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ABSTRACT

The recursive optimal per-pixel estimate (ROPE) is an effec-
tive end-to-end distortion estimation scheme. Most existing
ROPE-based applications assume that: (i) the encoder knows
exactly the actual packet loss rate and (ii) the decoder error
concealment scheme; (iii) no deblocking in-loop filtering is
employed. However, in practice, these assumptions may not
all be valid. In this paper, we investigate the impact of mis-
match between assumed and actual conditions on the perfor-
mance of ROPE and corresponding rate-distortion optimized
coding mode selection. Useful conclusions are drawn from
extensive experimental results.

1. INTRODUCTION

The recursive optimal per-pixel estimate (ROPE) [1] is an
effective means to accurately estimate end-to-end distortion
(EED) in live video streaming applications, e.g., video tele-
phony and conferencing. When compared with other EED es-
timation schemes (most notably block-based approaches [2]),
ROPE is provably optimal and in practice achieves superior
estimation performance. Hence, it has been applied in a large
variety of rate-EED (REED) optimization techniques to im-
prove the error resilience of video coding.

While the original ROPE was mainly proposed for full-
pixel motion compensation [1], several schemes have since
been proposed to circumvent the computational difficulties
associated with estimating cross-correlation terms, so as to
extend ROPE to accommodate sub-pixel prediction [3] [4]
[5] [6]. In [5], we proposed low complexity and effective
solutions to not only estimate cross-correlation, but also com-
pensate for the impact of rounding error on EED estimation
(a largely overlooked issue in the literatures). With these
advances, ROPE was extended to EED estimation while ac-
counting for pixel-averaging (or filtering) operations includ-
ing, in particular, sub-pixel prediction, weighted prediction,
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Intra prediction, overlapped block motion compensation, lin-
ear transforms, and a large variety of error concealment schemes.

Most existing ROPE-based methods make three common
simplifying assumptions: (i) the encoder knows the exact packet
loss rate (PLR) of the channel; (ii) and the decoder error con-
cealment (EC) scheme; (iii) no deblocking in-loop filtering
(DIF) is employed. The latter is because in H.264/AVC DIF,
one has to threshold absolute difference of block boundary
pixels to determine the actual pixel-filtering operation to be
conducted [7]. How to accurately account for this within
ROPE is still an open issue. However, in practice, some or
all of the above assumptions may not hold. Firstly, due to en-
coding delay, decoder feedback delay, and loss rate estimation
error, the encoder may not know the exact current PLR when
the frame is encoded. Secondly, there exist complicated EC
schemes that cannot easily be accommodated in ROPE, e.g.
various iterative EC schemes. Thirdly, DIF not only reduces
blockiness artifact, improves coding efficiency, but also inher-
ently reduces error propagation from packet loss, due to its in-
volved pixel-averaging operations. Besides, DIF is already a
normative feature in H.264/AVC. Therefore, more often than
not, it will be employed in practical video coding systems.

As such, in this work, we investigate the impact of PLR,
EC, and DIF mismatch on the estimation performance of ROPE
and, furthermore, the performance of ROPE-based REED cod-
ing mode selection. To the best of our knowledge, the only
prior work touching on this question is [8], which consid-
ers the impact of PLR mismatch on their proposed variant
of ROPE-based REED mode selection.

It is important to emphasize that this work focuses on the
impact of mismatch on ROPE simply because ROPE is a lead-
ing EED estimation technique. However, it is obvious that
mismatch is expected to generally compromise any EED es-
timation technique.

2. MISMATCH IMPACT ON EED ESTIMATION BY
ROPE

Consider the extended ROPE scheme of [5], where inter-pixel
distance adaptive cross-correlation approximation (CCA) and
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Fig. 1. Distortion estimation performance with PLR mis-
match. Carphone, 100kb/s, Intra ratio= 5%, (a) in relative
estimation error, (b) in absolute estimation error.

quantization theoretic rounding error compensation (REC) are
employed. CCA and REC enable ROPE to accurately account
for any pixel-filtering operations. In the experiments, we only
include 1/2-pel and 1/4-pel prediction as an example, and nei-
ther Intra-prediction nor weighted prediction is involved. We
first investigate how the three types of mismatch affect the
EED estimation performance of ROPE.

We used the JM9.0 H.264/AVC codec [9]. For each se-
quence, only the first frame is coded as I-frame, and all the
remaining frames are coded as P-frames. The other encoding
settings are: using single reference frame, all the H.264/AVC
available macro-block (MB) coding modes of I- and P-frames
enabled, using the JM9.0 none rate-distortion (RD) optimized
mode decision option and the JM9.0 random Intra updating
scheme. Each frame was packed into one packet for trans-
mission. At the decoder, the default EC scheme is the simple
copy-from-previous-frame (or so-called frame-copy) scheme.

500 randomly generated packet loss patterns were applied
at each PLR, and the actual average distortion was computed
for each pixel of each frame. Estimation performance is mea-
sured by the “distortion error ratio” defined as:

φ =

∑
n

∑
i |di

n,Est − di
n,Dec|∑

n

∑
i di

n,Dec

. (1)

Here, di
n,Est and di

n,Dec denote, for pixel i of frame n, the
distortion estimated at the encoder, and the actual decoder
distortion averaged over all loss patterns, respectively. We
will refer to the enforced Intra MB ratio per frame as “Intra
Ratio”, and denote the PLR by p. All our testing sequences
are QCIF with 15f/s, and only the first 150 frames of each
sequence are coded.

2.1. PLR Mismatch

Fig. 1 gives the PLR mismatch results. From Fig. 1 (a), the
most serious degradation in terms of relative EED estimation
error happens at low PLR, e.g. 1 ∼ 5%, which is overesti-
mated. It should be noted that the estimation error itself be-
haves in a fairly symmetric fashion but when normalized with
the actual decoder error, as per (1), its impact is seen to be
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Fig. 2. Distortion estimation performance with EC mismatch.
Carphone, 100kb/s, (a) Intra ratio= 5%, (b) p = 5%.
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Fig. 3. Distortion estimation performance with DIF mis-
match. Carphone, 100kb/s, (a) Intra ratio= 5%, (b) p = 5%.

more pronounced in the above circumstances. This is verified
in Fig. 1 (b), where the un-normalized absolute estimation
error is depicted. Therefore, overall, in terms of relative es-
timation error φ, more significant performance degradation is
experienced at low PLRs.

2.2. EC Mismatch

Performance with EC mismatch is shown in Fig. 2. The en-
coder always assumes that the decoder employs frame-copy
EC. We tested the performance where the decoder employs
either frame-copy EC (as assumed by the encoder) or motion-
copy EC (as an example for EC mismatch). Motion-copy EC
replaces a lost frame while employing motion-vectors from
collocated MBs in the previous frame to motion compensate
and conceal MBs in the current frame [10]. The results show
that EC mismatch also compromises estimation accuracy, al-
though not as severely as PLR overestimation at low PLRs.

2.3. DIF Mismatch

Fig. 3 presents the DIF mismatch results. Here ROPE as-
sumes (for simplicity) that no DIF is employed, while in real-
ity DIF is employed at various levels of filtering strength. De-
blocking filtering strength is given by the threshold table off-
set, ranging from−6 (lowest filtering strength) to +6 (highest
filtering strength) [7]. Herein, “No deblocking” denotes the
case of no DIF mismatch, while “Deblock −6”∼“Deblock
+6” denote the mismatch cases at different DIF strength lev-
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Fig. 4. REED mode selection performance with PLR mis-
match. 100kb/s, (a) Carphone, (b) Foreman.

els. The estimation performance is degraded with DIF mis-
match, and the degradation increases with DIF filtering strength.
Also, similarly to EC mismatch, the degradation is not as se-
rious as in the case of PLR mismatch.

3. MISMATCH IMPACT ON ROPE-BASED CODING
MODE SELECTION

Next, we investigate how the above types of mismatch will
affect the performance of ROPE-based coding mode selec-
tion. As mentioned in Section 1, a major application of ROPE
is in the general and effective REED framework, where se-
lection of various encoding parameters (or options) may be
optimized for the best REED trade-off, and thereby improve
error resilience. These coding parameters may include MB
coding mode, motion vectors, prediction reference frames,
and quantization step sizes, etc. As an example, we only fo-
cus on MB coding mode selection. This problem is usually
formulated as independently selecting the best coding mode
for each MB/block to minimize the REED Lagrangian cost.
In the experiments, the source coding distortion of the con-
ventional “non-error-resilient” RD optimized mode selection
scheme of JM9.0 was simply replaced with ROPE-estimated
EED for REED optimization [9]. At the decoder side, aver-
age PSNR over 500 packet loss patterns for each PLR is cal-
culated to measure the overall system performance. All the
other settings are kept the same as in Section 2.

3.1. PLR Mismatch

Results with mismatched PLR are shown in Fig. 4. The first
observation is that mismatched p does not necessarily yield
worse performance. In fact, the highest PSNR is always achieved
by slightly overestimating p. To understand this result, we
emphasize that in most existing REED schemes (including
in our experiment), coding parameters (in our case the MB
coding mode) are optimized for each frame without consid-
ering future frames. However, due to motion compensated
prediction, inter-frame dependency inherently exists in video
coding, which implies that MB coding mode decisions in the
current frame will affect the REED Lagrangian cost, and thus,
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Fig. 5. REED mode selection performance with DIF mis-
match. Carphone, (a) 100kb/s, (b) p = 5%.

MB coding mode decisions in the following frames. Hence,
this “zero delay” REED is only locally optimal, but not glob-
ally optimal. Existing efforts on more globally optimal (de-
layed decision) coding parameter selection can be found in
[11] for non-error-resilient RD coding, and [12] for REED
coding methods, where coding parameters of a group of frames
are jointly optimized. Intuitively, to account for inter-frame
dependency, EED in one frame should carry more weight
(than 1) in calculating the REED Lagrangian cost so as to ac-
count for its propagation impact in the following frames. This
is somewhat equivalent to overestimating EED. On the other
hand, overestimated p yield overestimation of EED. With EED
“properly” overestimated, overall REED performance may be
improved. One can also observe that performance will de-
grade with excessive overestimation of p.

3.2. EC Mismatch

To investigate the EC mismatch impact on REED mode se-
lection, we again use motion-copy EC as the mismatched EC
scheme at the decoder. The results are summarized in Ta-
ble 1. We can see that except for Carphone, applying motion-
copy EC at the decoder, although mismatched, always yields
better performance than that of applying the matched frame-
copy EC. In experiment, we also evaluated the effectiveness
of the two different EC schemes for different sequences with-
out REED, and found that motion-copy EC outperforms frame-
copy EC for all the sequences except Carphone. The bottom
line is clearly that the impact of mismatch here is much less
significant that the relative effectiveness of the EC methods
themselves.

3.3. DIF Mismatch

As for DIF mismatch, in Fig. 5, we directly give the average
PSNR gains of the cases with DIF mismatch over those with-
out DIF (and without mismatch). Obviously, DIF mismatch
does not necessarily lead to degraded PSNR performance. For
deblocking strength between −3 and +3, DIF mismatch usu-
ally yields better performance than that without mismatch.
One reason for this result is that pixel-averaging operations
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Table 1. REED mode selection performance with EC mismatch on various sequences. p = 5%, Stefan and Football: 200kb/s,
others: 100kb/s.

PSNR (dB) Miss am Mobile News Carphone Table Foreman Stefan Football

Frame-copy (matched) 40.26 26.00 35.28 32.00 30.55 29.77 25.42 27.73
Motion-copy (mismatched) 40.65 27.44 35.35 30.76 31.23 30.28 26.03 27.79

Gain of Motion-copy +0.39 +1.44 +0.07 -1.24 +0.68 +0.51 +0.61 +0.06

in DIF generally have the effect of reducing error propagation
from packet loss, and thus, improves error resilience. More-
over, for the same reason, DIF mismatch usually yields EED
overestimation. The earlier overestimation argument suggests
that the resultant performance degradation will not be exces-
sive. Overall, it is clear that the benefits of employing DIF at
mild strength at least outweigh any damage due to mismatch.

4. CONCLUSIONS

In this paper, we examined the impact of PLR, EC and DIF
mismatch on ROPE-based EED estimation, and found that all
types of mismatches will compromise the estimation perfor-
mance. As an application example, we then investigated the
impact on REED coding mode selection. We observe that the
mismatch does not necessarily translate into significant degra-
dation of the overall REED coding performance. In particu-
lar, some overestimation of the PLR often improves overall
performance, a phenomenon that we attribute to an effective
compensation for the fact that coding decisions neglect the
impact of loss on future frames.

An important direction for future study is developing ef-
ficient and effective techniques to directly and optimally mit-
igate the various mismatch impacts on distortion estimation,
which will guarantee the reliability, and thus, applicability of
ROPE in a broader spectrum of practical settings.
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