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ABSTRACT

Accurate end-to-end distortion estimation is critical to
efficient rate-distortion (R-D) optimization of encoder
decisions for video transmission over lossy packet
networks. This work focuses on extensions of the
recursive optimal per-pixel estimate (ROPE), which has
been shown to provide accurate end-to-end distortion
estimation. Of particular interest are difficulties due to
sub-pixel prediction and other pixel averaging operations,
for which the existing ROPE encounters cross-correlation
terms, whose exact estimation requires prohibitive storage
and computational complexity. In this paper, we propose
two model-based methods, which approximate the cross-
correlation of two pixels as a function of their available
first and second marginal moments. This allows an
approximate extension of ROPE to handle sub-pixel
prediction and other pixel averaging operations, at no
additional storage cost, and no significant additional
complexity. Simulations provide evidence for the
performance gains of the proposed methods, and in
particular, demonstrate that the resulting accuracy is very
close to that of ROPE when it is optimal, i.e., in the case
of full pixel prediction.

1. INTRODUCTION

A critical concern in video networking is how to
adequately mitigate the impact of packet loss. Rate-
distortion (R-D) optimization has been widely recognized
as an efficient framework for incorporating error
robustness tools in video coding system, and has been
adopted in a variety of error resilient video coding
techniques (see, e.g., [1][2]). While the coding bit rate is
easily controlled by the encoder, the overall end-to-end
distortion is much more elusive and must be accurately
estimated. Much research effort has been dedicated to this
problem in recent years, including [3][4]. Among existing
schemes, the recursive optimal per-pixel estimate (ROPE)
{4] demonstrates superior performance in that it accurately
estimates the end-to-end distortion of decoder
reconstruction by taking into account all the effects of

0-7803-7750-8/03/817.00 ©2003 IEEE

quantization, packet loss, and error concealment. It has
been frequently applied to R-D optimized mode selection
in several video ceding frameworks [4][5][6].

Most existing ROPE related approaches assume
integer pixel motion compensation rather than sub-pixel
prediction, which is known to provide superior
compression performance and has long been adopted by
video coding standards, such as MPEG-4, H.263 and
H.26L [7]. The reason is that sub-pixel prediction
involves bilinear interpolation, which gives rise to infer-
pixel cross-correlation terms in the distortion estimation
process of ROPE. Specifically, in order for ROPE to
exactly calculate its estimate, it is necessary to compute
and store all inter-pixel cross-correlation values in the
frame. This entails prohibitive amount of computation and
storage space, and hence makes it impractical to
implement ROPE in a video coding system with sub-pixel
prediction. Moreover, pixel averaging operations, which
causes those cross-correlation terms, appears not only in
sub-pixel prediction but alse in many other common
circumstances, €.g., bi-directional prediction for B-frames
and EP-frames, deblocking filter, and overlapped block
motion compensation (OBMC) [7]. Therefore, in order to
extend the applicability of ROPE, cross-correlation must
be calculated with manageable complexity.

In fact, this complexity reduction problem has already
been addressed in [B], where cross-correlation
computation was restricted only to a maximal inter-pixel
distance. This approximation is motivated by the fact that
two distant pixels are less likely to be averaged in
practice. However, this appreach still needs to
additionally compute and store a substantial number of
cross-correlation values in advance. If the cross-
correlation of two pixels beyond the maximal distance is
needed, it must revert to assuming them uncorrelated,
which compromises the estimation accuracy.

The research goal of this work is to seek better
approaches to approximate inter-pixel cross-correlation so
as to enhance the practical applicability of ROPE. In this
paper, two schemes are proposed, stemming from two
differing model assumptions. The schemes approximate
the cross-correlation as the function of the marginal
moments of the two pixels, which are available (see
ROPE in [4]). Therefore, they require no additional
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storage space. Moreover, as the computation is only
performed whenever a specific cross-correlation value is
needed, there is no redundant computation for possibly
unused cross-correlation values, as would be necessary if
one were to recursively estimate the cross-correlation.
Simulation results demonstrate the high approximation
accuracy of the approaches.

The paper is organized as follows. Section 2 explains
the necessity of cross-correlation estimation in applying
ROPE with half-pixel prediction. Section 3 details the
proposed model-based cross-correlation approximation
schemes. Simulation results are summarized in Section 4.

2. ROPE AND SUB-PIXEL PREDICTION

ROPE was originally proposed in [4] as an efficient
means to accurately estimate at the encoder the end-to-end
distortion. Assuming mean-squared-error (MSE), the end-
to-end distortion is:

dy = E((f{ = J)%) 0
=(fD? =2 LB+ EHD,

where £ and f, denote the original value and decoder
reconstruction value of pixel / in frame », respectively.
Note that due to possible packet loss the decoder
reconstruction is viewed at the encoder as a random
variable.

As there is no motion compensated prediction in Intra
macro-block (MB) coding, we will only focus on the case
of Inter mode MB’s. For simplicity but without implied
loss of generality: (a) We model the channel as a
Bernoulli process with packet loss rate p. (b) We assume
that data of one frame are carried in one packet. Hence,
the pixel loss rate equals the packet loss rate. (c) We
assume that to conceal a lost frame it is simply replaced
by the previous reconstructed frame. As in [4], the
moments in (1) are computed recursively by

Efut == p)- @+ EUL D+ p- B @

BN == (@ +2BELL B
+p E{U0).

Here, ! is the quantized prediction error, and pixel i in

frame n is predicted by pixel j in frame n-1 (given the

motion vector).

While H.263 employs half-pixel prediction, in the
most recent H.26L standard, sub-pixel prediction has
advanced to quarter-pixel accuracy or even better. For
simplicity, we restrict the analysis to half-pixel prediction

in H.263+ as illustrated in Fig.l [7]. (Here CTRL is a
contrel parameter with the value of 0 or 1).
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X a (@] b X

% Integer pixel position
le) O QO Half pixel position
¢ d
a=A

%4 X b=(A+B+1-CTRL)/2

c p ¢=(A+C+1-CTRL)/2

d=(A+B+C+D+2-CTRL)/4
Fig.1 Half-pixel prediction by bilinear interpolation

Assume that pixel [ in frame # is predicted by a half
pixel in frame n-1, e.¢. b as in Fig.1, the 1* and 2" order
moments of b would be

Elb} = [E{A}+ E{B} +1-CTRL]/2 )
E{b?y =[(1-CTRL)? +2-(1 - CTRL)-(E{ A} + E{B}) )
+ E{A%} + E{B}Y +2. E{4- B4,

As usual, tilde indicates decoder reconstruction. While
(4) can be exactly computed with the already available 1%
order moments of the integer pixels A and B, we have to
additionally estimate the new quantity E{Z : 5} in (5), i.e.
the cross-correlation between A and B. Basically, the
presence of cross-correlation is due to the pixel averaging
operation, which appears not only in sub-pixel prediction,
but also elsewhere as explained in Section 1. It is not
difficult to see that exact computation of the needed
cross-correlation for the current frame may require the
availability of all the cross-correlation terms in previous
frames, and hence entails too much complexity for
practical video coding systems.

3. MODEL-BASED CROSS-CORRELATION
APPROXIMATION

The basic idea is to approximate the cross-correlation
between two pixels by a functien of the available I and
2" order marginal moments. Consequently, there will be
no additional storage requirements and only minimal
additional computational complexity.

We formulate the problem quantitatively and consider
two models to capture inter-pixel dependence.

Approximate £{XY}, given E{X}, E{Y},E{X*},E{Y?}. (6)

Model I : X =a+bY,
where @, b arc unknown constants, b20. O]
Model IE: X = N +5bY .
b is constant. N is a zero-mean random variable,
and is independent of Y. (8)
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Given a model assumption, the cross-correlation
between X and ¥ can be expressed in terms of the
marginal moments as follows.

For Model I:
EIXY}=E{X} E{Y}+06, -0y. )
For Model II:
E{n}:i{_’\,_}.g{yz},with-ﬂ—zﬂ—- (10)
E{Y) E{X}  EY

Here o - and @y are the standard deviations of X and Y,

respectively. Note that in Model I, b is assumed non-
negative simply because X, Y are two pixels. The
ineguality condition in (10) is for notational convenience
and simply determines which of the two pixels should
play the role of X or Y in the righthand side of (10).

As a practical note, due to error propagation it is
worthwhile to apply reasonable bounds on the estimated
values. One obvious fact, which can be used to bound the
quantities, is that the pixel value should be within the
range of 0~255. Cross-correlation can be further bounded
by Schwarz inequality as

E{XY}S\/E{Xz}E{Yz} : (n

4. SIMULATION RESULTS

Our simulation setting is based on the UBC H.263+ codec
[9). A sequence is encoded into an H.263 bitstream given
the packet loss rate and total bit rate. The bitstream is then
decoded with a packet loss pattern that is randomly
generated at the prescribed packet loss rate. In the
experiments, we use 50 different packet loss patterns.
Half-pixel prediction is employed at the encoder,

The proposed two model-based approximation
techniques are labeled “Model [ and “Model 117,
respectively. The method that ignores inter-pixel
correlation is denoted by “Model 07, where cross-
correlation is assumed to be the product of the means of
two pixels. “Full Pel” stands for the method, which
approximates half-pixel prediction simply by integer pixel
prediction as in [4]. “Actual” in Fig.2a is the real average
PSNR result at the decoder. In Fig.2b, we also provide the
result of ROPE where the encoder uses integer pixel
prediction. This actually demonstrates the best estimation
setting for ROPE, and is thus labeled as “Performance
Bound™.

Fig.2 shows the distortion estimation performance of
ROPE given different cross-correlation approximation
schemes. In these tests, an MB is coded into Intra moede
once per 1/p frames, where p is the packet loss rate. In
Fig.2a, it is obvious that the proposed “Model 11" method

has the best end-to-end distortion estimation accuracy
among all the tested schemes. In Fig.2b the absolute
PSNR difference between the estimated and actual end-to-
end distortion is given versus packet loss rate, We can see
that the performance of “Model 11" approaches the
performance bound of ROPE very closely. Also, both
proposed methods achieve better estimation accuracy than
that of the “Model 0” method.
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Fig.2 Estimation performance comparison. Periodic
Intra updating, “foreman”, QCIF, 301s, 200kb/s, 1™
150 frames. (a) p=5%.

As is well known, performance gains can be achieved
by applying half-pixel prediction. In Fig.3, we compate
the performance improvement achieved by different cross-
correlation approximation schemes. The curves provide
the gains of ROPE with half-pixel motion compensation
relative to ROPE with integer pixel motion compensation.
It is easy to see that both proposed approximation
schemes consistently achieve better performance gains
than the other two methods. Note that the result of “Full
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Pel” is the result of ROPE as proposed in [4]. Hence, we
conclude that accurate approximation of cross-correlation
guarantees the performance improvement of applying
ROPE with half-pixel prediction. More gencrally, the
practical applicability of ROPE is significantly enhanced
by the proposed approximation techniques.
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Fig.3 Performance improvement comparison. R-D
optimized Intra/Inter coding mode selection, QCIF,
30f/s, 1% 150 frames. (a) “foreman™, 200kb/s. (b)
“miss_am”, 100kb/s.

5. CONCLUSION

In spite of the remarkable performance of ROPE on end-
to-end distortion estimation, its applicability in practical
video coding systems is limited by the open problem of
cross-correlation estimation, which is encountered in
many common circumstances of video coding invelving
pixel averaging operations. In this paper, we propose two
model-based schemes to approximate the cross-correlation
with a function of the marginal moments (available
quantities). The proposed methods are efficient in that
there is no additional storage requirements and minimal
additional computational cost. More notably, the end-to-

end distortion estimation accuracy with the proposed
approximation is strikingly close to the ROPE
performance bound.
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