ _ AD5zG-D ©) plications of convergence. At convergence, further iterations do
n — tn n—1 . : H i @+ _ ()
not modify the quantizer and predictor, i.Q5 =Q",and
and AU = A respectively. This immediately implies that the

N reconstruction sequence remains unchangedgf’e!) = ("),
D — Z He(i) _ Q(i)(e(i)))||2 ) and so does the next-vector prediction sequence
n=l AACLiS),l = AACL-’;"S:11)~ (13)
From (8) and (9), the distortion depends on two sets of system. . . C
variables: The prediction parameters and quantizer parametdfdS: In tum, implies that the actual prediction is the same as
but note that we have no closed-loop dependencies, as the rii_were based on the reconstruction of the current iteration
diction is based on the fixed reconstructed set from the pr@jstead of on the reconstrucuo_n from the previous |.terat|on.)
vious iteration. An alternate minimization algorithm is propose other words, _the procedure IS asyr_nptotlcally equwglent _to
to minimize (9) as follows: For the current quantizer, the pe§tosed-loop design, but the_ algorltt\m IS r“””'[‘g at all imes n
predictor to minimize the distortion is obtained by descendirfP€n-100P. The procedure is thus “open-loop” in nature, yet it
along the gradierWAmD(i). This predictor is used to generateconverges to opt!mlzatlon of the closed-loop performance. _
a new residual set. A new quantizer is optimized by GLA for 1€ ACL algorithm offers means to overcome the central dif-
the new training set. These two distortion-lowering steps can tigH!ties that plague earlier PVQ design techniques, and indeed,
repeated by iterating over the appropriately introduced subit§fmulation results n [10]_[_12]’ as We_” as the results n this
ation counters to convergence. paper, provide ample experimental evidence of substantial per-

Specifically, for the design of a predictor at iteratiomnd formance gains.
subiterations, the optimal predictor ist*) = PG-IRM ™ Remaining Shortcomings

where . N . .
ACL still suffers from three significant shortcomings in-

. N . i G\ volving issues of convergence and suboptimality. First, we
PO = Z (zn —QY (C(L’s_l)» (”;7(1711)) (10)  note that the guantizer employed in (12) has only been locally
";1 optimized, which naturally implies potential suboptimality
RO — Zﬁ(i—l) (i(i—l))t (11) of the new recons_trgcted sgt..Second, althqugh.the p_redictor
~ n—1 n—l j = and quantizer are jointly optimized, the predictor is optimized

under a simplifying assumption while neglecting its effects
Note that the assumption/approximation of Chang and Gray (sse the quantized prediction error. This is due to the piece-
Section 1I-C) is employed here and the effects of the predictaise constant nature of the quantizer function which poses

on thequantizedorediction error have been neglected. difficulties on optimizing signals to which it is applied (in
The quantizer is optimized based on the new training searticular, gradient-based approaches are precluded). This
() = {eﬁf’s)}ﬁzl, wheree("*) = z,, — A<"7S>£,(j_’11). implies suboptimality and a consequent negative impact on

When the predictor and quantizer iterations reach conveonvergence. Finally, even if the predictor and quantizer were
gence, we obtain the final quantizer and predictor of this itetruly optimized within an iteration, they would simply ensure
ation: Q") = QUsrina1) and A = A(*rna1) " and correspond- minimum distortion of the new reconstructed sequence. While
ingly, e = e(#:5tina) it is highly likely that an improved reconstructed sequence that
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better approximates the original provides a better predictionizes the average distortion cost, and a deterministic encoder is
basis for the next iteration, it is possible that occasionally it doebtained.
not. In other words, full convergence is only guaranteed underAn important objective is to avoid accumulation of errors
the reasonable (yet not completely fail-proof) assumption thdiie to mismatched quantization through feedback. Adopting the
better reconstruction yields better prediction. One should n@&€L approach [10], we therefore base our prediction on the re-
in passing that this is mainly an impediment for sample-wismnstructed vectors of the previous iteration. By basing predic-
convergence. In terms of the average over the entire sequetios, on an older set of reconstructed vectors, we can, in effect,
under most reasonable statistical models it can be shown reynove the feedback of the closed-loop system. As a direct con-
arguments, based on the law of large numbers, that the prebguence, a monotonic optimization procedure is possible for
ability of increase in average distortion approaches zero fointly optimizing both quantizer and predictor. The details of
long sequences. Indeed, in simulations, we experienced sntladl iterative algorithm are described in what follows.
limit cycles rather than full convergence, which we mainly At each iteration, we optimize the predictor and quantizer.
attribute to the first two shortcomings, and only mildly to th&@ he plain notation 4, Q) is used to refer to the latest available
last (for reasons that will become clearer in the sequel). Walues for the parameters of the predictor and quantizer,
note, however, that no serious stability problems have ever beemereas their values at the end of the iteration are denoted
observed. The above suboptimality and convergence probIeQﬂéi),Q(i)). Assume that quantiza®, at iteration:, employs
motivate the deterministic annealing method we propose in taecodebook of\/ codevectorgy; ;‘il. For each fixed recon-
next section. struction sequencéz~V1N_  we can calculate the total
distortion achievable by the current predictor and quantizer as
follows. For the prediction residual)) = z, — A:i:S:f), the
ll. DETERMINISTIC ANNEALING APPROACH TOPREDICTIVE  squared error distance frog is defined as
VECTOR QUANTIZER DESIGN

@) 4} = lle® — .11
In this paper, we propose a PVQ design method that signifi- den’y3) = llex” = wsl - 14
cantly outperforms all of the methods described in the previowse random quantizer’s encoding rule is represented by condi-
section. The new approach (DA-ACL) embeds the ACL methagbnal probability distribution?;,,, which measures the proba-
within a deterministic annealing framework. The DA-ACL alyjjity that prediction residual vectar’) is quantized to code-
gorithm we propose does not require initialization of codebookg, o1 entryy, . The random quantizer is hence specified by the

or prediction parameters and can avoid many local minima @§qepook and the encoding probabilities. The corresponding
the cost surface. Further, due to the probabilistic formulation Efint distribution is denoted,; = P, P;,

. . . n nt jin:
the system, it is easy and natural to directly optimize all systemqg e the “hard” quantizer of traditional design approaches is

parameters with respect to the same cost objective, which is {R8|aced with the random quantizer, the total (expected) distor-
overall distortion, without recourse to simplifying assumptionsg;q, at iterationi becomes

In particular, effects of the predictor on the reconstruction dis-
tortion via the quantizer module are directly taken into account D= Z Z Pnjd(e,(f)7yj). (15)
as the quantizer is no longer a piecewise constant function. w5

Our approach is inspired by, and builds on, the DA approach ] o ]
for vector quantizer design [13], [14]. It is motivated by thé\lot_e that du_e to th_ls pI’ObabI!IStIC framewqu, the overall _d|s-
observation of annealing processes in physical chemistry. clgitionis a dlfferen_tlz_slbl_e functpn of _aII predictor and qu_ant|zer
tain chemical systems can be driven to their low-energy Sta@rameters_. We minimize the distortion under a constraint on the
by annealing, which is a gradual reduction of temperatur%”tmpy which measures thg level of randomness of the system.
spending a long time in the vicinity of phase transition point§—.he entropy of the system is
Analogously, we randomize the encoding rule of the predictive
guantizer system and seek to minimize the expected distortion H=- Z Z Pajlog Prj.
cost subject to a specified level of randomness measured by v
the Shannon entropy. This problem can be formulated as thgy, | agrangian formulation, we minimize
minimization of a Lagrangian functional that is analogous to
the Helmholtz free energy of chemical systems. The degree F=D-TH (17)
of randomness is parameterized by the “temperature” of the
configuration. We start at a high degree of randomness, whevkere the Lagrange multiplié? is referred to as “temperature.”
we, in fact, maximize the entropy. Here, the globally optimallote that this is exactly the Helmholtz free energy of statis-
configuration requires that all codevectors be coincident at ttieal physics if we define the system energy byand its en-
centroid of the source distribution; no initialization of quantizetropy by H. Assuming uniform distribution over the training set
or predictor is necessary. P, = 1/N, an expression for the optimal encoding probability

We then track the Lagrangian minimum at successively lowat iteration:, P].(@ can be obtained by setting
levels of entropy by recalculating the optimum locations of the
reproduction points and the encoding probabilities at each stage. OF
At the limit of zero randomness, the algorithm directly mini- IPjin N

(16)

d(e),y;) + Tlog Pjj,, + T =0 (18)
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which yields (after normalization) the Gibbs distribution Obtain Input Sequence

efd(egzi)vyj)/T

P;{BL = m (19) “9x|9x2,...,xN
Ze *n Yk +

k

. . . . - Initialize Reconstructed Sequence
As with VQ design using DA, the association probabilities are 4

effectively controlled by the temperature. From (19), it can be ﬁ,a)?.,)%zw--u%m}

seen that high temperature assigns uniform probability associa- v

tions. As the temperature is lowered, those association probabil-

ities become more discriminatory and assign higher probability

to nearer codevectors. Hence, (19) is a probabilistic generaliza- | Heat Quaniiyer, T=T, |

tion of the standard nearest neighbor rule. >
The optimal predictor satisfies

Optimize Conditional
(@ )
VAP =VpD = -2 Z Z Py )P Probabilities

’ t v

x (zn Az~ 1>—yj)( (- 1”) —0 (20)

Optimize Predictor

v
AD = Zz (A 1 ) ZZ Y J( {1 )) Optimize Quantizer

—1
i—1) [ A(i—1) ¢
(Z”” ( n—1 ) ) (21) Using ACL, Update

Reconstructed Sequence

and hence

where (21) is the probabilistic counterpart of (10) and (11).
Finally, the optimal codevectors must satisfy

Reached
Convergence?

Vy F=VyD=-2% POP) (egp - yj) -0 (22

which yields
(z
y] = W (23) Complete?
dln a<l
T(t))is isa ggperalization of the star_1dard cs?troid rule. Note that Exit, with Final
ey’ here utilizes the updated versigh= A'". Predictor and
The reconstructed set is updated by running a probabilistic Quantizer

counterpart to an iteration of ACL. Recall the ACL update rule:

(i Fig. 6. Flow diagram for the DA-ACL training procedure.
) = A0 4 QW (e, (24)

Thus, the new reconstructed set is an open-loop update of theg) Calculate the optimal quantizer.
previous reconstructed set using the optimized predictor and4) Update the reconstructed set.

guantizer. For the probabilistic quantizer of DA, we can rewrltﬁahe four steps are explicitly given by (19), (21), (23), and (25)

(24) as and are repeated until a convergence test is satisfied. At conver-
0 = AWz (Z 1) (@) (z gence, the temperatuf@ is lowered and the whole process is
=A + E P; | (25) . L
iln¥ repeated. To start the algorithm, a reconstructed set is initialized

g (as shown in Fig. 6). In our experiments, the original sequence

where the quantization procedure in DA is equivalent t0 \gas used as initialization. However, this choice is not critical
weighted average of all the codevectors in the codebook basgehe quality of the design. We have tested arbitrary initializa-

on the conditional probabilities. tion (with the all zero sequence) as well as initialization with
In summary, the DA-ACL algorithm (see Fig. 6) revolveshe OL-reconstruction sequence and observed that although ini-

around four important steps. tialization had an effect on the execution time of the design, it
1) Calculate conditional probabilities. did not have a significant impact on the quality of the resulting

2) Calculate the optimal predictor. system.
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6-dim 1st—-order Gauss—-Markov (GM-A) Sequence: Training Set 6-dim 1st-order Gauss-Markov (GM-B) Sequence: Test Set
T T T T T T T T T T T T T T
50 e e [ DA -
--- ACL
I SO R S U —--ocL [ 1
N . . 8D
SN oL

40| \ : i

w
o
T

251

Average Distortion
w
o
T

Average Distortion

n
o
T

20

20

! ! ! I I I I I 10 I I I I I
0.8 0.9 1 1.1 1.2 1.3 1.4 15 0.8 0.9 1 1.1 1.2 1.3 1.4 15

Average Bit Rate per Sample Average Bit Rate per Sample
(€Y (CY
6-dim 1st-order Gauss-Markov (GM-A) Sequence: Test Set 6-dim 1st-order Gauss—-Markov (GM-B) Sequence: Training Set
T T T T T T T T T T T T T T
551 — DA | i — DA
--- ACL _ --- ACL

35
50

IS
o
T

30

IS
o
T

w
a
T

251

Average Distortion
w
o
T

Average Distortion

| | | L L I L I 10 | | | L L
0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Average Bit Rate per Sample Average Bit Rate per Sample

(b) (b)

Fig. 7. Synthetic source GM-A: Average distortion of OL, CL, SD, and ACIFig. 8. Synthetic source GM-B: Average distortion of OL, CL, SD, and ACL
design and the proposed DA-ACL approach to predictive quantizer designdasign and the proposed DA-ACL approach to predictive quantizer design at
various bit rates for (a) training set and (b) test set. various bit rates for (a) training set and (b) test set.

Recall the optimality and convergence shortcomings of AC|§ampIes. In fact, the probability of increase in the ov_erall L_a-
enumerated in Section II-E. With respect to the first shorfangian approaches zero for long sequences. In our simulations

coming, the proposed DA approach offers substantial medfiPA-ACL we have always witnessed monotone nonincreasing
to avoid poor local optima. Further, it optimizes the predictdradrangian at a given temperature. In particular, the algorithm
and quantizer jointly with respect to the reconstruction errdfil!"v""yS reached complete convergence.

without neglecting the predictor’s impact on the quantized pre-
diction error (thanks to the differentiability of the probabilistic
quantizer). It hence eliminates the second shortcomings. TheA number of synthetic sources, with different characteristics,
only remaining gap in ensuring full convergence is due to stéave beenusedinthe experiments. Fornatural sources, weuseline
(4). Equation (25) merely utilizes the current best quantizepectral frequency (LSF) parameterswhichwere extractedfroma
and predictor to generate a new reconstructed set whigeech source. Inthis section, we give detailed simulation results
more closely resembles the original set subject to the entrapydemonstrate the power of the proposed DA-ACL algorithm.
constraint. Clearly, it is not very probable yet possible that ) i

better reconstruction of a given vector would result in degradéd Experiment Details

prediction of the next vector and increased contribution to the All nonprobabilistic methods, namely, OL, CL, SD, and ACL
Lagrangian. However, the Lagrangian is averaged over magmyploy the particular codebook design variant of GLA, called

IV. SIMULATION RESULTS
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6-dim 1st-order Gauss—Markov (GM-C) Sequence: Test Set
T T T T T T T

TABLE |

GAIN IN DECIBELS OF DA-ACL OVER
60 [ . géL g ACL FOR THEVARIOUS SYNTHETIC SOURCE PROCESSESAT THE DIFFERENT
- cL BIT RATES (INDICATED IN BITS PERVECTOR)
BB ]
SD

P ST U UUUUUNE SUUPRR OL | Source 5 6 7 8 9
st BN ‘ ] GM-A | Train | 0.21 | 0.22 | 0.14 | 0.09 | 0.26

s : Test | 0.20 | 0.05 | 0.82 | 0.09 | 0.05

GM-B | Train | 0.14 | 0.61 [ 0.92 | 0.87 | 1.10
Test | 0.15]0.3810.80 | 0.43 | 0.48
GM-C | Train | 0.43 | 0.77 [ 0.70 | 1.26 | 1.58
Test | 0.38 | 0.78 1 0.72 | 1.20 | 1.57

Average Distortion

W
S
T

25

TABLE I
ofs 019 1‘ 111 {2 {3 {4 {5 GAIN IN DECIBELS OFDA-ACL OVER CL FOR THE VARIOUS SYNTHETIC
Average Bit Rate per Sample SOURCE PROCESSESAT THE DIFFERENT BIT RATES (INDICATED IN BITS
(a) PERVECTOR)
6-dim 1st-order Gauss-Markov (GM-C) Sequence: Training Set
60 T T T T T T T
. 6 7 8 9
ol . DA || Source 5
| oAt GM-A | Train | 0.79 | 0.40 | 0.32 | 0.21 | 0.47
T L - Test | 0.59 | 0.26 | 0.09 | 0.01 | 0.06
T ' I GM-B | Train | 0.77 | 1.27 | 1.51 | 1.30 | 1.58
59 s R 1 Test | 0.58 | 0.78 | 1.09 | 0.85 | 0.86
B ol R TR 1 GM-C | Train | 1.26 | 1.29 | 1.55 | 1.72 | 1.99
a0l ' 1 Test | 1.36 | 1.18 | 1.51 | 1.70 | 1.86
<

training set is unchanged. The CL method is an order of magni-
tude more complex than OL since, with each new training set,
1 complexity similar to OL is needed for the design. The SD and
ACL methods are of similar complexity, but both are slightly

Y Y ; ” 5 5 ” - more complex than CL since the predictor is also optimized.
Average Bt Rate per Sample Finally, the DA-ACL algorithm is considerably more complex
(®) than the ACL method due to the slow annealing process dictated

Fig. 9. Synthetic source GM-C: Average distortion of OL, CL, SD, and AC i ; ;
design and the proposed DA-ACL approach to predictive quantizer designl.be¥ DA. However, It is important to note that deSIQn compIeX|ty

various bit rates for (a) training set and b) test set. is handled offline. The end result of the design procedure is a
predictor and a quantizer, and thus, the compression runtime

selective splitting, whichis described in [16]. The selective spli?—omplexlty is the same regardless of the design method.

ting codebook design algorithm initializes a codebook with a8
codevector at the centroid of the training set and then proceeds
to selectively split individual codevectors based on criteria in- In the first set of experiments, the proposed DA-ACL
volving distortion and entropy. In the current work, fixed rate igPproach is compared to the OL, CL, SD, and ACL methods
assumed, and thus, the criterion used is only distortion bas@#f. several synthetic sources. Specifically, sources with the
Selective splitting has the advantage of not relying on initiafollowing characteristics were synthesized:
ization at the price of additional complexity (which is typically Source GM-A: a six-dimensional (6-D) first-order Gauss-
substantially lower than repeated design with different random Markov source with intra-vector and inter-vector correla-
codebook initializations). In addition, when the VQ codebookis  tion coefficients of 0.9;
used within a PVQ system, iterative updates to the training set Source GM-B: a 6-D Gauss-Markov source with intra-
often render codevectors unused, and selective splitting offers vector and inter-vector correlation of 0.8 and 0.95, respec-
a natural way to fill the empty cells. The selective splitting de-  tively;
sign method was used for all relevant method implementations Source GM-C: a 6-D first-order Gauss-Markov source with
to ensure fair comparison. inter-vector correlation of 0.8 and (in an effort to produce
The complexity of the design varies among the algorithms. a more realistic source) intra-vector correlation varying
The OL method is essentially the least complex since the alongthe components, in the range of 0.5 to 0.95;

Experiments on Synthetic Sources
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10-dim LSF Sequence: Training Set
T

T T T T T

TABLE I
GAIN IN DECIBELS OFDA-ACL OVER ACL FOR THELSF PARAMETER

oer o RéL i SOURCE AT THE DIFFERENT BIT RATES (|NDICATED IN BITS PERVECTOR)
- cL
0.18 4
. . SD
“ 3 | s lef7]8 ]9
o8r O : T Train | 0.57 | 0.87 | 1.26 | 1.66 | 1.95
oraf % l Test |0.99 | 1.12]0.72 | 0.85 | 0.77
~ N

> N ) TABLE IV
GAIN IN DECIBELS OFDA-ACL OVER CL FOR THELSF PARAMETER SOURCE,
8 AT THE DIFFERENT BIT RATES (INDICATED IN BITS PERVECTOR)

Average Distortion
o
N
T
/
/
I

o
T

5 6 7 8 9

- Train | 1.71 | 1.55 | 1.75 | 2.11 | 2.20
Test | 1.67 | 1.67 | 1.34 | 1.31 | 1.16

0.06 -

0.04 1 I I 1 1
0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Avevagé Bit Rate per Sample

o LSF(:e)quence:Test st be quite significant, ranging from 0.48 to 1.99 dB for the highest

: : , , . bit rates. Itis interesting to note that gains within the training set
02f i , : —— DA |7 Iincrease with increasing rate. This is mainly due to the fact that
: ) at higher rates, more codevectors need to be optimized, and the
018F - - « - - sb |1 strength of the DA approach comes into play as the optimiza-
. ' tion avoids many local optima into which a traditional design
046 i approach would fall,
S For the LM source, gains between 0.62 to 1.22 dB were
: achieved when comparing DA-ACL to ACL and between 1.42
t0 2.19 dB when comparing DA-ACL to CL.

Average Distortion

C. Experiments on Line Spectral Frequencies

] Several speech coding standards are centered around the en-
coding of line spectral frequency (LSF) parameters. LSF pa-
rameters typically constitute 25 to 50% of the speech coding
rate. In addition, LSF parameters have significant and direct im-
008 -} ‘ i . ‘ ; ‘ .1 pact on the intelligibility and quality of decoded speech. Thus,
o8 o8 ! Averags it Rate por Sample. b ' high-quality encoding of LSF parameters is an important objec-
(b) tive, and careful design of PVQ is warranted. A frame of speech
Fig. 10. Line spectral frequency parameters: Average distortion of ogenerally includes a 10-D LSF vector that usually exhibits sig-
CL, SD, and ACL design and the proposed DA-ACL approach to predictivgificant correlation with previous frames. A common approach
quantizer design at various bit rates for (a) training set and b) test set. . . . .
is to use a first- or second-order interframe predictor to remove
such redundancies. In this experiment, we use a first-order pre-
Source LM: a ten-dimensional (10-D) Laplace-Markowictor and quantizers that operate at a variety of bit rates.
source withintra-vector andinter-vector correlationof0.95. In Fig. 10, we show the average distortion as a function of

The training and test sets consisted of independent sequencd¥igfPer dimension for the LSF source. This bit rate range is

10000 and 1000 vectors, respectively. A first-order predictor R/0W the standard rates used to code LSF parameters, but we
used in the PVQ design. target this range for simplicity because it is realizable using a

8]1ngle stage VQ, and the test demonstrates the optimization ca-
Hgbilities of DA-ACL on a natural source. Again, the training
d test sets consisted of independent sequences of 10000 and
00 vectors, respectively. The gains in decibels for the com-
arison of DA-ACL with ACL, and DA-ACL with CL, for the
§_F source, are shown in Tables Il and IV, respectively. It can

such as source GM-B and GM-C, gains are much more subst .
tial. The cases of GM-B and GM-C are shown in Figs. 8 and € seen that DA-ACL may gain over ACL by more than 1 dB
: : ahd over CL by more than 2 dB.

respectively. The gains in dB for the comparison of DA-ACL
with ACL, for all three synthetic sources, are shown in Table I.
Table Il compares our new design approach DA-ACL to CL,
which is the commonly used method for training of PVQ. It is This paper describes a new approach to training predictive
evident that gains achievable in those complicated sources wantor quantizers, which does not suffer from the statistical

0.08 -

In Fig. 7, we show the average distortion as a function
bits per dimension for the source GM-A. It can be seen that t
gains achievable for this source can sometimes be quite sm
and this is due to simplicity of the source which does not po
an “optimization challenge.” For the more complicated sourc

V. CONCLUSIONS
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mismatch typical of OL training algorithms, nor from the in- [15] Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector quantizer
stability experienced in CL and SD approaches. The proposed  design.’IEEE Trans. Communvol. COM-28, pp. 84-95, Jan. 1980.
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