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Predictive Vector Quantizer Design Using
Deterministic Annealing

Hosam Khalil, Member, IEEE,and Kenneth Rose, Fellow, IEEE

Abstract—A new approach is proposed for predictive vector
quantizer (PVQ) design, which is inherently probabilistic, and is
based on ideas from information theory and analogies to statistical
physics. The approach effectively resolves three longstanding
fundamental shortcomings of standard PVQ design. The first
complication is due to the PVQ prediction loop, which has a
detrimental impact on the convergence and the stability of the
design procedure. The second shortcoming is due to the piecewise
constant nature of the quantizer function, which makes it difficult
to optimize the predictor with respect to the overall reconstruction
error. Finally, a shortcoming inherited from standard VQ design
is the tendency of the design algorithm to terminate at a locally,
rather than the globally, optimal solution. We propose a new PVQ
design approach that embeds our recent asymptotic closed-loop
(ACL) approach within a deterministic annealing (DA) frame-
work. The overall DA-ACL method profits from its two main
components in a complementary way. ACL is used to overcome
the first difficulty and offers the means for stable quantizer design
as it provides an open-loop design platform, yet allows the PVQ
design algorithm to asymptotically converge to optimization of the
closed-loop performance objective. DA simultaneously mitigates
or eliminates the remaining design shortcomings. Its probabilistic
framework replaces hard quantization with a differentiable
expected cost function that can be jointly optimized for the
predictor and quantizer parameters, and its annealing schedule
allows the avoidance of many poor local optima. Substantial
performance gains over traditional methods have been achieved
in the simulations.

Index Terms—Closed-loop design, deterministic annealing,
open-loop design, predictive vector quantizer design.

I. INTRODUCTION

A VECTOR quantizer (VQ) is a structure that implements
a many-to-one (lossy) mapping of data from one domain

to another. A main use of VQ has been in the compression of
data for storage or transmission over communication channels.
VQ has successfully found its way into several speech coding
standards [1]–[3] and has also found application in image
and video compression [4]–[7]. Such sources usually exhibit
considerable temporal dependencies. Quantizers with memory
offer a natural means to remove temporal redundancies and
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Fig. 1. Basic predictive vector quantizer system.

achieve better efficiency. Examples for such VQ structures
include finite-state VQ, classified VQ, and predictive VQ. The
latter is the quantizer structure of interest in this paper. While the
complexity of predictiveVQ may not be significantly higher than
that of conventional memoryless VQ, the performance gains are
often considerable.

A predictive vector quantizer (PVQ) is basically a predictor in
tandem with a memoryless vector quantizer. The system, hence,
predicts an incoming vector and then quantizes the prediction
error. The quantization is performed by finding in the codebook
the best codevector with respect to a predefined distortion
measure. Only the codevector index needs to be transmitted, as
the decoder has an exact copy of the codebook. In order for the
decoder to reconstruct the vectors correctly, it must be able to
duplicate the encoder prediction. Therefore, the prediction must
only depend on past reconstructed vectors that are known to both
encoder and decoder. In other words, PVQ is a feedback system.

The PVQ structure is depicted in Fig. 1. Although the PVQ
structure is simple and well-understood, its design is problem-
atic, and standard methods often fail to produce optimal (or even
good) predictors and quantizers. The feedback loop creates a
complex relationship between predictor and quantizer. To de-
sign the quantizer, a representative training set of prediction er-
rors is needed, but to obtain the prediction errors, we must run
the system in closed-loop, which implies dependence on both
the predictor and the quantizer to be designed. Further, there are
open questions concerning the design of the predictor. Clearly,
the choice of the best predictor is not independent of the quan-
tizer in use. In addition, due to the piecewise constant nature
of the quantizer function, it is difficult to optimize the predictor
with respect to the reconstruction error.

Two simple approaches were introduced by Cuperman and
Gersho [8]. The first approach is called “open-loop” design.
It solves the quantizer design problem by assuming no feed-
back, and operating directly on original source vectors. An im-
provement can be achieved using their second approach called
“closed-loop” design. In this case, an iterative design is used for

1053-587X/03$17.00 © 2003 IEEE



KHALIL AND ROSE: PREDICTIVE VECTOR QUANTIZER DESIGN USING DETERMINISTIC ANNEALING 245

updating the training set and quantizer given a fixed predictor.
An alternative (closed loop) design algorithm was presented by
Chang and Gray [9], where both predictor and quantizer are
jointly optimized, but in general, such design approaches exhibit
significant stability problems especially at low bit rates. We re-
cently proposed an approach in [10]–[12] called the asymptotic
closed-loop (ACL) algorithm, which solves the stability prob-
lems over all bit rates. The method is open-loop in nature and
thus inherently stable. However, the designed system asymptot-
ically approaches closed-loop operation and effectively a feed-
back system is designed to produce a realistic PVQ system. A
brief review of the traditional approaches and their strengths and
weaknesses will be presented in Section II.

In this paper, we propose a PVQ design method that signifi-
cantly outperforms all of the above methods. The new approach
(DA-ACL) embeds the ACL method within a deterministic an-
nealing (DA) framework. The overall DA-ACL method benefits
from its two main components in a complementary way. ACL
offers the means for stable quantizer design as it is performed
in open-loop but asymptotically converges to the closed-loop
system. DA offers two benefits: Its probabilistic framework
replaces hard quantization with a differentiable cost function
that can be jointly optimized for the predictor and quantizer
parameters; and its annealing schedule helps in avoiding many
poor local optima.

Incontrastwithtraditionalmethods,theDA-ACLalgorithmwe
proposedoesnot require initializationofcodebooksorprediction
parametersasitsoutcomeisindependentof initialization.Various
DA-based methods have been successfully applied in several ap-
plications including pattern recognition and signal compression
[13], [14]. To implement DA within a procedure for PVQ design,
werandomizetheencodingruleofthepredictivequantizersystem
andseektominimizetheexpecteddistortioncostsubject toaspec-
ified level of randomness measured by the Shannon entropy. The
degree of randomness is parameterized by the “temperature” of
theconfiguration(Thetemperature is thephysicalanalogueof the
Lagrange multiplier relating distortion/energy and entropy). The
temperatureisgradually lowered,andthesystemisreoptimizedat
eachtemperature.Thisisanannealingprocessconsistingofmain-
taining the system at isothermal equilibrium while gradually re-
ducing the temperature.At the limitofzero randomness, thealgo-
rithm directly minimizes the average distortion cost, and a deter-
ministic encoder is obtained.

The paper is organized as follows. In Section II, we state the
PVQ problem and outline known design algorithms as well as
ACL. In Section III, we derive the new DA-ACL design algo-
rithm. In Sections IV and V, we present simulation results and
conclusions, respectively.

II. PROBLEM FORMULATION AND KNOWN APPROACHES

In this section, we briefly state the problem, review existing
techniques, and point out their shortcomings as motivation for
the proposed approaches.

A. Problem

A typical PVQ system is shown in Fig. 1. Let
be a vector-valued source over the-dimensional Eu-

Fig. 2. Flow diagram for an implementation of the OL training procedure.

clidean space . The predictor approximates the next
input vector given past reconstructed vectors as

. A first-order linear vector predictor
is used for simplicity: , where is a matrix.
The encoder assigns to the error vector an index

. The decoder assigns to index a reproduction
value . Given a sequence of input vectors, the index
sequence , reconstruction sequence , and corresponding
prediction sequence are defined recursively in as

Although and are important for system implementation, it is
convenient for compression performance analysis to make ab-
straction of the index and define instead the quantizer function

, which takes in the prediction error and produces its recon-
structed value: .

The objective of a PVQ design algorithm is to obtain a pre-
dictor and quantizer which are matched to the source to be com-
pressed, i.e., which minimize the reconstruction distortion.

B. Open- and Closed-Loop Approaches

A flow diagram for the open-loop (OL) method of [8] is
shown in Fig. 2. Both predictor and quantizer are designed based
on the originalunquantizedsource vectors. The auto-regressive
predictor is obtained from the autocorrelation of the input source
( denotes transposition):

(1)
A training set of prediction error vectors is gen-
erated from theoriginal source vectors:
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Fig. 3. Flow diagram for an implementation of the CL training procedure.

. The design of consists of a straightfor-
ward VQ design procedure given the training set.

In the closed-loop (CL) approach of [8] (shown in Fig. 3),
a closed-loop (real) system is used to generate the prediction
errors for thequantizer designin an iterative fashion. The pre-
dictor, however, is designed using the open-loop method, i.e.,

. Given a quantizer at iteration , which we de-
note by , a training set of prediction errors is generated
for iteration , , where ,

and . We use OL as the initial-
ization: .

The main advantage of OL over CL is that its training set
is fixed. Therefore, we can design the PVQ by applying

a standard optimization technique such as GLA [15]. Since
the training set remains unchanged, the design algorithm is
expected to converge to a locally optimal solution. However,
the decoder does not have access to the original source vector
for prediction. Therefore, during the actual operation of the
compression system, prediction must be performed usingre-
constructedsource vectors. Thus, the training set of prediction
errors is statistically different from the prediction errors the
quantizer will eventually encounter. This statistical mismatch,

which is exacerbated by feedback through the prediction loop,
results in poor performance. In the case of CL, since the
training residuals were generated by a closed-loop coder, their
statistics may be expected to be similar to those that will be
observed in practice. However, convergence of the algorithm
is not guaranteed, as the training set changes from iteration
to iteration in an unpredictable fashion, and the predictor is
not re-optimized for a new quantizer. In fact, the CL system
sometimes exhibits catastrophically unstable behavior.

C. Steepest Descent (SD) Approach

The previous two methods implicitly assume that the bit
rate is sufficiently high so that open-loop design of the pre-
dictor is adequate. Two gradient algorithms for designing
predictive vector quantizers were developed by Chang and
Gray [9]: the steepest descent algorithm and the stochastic
gradient algorithm. Both of these methods, which are based
on known adaptive filtering techniques, attempt to jointly
optimize quantizer and predictor. We briefly summarize the
steepest descent (SD) algorithm since it is less complex than
the stochastic gradient method, and yields similar performance
[9]. This method proposes to improve over the CL method by
including optimization of the predictor. Since updates to the
predictor affect the training residual and thereby the quantizer,
which in turn impacts the training set and the predictor, a joint
optimization is needed. Such joint optimization is achieved
through an iterative procedure (see Fig. 4 for an implementation
example).

The predictor in this case varies from iteration to iteration
. Given a quantizer at iteration , which is

denoted by , a training set of prediction errors
is generated for iteration, where

(2)

and

(3)

A necessary condition for predictor optimality is satisfied by
requiring the gradient of the average distortion to vanish:

(4)

To solve (4), Chang and Gray make the assumption that modi-
fying will only affect via the first term of (3), i.e., ef-
fects propagating through the quantizer in the second term of (3)
may be neglected. This simplifying approximation is justifiable
when changes are so small that no quantized value gets modi-
fied, in other words, when the system is virtually converged. It
is not easily justified otherwise. Subject to this approximation,
the optimal predictor is

(5)

where and are the cross and auto correlation matrices

(6)
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Fig. 4. Flow-diagram for an implementation of the SD training procedure.

and

(7)

where, by assumption, in (6) may be computed using the
available .

Using and the new , an optimized is obtained.
Again, OL is used for the initialization, such that .
For better stability, after calculating a new predictor, an up-
dated training set is generated using the new predictor (and
latest quantizer) before the new quantizer is designed. Similarly,
an updated reconstructed sequence is generated using the new
quantizer (and latest predictor) before the predictor is updated.
In spite of these precautions, there is a fundamental stability
problem, as there is complex interaction between predictor and
quantizer. While reducing the update step size does improve the
stability, it does not significantly improve the final results. In
fact, in several PVQ applications, the improvement obtained by
SD over the simpler CL method was reported as insignificant
[4], [9].

Fig. 5. Flow diagram of the ACL training procedure.

D. Asymptotic Closed-Loop (ACL) Design

Motivated by the shortcomings of existing methods, we re-
cently proposed the asymptotic closed-loop (ACL) approach
[10], [11], which offers improved design stability. ACL design
enjoys the best of both worlds, namely, it inherits the design sta-
bility of open-loop techniques while ultimately optimizing the
system for closed-loop operation. In [10] and [11], our objective
was quantizer design only and did not include optimization of
the predictor, as the predictor in video coding applications usu-
ally takes the fixed form of motion compensation. In [12], we
proposed an improvement to the basic ACL algorithm where the
quantizer and predictor are jointly optimized, making the algo-
rithm applicable to a wider array of applications. In this paper,
we employ the term ACL to refer to the latter, more general ver-
sion. The ACL procedure for PVQ design is illustrated in Fig. 5
and is explained later in more detail as it is an important compo-
nent of the proposed deterministic annealing design approach.

The main objective of the design procedure is to avoid ac-
cumulation, through the prediction loop, of errors due to mis-
matched quantization. We therefore base our prediction on the
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reconstructed vectors of theprevious iteration. By basing pre-
diction on an “older” version of reconstructed vectors, the pre-
diction residuals are in effect calculated in open loop, and we
can thus circumvent the destabilizing effects of the feedback of
the closed-loop system. As a direct consequence of this “effec-
tively open-loop” approach, a monotonic optimization proce-
dure is possible for jointly optimizing both quantizer and pre-
dictor (for the given set of fixed vectors on which prediction
is based). Once such quantizer and predictor are optimized, an
improved set of reconstructed vectors is produced (also in open
loop). The new set of reconstructed vectors is fixed for the next
design iteration, and the steps are repeated until convergence.

To start the algorithm, a set of reconstructed vectors at iter-
ation is needed. This can be obtained using,
for example, an OL-generated sequence. As with the SD algo-
rithm, iteration counter is incremented with each update of the
reconstructed set. For each reconstructed set, the predictor and
quantizer are iteratively optimized. Denote the prediction resid-
uals and total distortion at iterationachievable by the current
predictor and quantizer as follows:

(8)

and

(9)

From (8) and (9), the distortion depends on two sets of system
variables: The prediction parameters and quantizer parameters,
but note that we have no closed-loop dependencies, as the pre-
diction is based on the fixed reconstructed set from the pre-
vious iteration. An alternate minimization algorithm is proposed
to minimize (9) as follows: For the current quantizer, the best
predictor to minimize the distortion is obtained by descending
along the gradient . This predictor is used to generate
a new residual set. A new quantizer is optimized by GLA for
the new training set. These two distortion-lowering steps can be
repeated by iterating over the appropriately introduced subiter-
ation counter to convergence.

Specifically, for the design of a predictor at iterationand
subiteration , the optimal predictor is ,
where

(10)

(11)

Note that the assumption/approximation of Chang and Gray (see
Section II-C) is employed here and the effects of the predictor
on thequantizedprediction error have been neglected.

The quantizer is optimized based on the new training set
, where .

When the predictor and quantizer iterations reach conver-
gence, we obtain the final quantizer and predictor of this iter-
ation: and , and correspond-
ingly, .

We next calculate the new set of reconstructed vectors by

(12)

Fix the reconstructed set and prepare the initialization of the
next iteration. Assign , , incre-
ment , and reset . Iterate algorithm until a convergence
test is satisfied, and exit the routine with , and

.
Note that in (12), the predictor and quantizer are

used to encode based onexactlythe same prediction error and
reconstructed vectors used for their design. Those are the best
predictor and quantizer for this setting, and thus ensure that the
new reconstructed set better approximates the original. Under
reasonable assumptions, this results in a better prediction base
for the next iteration. Consequently, we expect nearly mono-
tonic improvement throughout the process.

Note that the entire design is in open-loop mode since we
compute prediction errors for the entire sequence before quan-
tization. As the distortion is generally decreasing, we expect the
process to approach convergence. Let us next consider the im-
plications of convergence. At convergence, further iterations do
not modify the quantizer and predictor, i.e., , and

, respectively. This immediately implies that the
reconstruction sequence remains unchanged, i.e., ,
and so does the next-vector prediction sequence

(13)

This, in turn, implies that the actual prediction is the same as
if it were based on the reconstruction of the current iteration
(instead of on the reconstruction from the previous iteration.)
In other words, the procedure is asymptotically equivalent to
closed-loop design, but the algorithm is running at all times in
open-loop. The procedure is thus “open-loop” in nature, yet it
converges to optimization of the closed-loop performance.

The ACL algorithm offers means to overcome the central dif-
ficulties that plague earlier PVQ design techniques, and indeed,
simulation results in [10]–[12], as well as the results in this
paper, provide ample experimental evidence of substantial per-
formance gains.

E. Remaining Shortcomings

ACL still suffers from three significant shortcomings in-
volving issues of convergence and suboptimality. First, we
note that the quantizer employed in (12) has only been locally
optimized, which naturally implies potential suboptimality
of the new reconstructed set. Second, although the predictor
and quantizer are jointly optimized, the predictor is optimized
under a simplifying assumption while neglecting its effects
on the quantized prediction error. This is due to the piece-
wise constant nature of the quantizer function which poses
difficulties on optimizing signals to which it is applied (in
particular, gradient-based approaches are precluded). This
implies suboptimality and a consequent negative impact on
convergence. Finally, even if the predictor and quantizer were
truly optimized within an iteration, they would simply ensure
minimum distortion of the new reconstructed sequence. While
it is highly likely that an improved reconstructed sequence that
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better approximates the original provides a better prediction
basis for the next iteration, it is possible that occasionally it does
not. In other words, full convergence is only guaranteed under
the reasonable (yet not completely fail-proof) assumption that
better reconstruction yields better prediction. One should note
in passing that this is mainly an impediment for sample-wise
convergence. In terms of the average over the entire sequence,
under most reasonable statistical models it can be shown by
arguments, based on the law of large numbers, that the prob-
ability of increase in average distortion approaches zero for
long sequences. Indeed, in simulations, we experienced small
limit cycles rather than full convergence, which we mainly
attribute to the first two shortcomings, and only mildly to the
last (for reasons that will become clearer in the sequel). We
note, however, that no serious stability problems have ever been
observed. The above suboptimality and convergence problems
motivate the deterministic annealing method we propose in the
next section.

III. D ETERMINISTIC ANNEALING APPROACH TOPREDICTIVE

VECTORQUANTIZER DESIGN

In this paper, we propose a PVQ design method that signifi-
cantly outperforms all of the methods described in the previous
section. The new approach (DA-ACL) embeds the ACL method
within a deterministic annealing framework. The DA-ACL al-
gorithm we propose does not require initialization of codebooks
or prediction parameters and can avoid many local minima of
the cost surface. Further, due to the probabilistic formulation of
the system, it is easy and natural to directly optimize all system
parameters with respect to the same cost objective, which is the
overall distortion, without recourse to simplifying assumptions.
In particular, effects of the predictor on the reconstruction dis-
tortion via the quantizer module are directly taken into account
as the quantizer is no longer a piecewise constant function.

Our approach is inspired by, and builds on, the DA approach
for vector quantizer design [13], [14]. It is motivated by the
observation of annealing processes in physical chemistry. Cer-
tain chemical systems can be driven to their low-energy states
by annealing, which is a gradual reduction of temperature,
spending a long time in the vicinity of phase transition points.
Analogously, we randomize the encoding rule of the predictive
quantizer system and seek to minimize the expected distortion
cost subject to a specified level of randomness measured by
the Shannon entropy. This problem can be formulated as the
minimization of a Lagrangian functional that is analogous to
the Helmholtz free energy of chemical systems. The degree
of randomness is parameterized by the “temperature” of the
configuration. We start at a high degree of randomness, where
we, in fact, maximize the entropy. Here, the globally optimal
configuration requires that all codevectors be coincident at the
centroid of the source distribution; no initialization of quantizer
or predictor is necessary.

We then track the Lagrangian minimum at successively lower
levels of entropy by recalculating the optimum locations of the
reproduction points and the encoding probabilities at each stage.
At the limit of zero randomness, the algorithm directly mini-

mizes the average distortion cost, and a deterministic encoder is
obtained.

An important objective is to avoid accumulation of errors
due to mismatched quantization through feedback. Adopting the
ACL approach [10], we therefore base our prediction on the re-
constructed vectors of the previous iteration. By basing predic-
tion on an older set of reconstructed vectors, we can, in effect,
remove the feedback of the closed-loop system. As a direct con-
sequence, a monotonic optimization procedure is possible for
jointly optimizing both quantizer and predictor. The details of
the iterative algorithm are described in what follows.

At each iteration, we optimize the predictor and quantizer.
The plain notation ( ) is used to refer to the latest available
values for the parameters of the predictor and quantizer,
whereas their values at the end of the iteration are denoted
( ). Assume that quantizer , at iteration , employs
a codebook of codevectors . For each fixed recon-
struction sequence , we can calculate the total
distortion achievable by the current predictor and quantizer as
follows. For the prediction residual , the
squared error distance from is defined as

(14)

The random quantizer’s encoding rule is represented by condi-
tional probability distribution , which measures the proba-

bility that prediction residual vector is quantized to code-
book entry . The random quantizer is hence specified by the
codebook and the encoding probabilities. The corresponding
joint distribution is denoted .

Once the “hard” quantizer of traditional design approaches is
replaced with the random quantizer, the total (expected) distor-
tion at iteration becomes

(15)

Note that due to this probabilistic framework, the overall dis-
tortion is a differentiable function of all predictor and quantizer
parameters. We minimize the distortion under a constraint on the
entropy which measures the level of randomness of the system.
The entropy of the system is

(16)

In Lagrangian formulation, we minimize

(17)

where the Lagrange multiplier is referred to as “temperature.”
Note that this is exactly the Helmholtz free energy of statis-
tical physics if we define the system energy byand its en-
tropy by . Assuming uniform distribution over the training set

, an expression for the optimal encoding probability
at iteration , can be obtained by setting

(18)
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which yields (after normalization) the Gibbs distribution

(19)

As with VQ design using DA, the association probabilities are
effectively controlled by the temperature. From (19), it can be
seen that high temperature assigns uniform probability associa-
tions. As the temperature is lowered, those association probabil-
ities become more discriminatory and assign higher probability
to nearer codevectors. Hence, (19) is a probabilistic generaliza-
tion of the standard nearest neighbor rule.

The optimal predictor satisfies

(20)

and hence

(21)

where (21) is the probabilistic counterpart of (10) and (11).
Finally, the optimal codevectors must satisfy

(22)

which yields

(23)

This is a generalization of the standard centroid rule. Note that
here utilizes the updated version .

The reconstructed set is updated by running a probabilistic
counterpart to an iteration of ACL. Recall the ACL update rule:

(24)

Thus, the new reconstructed set is an open-loop update of the
previous reconstructed set using the optimized predictor and
quantizer. For the probabilistic quantizer of DA, we can rewrite
(24) as

(25)

where the quantization procedure in DA is equivalent to a
weighted average of all the codevectors in the codebook based
on the conditional probabilities.

In summary, the DA-ACL algorithm (see Fig. 6) revolves
around four important steps.

1) Calculate conditional probabilities.
2) Calculate the optimal predictor.

Fig. 6. Flow diagram for the DA-ACL training procedure.

3) Calculate the optimal quantizer.
4) Update the reconstructed set.

The four steps are explicitly given by (19), (21), (23), and (25)
and are repeated until a convergence test is satisfied. At conver-
gence, the temperature is lowered and the whole process is
repeated. To start the algorithm, a reconstructed set is initialized
(as shown in Fig. 6). In our experiments, the original sequence
was used as initialization. However, this choice is not critical
to the quality of the design. We have tested arbitrary initializa-
tion (with the all zero sequence) as well as initialization with
the OL-reconstruction sequence and observed that although ini-
tialization had an effect on the execution time of the design, it
did not have a significant impact on the quality of the resulting
system.
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(a)

(b)

Fig. 7. Synthetic source GM-A: Average distortion of OL, CL, SD, and ACL
design and the proposed DA-ACL approach to predictive quantizer design at
various bit rates for (a) training set and (b) test set.

Recall the optimality and convergence shortcomings of ACL
enumerated in Section II-E. With respect to the first short-
coming, the proposed DA approach offers substantial means
to avoid poor local optima. Further, it optimizes the predictor
and quantizer jointly with respect to the reconstruction error,
without neglecting the predictor’s impact on the quantized pre-
diction error (thanks to the differentiability of the probabilistic
quantizer). It hence eliminates the second shortcomings. The
only remaining gap in ensuring full convergence is due to step
(4). Equation (25) merely utilizes the current best quantizer
and predictor to generate a new reconstructed set which
more closely resembles the original set subject to the entropy
constraint. Clearly, it is not very probable yet possible that
better reconstruction of a given vector would result in degraded
prediction of the next vector and increased contribution to the
Lagrangian. However, the Lagrangian is averaged over many

(a)

(b)

Fig. 8. Synthetic source GM-B: Average distortion of OL, CL, SD, and ACL
design and the proposed DA-ACL approach to predictive quantizer design at
various bit rates for (a) training set and (b) test set.

samples. In fact, the probability of increase in the overall La-
grangian approaches zero for long sequences. In our simulations
of DA-ACL we have always witnessed monotone nonincreasing
Lagrangian at a given temperature. In particular, the algorithm
always reached complete convergence.

IV. SIMULATION RESULTS

A number of synthetic sources, with different characteristics,
havebeenusedintheexperiments.Fornaturalsources,weuseline
spectral frequency(LSF)parameterswhichwereextractedfroma
speech source. In this section, we give detailed simulation results
to demonstrate the power of the proposed DA-ACL algorithm.

A. Experiment Details

All nonprobabilistic methods, namely, OL, CL, SD, and ACL
employ the particular codebook design variant of GLA, called
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(a)

(b)

Fig. 9. Synthetic source GM-C: Average distortion of OL, CL, SD, and ACL
design and the proposed DA-ACL approach to predictive quantizer design at
various bit rates for (a) training set and b) test set.

selective splitting, which is described in [16]. The selective split-
ting codebook design algorithm initializes a codebook with a
codevector at the centroid of the training set and then proceeds
to selectively split individual codevectors based on criteria in-
volving distortion and entropy. In the current work, fixed rate is
assumed, and thus, the criterion used is only distortion based.
Selective splitting has the advantage of not relying on initial-
ization at the price of additional complexity (which is typically
substantially lower than repeated design with different random
codebook initializations). In addition, when the VQ codebook is
used within a PVQ system, iterative updates to the training set
often render codevectors unused, and selective splitting offers
a natural way to fill the empty cells. The selective splitting de-
sign method was used for all relevant method implementations
to ensure fair comparison.

The complexity of the design varies among the algorithms.
The OL method is essentially the least complex since the

TABLE I
GAIN IN DECIBELS OF DA-ACL OVER

ACL FOR THEVARIOUS SYNTHETIC SOURCEPROCESSES, AT THE DIFFERENT

BIT RATES (INDICATED IN BITS PERVECTOR)

TABLE II
GAIN IN DECIBELS OFDA-ACL OVER CL FOR THEVARIOUS SYNTHETIC

SOURCEPROCESSES, AT THE DIFFERENT BIT RATES (INDICATED IN BITS

PERVECTOR)

training set is unchanged. The CL method is an order of magni-
tude more complex than OL since, with each new training set,
complexity similar to OL is needed for the design. The SD and
ACL methods are of similar complexity, but both are slightly
more complex than CL since the predictor is also optimized.
Finally, the DA-ACL algorithm is considerably more complex
than the ACL method due to the slow annealing process dictated
by DA. However, it is important to note that design complexity
is handled offline. The end result of the design procedure is a
predictor and a quantizer, and thus, the compression runtime
complexity is the same regardless of the design method.

B. Experiments on Synthetic Sources

In the first set of experiments, the proposed DA-ACL
approach is compared to the OL, CL, SD, and ACL methods
on several synthetic sources. Specifically, sources with the
following characteristics were synthesized:

Source GM-A: a six-dimensional (6-D) first-order Gauss-
Markov source with intra-vector and inter-vector correla-
tion coefficients of 0.9;
Source GM-B: a 6-D Gauss-Markov source with intra-
vector and inter-vector correlation of 0.8 and 0.95, respec-
tively;
Source GM-C: a 6-D first-order Gauss-Markov source with
inter-vector correlation of 0.8 and (in an effort to produce
a more realistic source) intra-vector correlation varying
along the components, in the range of 0.5 to 0.95;
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(a)

(b)

Fig. 10. Line spectral frequency parameters: Average distortion of OL,
CL, SD, and ACL design and the proposed DA-ACL approach to predictive
quantizer design at various bit rates for (a) training set and b) test set.

Source LM: a ten-dimensional (10-D) Laplace-Markov
sourcewith intra-vectorand inter-vectorcorrelationof0.95.

The training and test sets consisted of independent sequences of
10 000 and 1000 vectors, respectively. A first-order predictor is
used in the PVQ design.

In Fig. 7, we show the average distortion as a function of
bits per dimension for the source GM-A. It can be seen that the
gains achievable for this source can sometimes be quite small,
and this is due to simplicity of the source which does not pose
an “optimization challenge.” For the more complicated sources,
such as source GM-B and GM-C, gains are much more substan-
tial. The cases of GM-B and GM-C are shown in Figs. 8 and 9,
respectively. The gains in dB for the comparison of DA-ACL
with ACL, for all three synthetic sources, are shown in Table I.
Table II compares our new design approach DA-ACL to CL,
which is the commonly used method for training of PVQ. It is
evident that gains achievable in those complicated sources can

TABLE III
GAIN IN DECIBELS OFDA-ACL OVER ACL FOR THELSF PARAMETER

SOURCE, AT THE DIFFERENT BITRATES (INDICATED IN BITS PERVECTOR)

TABLE IV
GAIN IN DECIBELS OFDA-ACL OVER CL FOR THELSF PARAMETER SOURCE,

AT THE DIFFERENT BITRATES (INDICATED IN BITS PERVECTOR)

be quite significant, ranging from 0.48 to 1.99 dB for the highest
bit rates. It is interesting to note that gains within the training set
increase with increasing rate. This is mainly due to the fact that
at higher rates, more codevectors need to be optimized, and the
strength of the DA approach comes into play as the optimiza-
tion avoids many local optima into which a traditional design
approach would fall.

For the LM source, gains between 0.62 to 1.22 dB were
achieved when comparing DA-ACL to ACL and between 1.42
to 2.19 dB when comparing DA-ACL to CL.

C. Experiments on Line Spectral Frequencies

Several speech coding standards are centered around the en-
coding of line spectral frequency (LSF) parameters. LSF pa-
rameters typically constitute 25 to 50% of the speech coding
rate. In addition, LSF parameters have significant and direct im-
pact on the intelligibility and quality of decoded speech. Thus,
high-quality encoding of LSF parameters is an important objec-
tive, and careful design of PVQ is warranted. A frame of speech
generally includes a 10-D LSF vector that usually exhibits sig-
nificant correlation with previous frames. A common approach
is to use a first- or second-order interframe predictor to remove
such redundancies. In this experiment, we use a first-order pre-
dictor and quantizers that operate at a variety of bit rates.

In Fig. 10, we show the average distortion as a function of
bits per dimension for the LSF source. This bit rate range is
below the standard rates used to code LSF parameters, but we
target this range for simplicity because it is realizable using a
single stage VQ, and the test demonstrates the optimization ca-
pabilities of DA-ACL on a natural source. Again, the training
and test sets consisted of independent sequences of 10 000 and
1000 vectors, respectively. The gains in decibels for the com-
parison of DA-ACL with ACL, and DA-ACL with CL, for the
LSF source, are shown in Tables III and IV, respectively. It can
be seen that DA-ACL may gain over ACL by more than 1 dB
and over CL by more than 2 dB.

V. CONCLUSIONS

This paper describes a new approach to training predictive
vector quantizers, which does not suffer from the statistical
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mismatch typical of OL training algorithms, nor from the in-
stability experienced in CL and SD approaches. The proposed
iterative algorithm is open-loop in nature but asymptotically
optimizes the closed-loop system. A deterministic annealing
formulation of the design problem is presented that allows for
the simultaneous optimization of both predictor and quantizer
while minimizing the reconstruction distortion. Moreover,
the approach avoids many suboptimal local minima. The new
design approach is tested on a number of synthetic and natural
sources and provides significant gains on most sources at
various bit rates.
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