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ABSTRACT
This paper is concerned with open questions and modifi-
cations to expand the applicability of the recursive optimal
per-pixel estimate (ROPE) of end-to-end distortion, which
are particularly relevant to H.264. One open question in-
volves the emergence of cross-correlation terms in the case
of sub-pixel prediction or other pixel filtering operations.
A new and improved low-complexity approximation is pro-
posed, which accounts for the inter-pixel distance. Another
open question involves the commonly ignored effects of round-
ing and clipping. The cumulative impact of rounding on
the distortion estimate is shown to be extensive at low to
medium packet-loss rates. Two schemes are proposed for
effective rounding and clipping error compensation. Sim-
ulation results for H.264 with 1/4-pel prediction show that
the revised ROPE maintains low complexity and achieves
estimation accuracy that closely matches that of ROPE in
the simpler case of full-pixel prediction, where it is optimal.

1. INTRODUCTION

It is widely recognized that end-to-end distortion estima-
tion, coupled with rate-distortion (RD) optimization, offers
an efficient means to achieve error resilience in applications
involving video streaming over networks. The performance,
however, critically depends on the estimation accuracy. In
the case of live video streaming, one may exploit modifica-
tions to the source coding module, which typically involve
block or pixel-based estimation schemes [1] [2].

Of particular interest here is the recursive optimal per-
pixel estimate (ROPE), which achieves superior distortion
estimation accuracy [2]. We explore open questions regard-
ing the applicability of ROPE in general. One question in-
volves the estimation of cross-correlation terms, which arise
in ROPE due to various standard pixel-filtering operations
[2]. Some preliminary work on cross-correlation approxi-
mation (CCA) appeared in [3]. Here we revisit this problem
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and propose a more effective scheme which explicitly ac-
counts for the inter-pixel distance.

We identify another largely overlooked issue, namely
the rounding error, whose impact has long been considered
insignificant, and hence neglected in end-to-end estimation.
We show that, although negligible in terms of impact on re-
construction quality, rounding errors may greatly impact the
estimation accuracy as they accumulate through the predic-
tion loop. We hence propose two approaches for rounding
error compensation (REC).

Finally, it is important to emphasize that although we fo-
cus attention on the sub-pixel prediction setting, both CCA
and REC are concerned with problems that are inherent to
“per-pixel” end-to-end distortion estimation in general. In
fact, we believe that CCA and REC as proposed here effec-
tively open the door to practical utilization of ROPE in the
context of H.264, and offer the benefits of ROPE at the cost
of only modest increase in complexity.

2. CROSS-CORRELATION APPROXIMATION

The accuracy of ROPE in end-to-end distortion estimation
is attributed to its ability to calculate the 1st and 2nd mo-
ments of decoder reconstructed pixels, while accounting for
all relevant factors including quantization, packet loss, er-
ror propagation and error concealment [2]. However, sub-
pixel prediction involves interpolation of neighboring pix-
els [4], which gives rise to cross-correlation terms in the
2nd moment calculation. In the worst case this may require
calculating and tracking cross-correlation for all pixel pairs
in the frame, and incur impractical complexity. In [3] we
proposed to perform CCA, using only the readily available
marginal moments, thereby maintaining the low complexity
of basic ROPE. we refer to these simple models as (see [3]
for details): Model 0: no correlation; Model I: maximum
correlation; and Model II: linear model with additive noise.

In this paper we propose an improved CCA model whose
motivation stems from the realization that CCA must ben-
efit from exploiting knowledge of the inter-pixel distance.
Intuitively, one expects the correlation to decay with the dis-



tance between pixels, and it is worthwhile to account for this
within the model. In the specific case of H.264, the inter-
pixel distance may range from 1/2 to 5, due to 6-tap filtering
[4]. We note that the spatial random field of a source image
has been modeled with the isotropic exponentially decay-
ing autocorrelation function [5]. In a similar fashion, we
propose a distance-adaptive CCA model as follows.

Model III: distance-adaptive correlation

ρXY = exp(−α · dXY ), (1)

where, dXY is the Euclidian distance between two decoder
reconstructed pixels X and Y , and α is a constant, whose
value can be experimentally obtained from training data (typ-
ically 0.04-0.06). Note that (1) models the correlation coef-
ficient ρXY . With the 1st and 2nd moments of X , Y read-
ily available through ROPE, the cross-correlation E[XY ]
is trivially obtained. Finally, E[XY ] is further bounded by
Schwartz inequality as was proposed in [3].

3. ROUNDING ERROR COMPENSATION

An important, yet largely neglected, issue in end-to-end es-
timation is that of rounding error. Rounding is typically em-
ployed whenever pixel filtering or averaging operations pro-
duce floating point outputs. In H.264, rounding operations
are encountered in sub-pixel prediction, weighted predic-
tion, in-loop filtering, etc.

Rounding can be viewed as a special case of uniform
quantization with quantization step size of one unit, and
where the quantized value is the nearest integer. The round-
ing error is ∆ =< X > −X , where < · > denotes the
rounding/quantization operation and X is the input random
variable. If X is a continuous random variable, then basic
quantization theory states:

σX → 0 : ∆ →< E[X] > −E[X], (2)
σX À 1 : E[∆] ' 0, E[∆2] ' 1/12. (3)

¿From (2), we see that in the case of small σX , the rounding
error tends to some typically non-zero value that is deter-
mined by E[X]. Note that in video coding, this non-zero
rounding error may be propagated via inter-frame predic-
tion, and accumulate to seriously degrade end-to-end esti-
mation.

Herein, we propose two approaches to rounding error
compensation (REC). To maintain low complexity, we only
use quantities made available by basic ROPE. We hence
pose the general problem:

• Let Y =< X >, where X is a random variable with
known moments E[X], E[X2]. Estimate E[Y ], and
E[Y 2].

Our first approach appeals to the maximum entropy prin-
ciple (MEP) [7]. Specifically, we estimate the distribution
of X as the one that maximizes the entropy while maintain-
ing the given E[X] and E[X2]. It is then straightforward to
calculate E[Y ] and E[Y 2]. Note that in H.264, due to the
particular 6-tap (1/2 pel) and bilinear (1/4 pel) filtering, the
input X , or the filter output, is not continuous but discrete
and takes value in a 1/32-grid or 1/2-grid, respectively [4].
MEP directly yields the Gibbs distribution. However, since
the 1/32-grid represents a fairly high resolution, we approx-
imately treat 1/2-pel prediction X as a continuous random
variable, where MEP yields the Gaussian distribution. Thus,
the MEP-based REC approach yields:

• for 1/2-pel prediction:

X∼N(µX , σ2
X) (4)

• for 1/4-pel prediction:

p(xi) =
1
Z

exp (− (xi − µ)2

2σ2
). (5)

In (4), µX and σ2
X are the known mean and variance of X .

In (5), Z is the normalization coefficient, while the µ and σ2

parameters are chosen such that p(x) satisfies the prescribed
1st and 2nd moment constraints.

The second approach originates in quantization theory
(QT). Specifically, we have: E∆ = EY − EX , and

σ2
∆ = (σY − ρXY σX)2 + (1− ρ2

XY )·σ2
X . (6)

For σ2
X ≥ σ2

∆, we deduce from (6) that:

|ρXY | ≥ A, where A =

√
1− σ2

∆

σ2
X

. (7)

For large σ2
X (σ2

X À 1), we can reasonably assume that: (i)
∆ is uniformly distributed, and (ii) ρXY is positive. Hence,
we simply assume ρXY ' A. For small σ2

X , we may round
E{X} directly. Thus, we have the QT-based REC ap-
proach:

1. If σ2
X > β:

E[Y ] = E[X] + E∆, σ2
Y ' σ2

X − σ2
∆. (8)

2. otherwise:

E[Y ] '< E[X] >, σ2
Y ' σ2

X , (9)

where β is an experimentally defined threshold (typically
0.2-1.2). Note that σ2

Y in (8) can be derived by plugging
ρXY ' A of (7) into (6). Finally, we determine E∆ and
σ2

∆ depending on the prediction cases: For 1/2-pel predic-
tion: E∆ = 0, σ2

∆ = 1/12. For 1/4-pel prediction: E∆ =
−1/4, σ2

∆ = 1/16.
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Fig. 1. Estimation performance vs packet loss rates. (Carphone: QCIF, 15f/s, 100kb/s)

We note that clipping also introduces an error that may
impact estimation similarly to rounding. The MEP-based
approach is extendible in a straightforward manner to han-
dle clipping error compensation (CEC). In simulations we
observed that clipping does not cause as much damage as
rounding and hence CEC appears less significant. Never-
theless, MEP-based REC/CEC is superior in principle, and
its gains may become significant for other video sequences
or operating points.

4. SIMULATION RESULTS

The purpose of this section is to evaluate the estimation ac-
curacy offered by the proposed enhancements. For space
constraints we restrict attention to estimation performance
evaluation while the obvious applicability to improve the
overall coding efficacy is not covered herein. Estimation
performance will be measured by:

φ = mean(|di
n,Est − di

n,Dec|)/mean(di
n,Dec). (10)

Here, di
n,Est and di

n,Dec denote respectively the distortion
estimate at the encoder and actual decoder distortion (av-
eraged over many channel simulations) at pixel i of frame
n.

We used the JM9.0 H.264 codec with 1/4-pel predic-
tion. In the experiments, we adopted periodic Intra updat-
ing, which enforces Intra coding of fraction p of the MB’s
in each frame (where p denotes the packet loss rate.) 200
randomly generated packet loss patterns were applied to
the coded bitstream, and average MSE distortion is com-
puted for each pixel of each frame in order to obtain the
performance measure φ. We tested four CCA methods, de-
noted “CCA0”-“CCA3”, which correspond to the four mod-
els enumerated in Section 2. For REC, we tested the pro-
posed MEP-based (“MEP”) method and QT-based method
(“QT”). We also examined the performance of a simplified
version of “QT” (denoted “sQT”) which only employs (9).
For benchmarking purposes: i) When the coder employs

full-pel prediction ROPE is optimal (no CCA or REC is-
sues) and this provides an estimation performance bound
(denoted “P. Bound”.) ii) A brute-force benchmark denoted
“Dec30” [6], has the encoder calculate average distortion
exhaustively via 30 runs of decoding simulation with differ-
ent loss patterns. (Note that its estimation error is essentially
due to the limit on decoding runs.) iii) For completeness we
also provide the ROPE performance when it simplistically
assumes full-pel prediction for distortion estimation, ignor-
ing CCA and REC, a version that appeared in the original
ROPE paper [2] (denoted “Full”),

In Fig. 1 (a), we see that, relative to “Full”, CCA im-
proves estimation accuracy and achieves good performance
at medium to high packet loss rates (e.g., p ≥ 10%). How-
ever, its performance is poor at low packet loss rates. At p ≤
2%, we note the catastrophic deterioration in performance
of CCA-only ROPE methods. However, this severe prob-
lem is eliminated by handling REC (here by QT REC). This
result clearly demonstrates the significance of the rounding
error problem at low packet loss rates, and the efficiency of
the proposed REC solution.

Fig. 1 (b) provides a “close-up” look to compare the var-
ious CCA models, here in conjunction with QT REC. We
see that all models except CCA0 perform well and approach
the bound “P. Bound”. Moreover, they significantly outper-
form Dec30. Note also that CCA3 is consistently the best
performing model, which shows the importance of inter-
pixel distance to correlation approximation. (As a side note,
the superiority of ROPE itself can be clearly seen from the
gains of “P. Bound” over Dec30.)

Adopting CCA3, we provide a comparison of various
REC methods in Fig. 1 (c). We note that the most naive sQT
REC offers substantial performance gains. We further see
that by proper handling of large variance cases (QT CCA3)
results in further improvement. Interestingly, the accuracy
of QT CCA3 is often somewhat better than that of the MEP
CCA3. (This suggests that the first and second moment con-
straints do not capture all the information available for the
distribution estimation, hence hindering MEP). Given the



Table 1. Estimation performance with various sequences. (15f/s, 100kb/s, p = 5%)

φ (%) Miss am Mthr dotr Salesman Coastguard Carphone Foreman Stefan
P. Bound 15.18 10.66 8.86 12.02 13.73 12.70 13.00

Dec30 30.03 25.89 24.86 24.06 34.86 36.61 28.34
QT CCA0 52.73 42.52 34.66 41.62 50.60 54.46 41.36
QT CCA1 24.04 19.39 15.23 21.50 19.70 17.80 19.73
QT CCA2 26.22 20.66 15.20 17.33 22.51 21.40 16.24
QT CCA3 20.03 17.06 13.04 16.26 17.50 15.46 15.46
sQT CCA3 24.12 23.34 15.79 21.37 20.28 16.63 16.03
MEP CCA3 21.63 18.98 13.89 21.32 20.14 16.78 15.92

extremely low complexity of QT REC, we believe that at
this point it is the leading candidate for adoption.

Table 1 shows the performance with various sequences.
Clearly, QT CCA3 outperforms all the other CCA REC com-
binations. Moreover, its performance is always consider-
ably better than that of Dec30.

Finally, we emphasize that the improved ROPE method
poses no serious complexity concerns in practice. Run-
ning with Pentium IV 3.0GHz CPU and 504MB RAM, we
observed that the total encoding time of ROPE with QT
CCA3 is 2.3-2.6 times that of the standard. In terms of
storage/memory, the standard uses 1 byte per integer pixel,
while ROPE additionally needs 8 bytes to store the 1st and
2nd moments in floating point.

5. CONCLUSIONS

In this paper we considered problems that pose practical
obstacles on the general applicability of ROPE. One is the
emergence of cross-correlation terms in the estimate. Other
problems involve proper accounting, within the recursive
estimate, for rounding and clipping operations and their cu-
mulative impact. We propose low-complexity solutions to
these problems and demonstrate by simulations (H.264 with
1/4-pel prediction) that while these problems are highly sig-
nificant, they can be overcome in practice to substantially
enhance estimation performance. The proposed modifica-
tions make ROPE a powerful tool to achieve the error re-
silience potential of H.264.
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