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Abstract—This paper is focused on expanding the applicability
of the recursive optimal per-pixel estimate (ROPE) of end-to-end
distortion, to the H.264/AVC standard. One open question involves
the complexity of cross-correlation terms that appear in the case
of subpixel prediction and other pixel filtering operations. Several
efficient model-based solutions are proposed. Another open ques-
tion involves the largely ignored effects of rounding operations,
whose cumulative impact may seriously degrade the estimate ac-
curacy. Two approaches are proposed for rounding error compen-
sation: one appeals to the maximum entropy principle, while a low
complexity alternative is based on quantization theoretic approx-
imations. The former effectively estimates the distribution of the
decoder reconstruction, thereby significantly broadening the ap-
plicability of ROPE to all additive distortion measures. Simulation
results for H.264/AVC with 1/4-pel prediction show that the pro-
posed ROPE extensions achieve fairly high estimation accuracy,
while maintaining low complexity. Another set of results demon-
strates the level of overall coding gains achievable by exploiting
such improved end-to-end distortion estimation.

Index Terms—Coding mode selection, end-to-end distortion,
error resilience, video coding.

I. INTRODUCTION

END-TO-END distortion (EED) estimation is a central
component in many techniques that employ rate-distor-

tion (RD) optimization for error resilience in video networking
applications. In live video streaming applications (e.g., video
telephony/conferencing), error robustness is typically achieved
via encoding decision optimization involving various coding
parameters or options [1]–[4]. While it is straightforward to
find the exact bit rate cost of various encoding decisions, EED
is more elusive as it depends on various factors (e.g., packet
loss events) that are not known at the encoder. In fact, the
accuracy of EED estimation has a critical impact on the overall
RD optimization performance and the resulting error resilience.

Most existing EED estimation techniques for robust video
coding may be roughly categorized as either “block-based” or
“pixel-based” methods. A block-based approach generates and
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recursively updates a block-level distortion map for each frame
[5]–[7]. However, since inter-frame displacements involve sub-
block motion vectors, a motion compensated block may inherit
errors propagated from multiple blocks in prior frames. Hence,
block-based techniques must involve a possibly rough approx-
imation (for example, weighted averaging of propagated block
distortion [5], [6] or motion vector approximation [7]), whose
errors may build up to significantly degrade estimation accu-
racy. In contrast, pixel-based approaches track the distortion es-
timate per pixel and have the potential to provide high accuracy.
The obvious question is that of complexity. One extreme ap-
proach was proposed in [8] where the distortion per pixel is cal-
culated by exhaustive simulation of the decoding procedure and
averaging over many packet loss patterns. Another pixel based
approach was proposed in [2], where only the two most likely
loss events are considered. However, it turns out that low com-
plexity can be maintained without sacrificing optimality as has
been demonstrated by the recursive optimal per-pixel estimate
(ROPE) [1]. ROPE recursively calculates the first and second
moments of the decoder reconstruction of each pixel, while ac-
curately taking into account all relevant factors, including error
propagation and error concealment. ROPE has been applied for
EED estimation in numerous RD optimization based coding
techniques, including: intra-/inter-mode selection [1], [9] and
extension thereof to layered coding [10], [11], multiple descrip-
tion coding [12], [13], prediction reference frame and/or mo-
tion vector selection [3], [4], joint video coding and transport
optimization [14]–[17], etc. Variants of ROPE have since been
applied in the transform domain to estimate the EED of DCT
coefficients [18], [19]. Beside distortion estimation, other appli-
cations of ROPE in robust video coding include source-channel
prediction [20] and error resilient rate control [21]. Recently,
ROPE has been proposed for video quality monitoring and as-
sessment in video streaming over lossy networks [22].

However, despite the interest and extensive work on ROPE
applications, there exist unsolved open problems that signif-
icantly restrict its application in practical video coding and
streaming systems. The main objective of this work is to ana-
lyze these limitations and to propose effective solutions, so as
to expand the general applicability of ROPE in practice. Much
emphasis is given to issues relevant to the H.264/AVC standard.

A. Important Open Issues and Limitations

An important open question concerns the emergence of cross-
correlation terms in the estimate due to pixel filtering (or av-
eraging) operations. Various forms of pixel filtering operations
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are performed by standard encoders, e.g., subpixel motion com-
pensation, intra-prediction, weighted prediction, deblocking fil-
tering, overlapped block motion compensation, etc. [23], [24].
Note that the discrete cosine transform itself can be regarded as
a certain form of pixel filtering/averaging. Pixel-averaging op-
erations may also be performed by the decoder, e.g., for error
concealment [25], [26]. Within the exact ROPE procedure, such
pixel filtering operations may, in the worst case, require com-
putation and storage of cross-correlation values for all pixel
pairs in the frame, which is of impractical complexity. This
difficulty was recognized in the original ROPE paper, where
cross-correlation calculation in 1/2-pel prediction was circum-
vented by assuming full-pixel prediction for ROPE calculation
purposes, although the encoder did allow subpixel motion [1].
While such “naive” ROPE provided substantial gains over com-
peting methods, this approximation did compromise its accu-
racy. Hence, effective and low-complexity cross-correlation ap-
proximation (CCA) is highly desirable.

An alternative approach was proposed in [27], where
cross-correlation terms are computed but only within a pre-
defined inter-pixel distance. However, the technique required
substantial computation and storage complexity. Moreover,
when cross-correlation outside the subset is needed, the method
defaulted to assuming that the pixels were uncorrelated, which
compromises the estimation performance. Another method of
lower complexity was proposed in [28], where only cross-cor-
relation of adjacent pixels were recursively calculated for each
frame. Whenever needed, cross-correlation of two non-adjacent
pixels were derived from that of the adjacent pixels, along the
shortest path subject to a linear model assumption. However,
maintaining a cross-correlation map of all adjacent pixel pairs
still entails substantial computation and storage cost, especially
when applying this approach in H.264/AVC, which involves
6-tap 1/2-pel and 1/4-pel filtering. A very low complexity
solution was proposed in [3], where cross-correlation is simply
approximated by an upper-bound obtained from the Schwarz
inequality. A similar cross-correlation estimation problem
was also addressed in [29] in the context of frame-level EED
estimation, where various multiplication factors are adopted to
account for the impact of different pixel averaging operations.
In this paper, we propose several efficient pixel-level CCA
models and demonstrate that they do enable ROPE to achieve
high estimation accuracy while maintaining low complexity in
a general setting of pixel averaging operations.

We consider the largely overlooked issue of rounding errors,
whose impact has long been considered insignificant and has
hence been neglected in EED estimation. We show that rounding
errors may, in fact, greatly impact EED estimation accuracy, as
they accumulate through the prediction loop. We propose two
approaches for rounding error compensation (REC): a method
that appeals to the maximum entropy principle (MEP), and
a low complexity method that employs basic approximations
from quantization theory. Rather than estimate the first two
moments directly, MEP effectively estimates the distribution
of the decoder reconstruction, which greatly expands ROPE’s
applicability to a large variety of other problems of interest.
For example, it enables ROPE to accurately compensate for
clipping errors, estimate any higher order moments, or estimate

EED for a broad class of additive distortion measures beyond
the classical mean squared error (MSE) distortion.

B. Relevance to H.264/AVC

The H.264/AVC video coding standard offers significant
improvement of coding efficiency. The coding performance
gains are largely due to the greater flexibility afforded by a
variety of new features. However, an unintended side effect
of such flexibility is its impact on EED estimation. From this
perspective, H.264/AVC presents a more challenging scenario
than its predecessors [26]. For example, H.264/AVC uses a
6-tap filter for 1/2-pel interpolation, rather than bilinear filtering
as in H.263, which results in rapid growth of cross-correlation
terms in EED estimation. The situation is exacerbated by the
additional 1/4-pel prediction, which not only increases the
number of cross-correlation terms, but also introduces more
rounding operations. Other features that involve pixel filtering
operations include: weighted prediction, intra-prediction and
in-loop deblocking filtering [23]. It should be appreciated that
these options represent major challenges for accurate EED
estimation. On the other hand, H.264/AVC also represents an
enormous potential to improve error resilience, as detailed in
[26] and [30]. Therefore, if one could accurately estimate the
EED, then the wealth of coding options and features will offer
much greater flexibility in optimizing error resilience.

In this paper, we focus on H.264/AVC with 1/4-pel predic-
tion. However, the general applicability of the proposed CCA
and REC schemes covers as well the cases of weighted predic-
tion, intra-prediction, overlapped block motion compensation,
linear transforms, etc. Simulation results will show that the re-
vised ROPE achieves superior estimation accuracy, while main-
taining low complexity. Furthermore, replacing the classical RD
framework with a rate-EED (REED) framework, e.g., REED
coding mode selection, we will observe that the accuracy im-
provements offered by the revised ROPE translate into overall
end-to-end coding performance gains. In experiments, we also
investigate the robustness to mismatched encoder assumptions
regarding various parameters such as packet loss rate, error con-
cealment method, and deblocking filtering. Overall, we demon-
strate that the proposed extensions to ROPE represent a pow-
erful tool toward realization of the error-resilience potential of
H.264/AVC as well as future standards.

The rest of the paper is organized as follows. Section II pro-
vides the necessary preliminaries on the basic ROPE approach,
which serves as the starting point for this work. The various
proposed ROPE extensions are described and discussed in Sec-
tions III-A–C. EED estimation results are given in Section IV-A.
Section IV-B presents simulation results to measure the overall
gains achieved by employing the revised estimate for REED
coding mode selection.

II. PRELIMINARIES: THE BASIC ROPE APPROACH

The ROPE method was proposed in [1] as an efficient tool to
achieve accurate estimation of overall end-to-end MSE distor-
tion. We first review its main principles which form the starting
point for the contributions of this paper. Let denote the orig-
inal value of pixel in frame , and let and denote its
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encoder and decoder reconstruction, respectively. Due to pos-
sible packet loss in the channel, must be considered a random
variable by the encoder. The overall expected MSE distortion of
a pixel is

(1)

Based on the observation that MSE is completely determined
by the first and second moments of the decoder reconstruction,
ROPE was derived as an optimal recursive algorithm to calculate
these moments per pixel in the frame, while accounting for all
relevant factors, including quantization, packet loss, error prop-
agation, and error concealment at the decoder.

Let us assume that packets are lost independently, and that the
packet loss rate (PLR), denoted by , is available at the encoder.
We further assume that the data of one frame are transmitted in
one packet. In this case, the pixel loss rate equals the packet loss
rate. Also, throughout this paper, unless otherwise noted, we
assume that whenever there is a packet loss, the decoder simply
uses the previous frame reconstruction for error concealment.
The respective recursion formulae of ROPE are as follows.

• Pixel in an intra-coded MB

(2)

(3)

• Pixel in an inter-coded MB

(4)

(5)

The inter-coding notation above assumes that pixel is predicted
from pixel in the previous frame. The prediction error is
quantized to the value .

Next, we discuss assumptions made and practical limitations.
Firstly, assumptions of independence and time-invariance of
packet loss were made strictly for simplicity of exposition, and
the ROPE method itself is extendible to more complex loss
models. For example, see [13] and [9] for ROPE implemen-
tations that handle bursty packet loss, and bit error channels,
respectively. Secondly, ROPE itself has no special restrictions
on packetization. Besides the simple one-frame-per-packet
packetization scheme, other more complicated and/or more
practical schemes can be accomodated as well, e.g., the scheme

of one independent group-of-blocks per packet addressed in [1]
and the fixed packet length schemes proposed in [9]. Thirdly,
although simple (but fairly common) temporal error conceal-
ment (EC) techniques were used in this paper and in [1], more
sophisticated EC techniques can be accomodated, especially
with the extensions proposed herein.

We should also note that despite its expanded generality, there
still exist practical limitations on ROPE that may compromise
its estimation performance or applicability, as well as open is-
sues. In practice, due to PLR estimation error and decoder feed-
back delay [9], occasional mismatch is inevitable between the
encoder’s assumed PLR and the actual PLR. There exist com-
plicated EC schemes that cannot be easily accommodated in
ROPE, e.g., various iterative EC schemes [25]. Even with the
proposed CCA and REC extensions, the revised ROPE does not
fully account for deblocking in-loop filtering (DIF). Note that
in H.264/AVC DIF, one has to threshold the absolute difference
of block boundary pixels to determine the actual pixel-filtering
operation to be conducted [23]. How to accurately account for
such condition checking within ROPE is still an open issue. In
Section IV-B2, we provide some experimental results on the im-
pact of PLR, EC, and DIF mismatch on REED mode selection
performance.

III. CRITICAL ROPE EXTENSIONS

A. Cross-Correlation Approximation (CCA)

It is well known that subpixel motion compensated predic-
tion considerably improves coding efficiency, and is widely
adopted in video coding standards, such as H.263, H.264/AVC
and MPEG4. However, as it involves interpolation of pixel
values, cross-correlation terms will arise in ROPE’s second
moment calculation. For illustration, let us consider a simple
linear interpolation example: , where random
variables and denote reconstructed pixels, and an
interpolated pixel, all at the decoder. Given the first and second
moments of and , we have

(6)

(7)

It is evident that can be calculated directly from
and , which are made available by ROPE. However,
a new cross-correlation term appears in (7) and is
needed to calculate . In fact, as discussed in Section I-A,
cross-correlation terms appear in all pixel-filtering situations,
whose accurate estimation via the exact ROPE recursion, in
the worst case, requires computation and storage of cross-cor-
relation values for all possible pixel pairs in a frame. Such
complexity has been considered a significant practical limita-
tion on the applicability of ROPE.

Several prior approaches to address this issue have been dis-
cussed in the Introduction. In this paper, we analyze the CCA
problem from the correlation coefficient perspective. The corre-
lation coefficient of and is

(8)
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Here, and denote the respective standard deviation (triv-
ially computable from the available first and second marginal
moments). Obviously, CCA is equivalent to the problem of cor-
relation coefficient estimation.

Two simple and extreme cross-correlation models consist of
either assuming that and are uncorrelated, or that they are
maximally correlated, which can be expressed in terms of
as follows.

• Model 0: no correlation

(9)

• Model I: maximum correlation

(10)

Here, is an upper bound on obtained from the
Schwarz inequality . Note that
this model is similar to the one proposed in [3], which employs
the Schwarz bound directly to estimate . The model of
(10) is restated in terms of the correlation coefficient, and im-
poses the additional condition that it cannot exceed 1, thereby
reducing the estimation error, as will be shown in Section IV-A.

We consider next a linear signal model.
• Model II: linear signal model

(11)

where is a constant, is a zero-mean noise random vari-
able that is independent of . Given the moments of and

we can determine and the variance of , and finally
obtain

(12)

It is easy to show that (12) implies satisfaction of the Schwarz
upper-bound, which is hence not explicitly included. More com-
plicated, non-linear models may be considered in a similar way,
but the linearity property of Model II ensures that the cross-cor-
relation can be calculated from the available first and second
marginal moments without recourse to higher moments. This
linear model was first proposed in [31]. It was later also ap-
plied in the CCA scheme of [28]. However, therein, the model
was only used for correlation estimation of non-adjacent pixel
pairs, while requiring calculation and storage of cross-correla-
tion values for all adjacent pixel pairs. In contrast, our scheme
directly applies the model to all pixel pairs, and estimates corre-
lations only when they are needed by ROPE and only using the
available first and second marginal moments. Hence, its compu-
tational complexity is considerably reduced.

All the above models are generally applicable to any pair of
random variables, ignoring the obvious and important fact that
we are concerned with correlation between the decoder recon-
struction of two pixels in a video frame. Clearly, one expects the
correlation between two pixel values to decay with the distance.
In fact, the Euclidian inter-pixel distance has long been used in
models for the autocorrelation function of spatial random fields
that model images [32], [33]. Inspired by this line of reasoning
and past modelling work, we propose an inter-pixel distance-

based correlation model. Specifically, we employ exponentially
decaying functions.

• Model III: pixel distance-based correlation model

(13)

where is the Euclidian distance between the two
pixels and , and is a constant. Note that other
distance measures may be used where appropriate. Sim-
ulation results show that this model outperforms all other
proposed CCA models.

B. Rounding Error Compensation (REC)

Rounding is typically employed whenever pixel filtering/av-
eraging operations produce non-integer output values, as seen
in H.264/AVC’s subpixel prediction, intra-prediction, etc.
Rounding, where a floating point value is quantized to the
nearest integer, can be viewed as a special case of uniform
quantization with quantization step size of one unit. The
rounding error is

(14)

where denotes the rounding/quantization operation and
is a random variable, say, some filtered pixel at the decoder.
From basic quantization theory we obtain the following prop-
erties:

(15)

(16)

From (15), we see that in the case of small variance, the
rounding error approaches some typically small but non-zero
value that depends on . In video coding, this virtually
constant rounding error, although initially small, will be propa-
gated via inter-frame prediction, resulting in accumulation that
may seriously degrade the accuracy of end-to-end estimation,
as will be shown in the simulation results. We emphasize that
this is not a problem in pure source coding as both encoder
and decoder perform rounding, and thus, yield the same recon-
structions. The problem is in end-to-end estimation where the
encoder does not know the exact value actually being rounded
by the decoder. However, so far, rounding errors have been
misleadingly viewed as insignificant, and completely ignored
in all EED estimation techniques.

This work is primarily focused on H.264/AVC with sub-
pixel prediction, where a 6-tap filter with coefficients [1/32,

5/32, 20/32, 20/32, 5/32, 1/32] and a 2-tap filter with coef-
ficients [1/2, 1/2] are used for 1/2-pel and 1/4-pel interpolation,
respectively. Since the interpolating pixels all take integer
reconstruction values, the resultant interpolated 1/2-pels and
1/4-pels cannot take any arbitrary floating point values, but only
the corresponding 1/32-grid and 1/2-grid values, respectively.
Specifically, in our proposed REC schemes, we properly treat
the 1/4-pel rounding input as 1/2-grid discrete random vari-
ables, while in the case of 1/2-pel rounding, we approximate
the discrete input as continuous random variable, since the
1/32-grid represents relatively high resolution.

We propose two different REC solutions. Again, to maintain
low complexity, we only use the quantities made available by
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basic ROPE, namely the first and second marginal moments.
We hence pose the following problem.

• Given random variable with known moments
and , define . Find , and .

1) Maximum Entropy Approach to REC: Our first approach
appeals to the maximum entropy principle (MEP) [34], where
given and we can find out the MEP optimal prob-
ability distribution of , and then, trivially calculate and

. MEP states that, among all possible distributions satis-
fying the given constraints, one should select the one that max-
imizes the entropy. The rationale is that this choice maximizes
the uncertainty and is hence the least restrictive while satis-
fying the constraints. In other words, any other choice reduces
the uncertainty and therefore must make some implicit restric-
tive assumption. Despite some lingering controversy around the
intuitive justification of the principle, MEP has been applied
successfully in a remarkable variety of fields. In the context of
ROPE, the available first and second moments provide natural
constraints to derive the MEP-optimal probability distribution
for the decoder reconstruction random variable. Moreover, the
resulting distribution opens the door to attack many other im-
portant end-to-end estimation problems beside REC as will be
explained later.

Specializing to H.264/AVC, in the 1/2-pel case, as is
assumed to be a continuous random variable (r.v.), the MEP
optimal probability density function (pdf) given the first and
second moments is a Gaussian distribution. In the 1/4-pel case,

is a 1/2-grid discrete r.v., whose optimal probability mass
function (pmf) is a Gibbs distribution (see e.g., [35] for the
straightforward derivation).

MEP-based REC approach:
• Generate MEP estimate for the distribution of

— for 1/2-pel X (approximately continuous r.v.)

(17)

— for 1/4-pel X (1/2-grid discrete r.v.)

(18)

• Extract the distribution of .
• Compute and .

Note that and in (17) are exactly the available mean and
variance of . In (18), parameters and are chosen such that
the moment constraints are satisfied. In practice, we employ the
following iterative search algorithm to find and that ensure
that the Gibbs distribution moments match the known
and .

0) Set , , and . Let the set
contain all 1/2-grid values within

, where (values beyond
this range are neglected).
1) .

2) Update the parameters so as to minimize the below error
criterion .
— Fix , exhaustively search for the best ,

with the search range and search
step size .

— Fix , exhaustively search for the best , with the
search range and search step size
0.1.

3) If or , set and ,
and STOP. Otherwise, GOTO Step 1. (In our simulation,

and .)
The error criterion:
• Given , and support produce the current Gibbs

distribution from (18) and calculate moments
and .

• The error criterion measures the moment mismatch:
.

2) Quantization Theoretic Approximation in REC: In sim-
ulations we observe that, due to the parameter search proce-
dure (usually 1 2 iterations), REC by MEP may still incur
non-trivial computational complexity. This motivates the pro-
posal of an alternative REC scheme with a guaranteed low level
of complexity. The approach has its roots in the quantization
theoretic (QT) rounding error analysis of (15) and (16). Specif-
ically, for as defined in (14), we have

(19)

(20)

Hence

(21)

Clearly

(22)

or equivalently

(23)

If , we may rewrite this as

where (24)

For large (e.g., ), we can reasonably assume that:
1) is uniformly distributed and 2) is positive. Also, as
usually , is very close to 1. Hence, we simply use

(25)

Note that (19), (21), and (25) actually provide the means to com-
pensate for rounding errors in the case of large . In the case
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of small variance, we simply round directly. We summa-
rize the complete scheme below.

• QT-based REC approach:
— if

(26)

— otherwise

(27)

The variance in (26) is obtained by plugging (25) and (24) into
(21). The parameter is a heuristic threshold. Specializing to
the subpixel prediction of H.264/AVC we obtain the following.

• For 1/2-pel

(28)

• For 1/4-pel

(29)

Note that (26)–(29) specify all the computation due to the
QT-based approach, and reveals its extremely low complexity.

C. ROPE Capabilities Extended by MEP

As mentioned earlier, the proposed MEP approach essentially
provides the means to approximate the distribution of the de-
coder reconstruction random variable. Given a distribution, it is
possible to attack a much broader set of end-to-end estimation
problems. First, besides rounding errors, it also gives a solution
to compensate for clipping errors, which is another phenomenon
that can safely be ignored in the context of source coding, but
could have an impact on end-to-end estimation. Moreover, given
the distribution, we can now estimate higher moments, whose
potential use to improve system performance has been proposed
in [36].

An important extension of ROPE, made possible by the MEP
approximation, is in the new capability to estimate any additive
distortion criterion, rather than the initial limitation to MSE dis-
tortion. By “additive distortion” we mean that the distortion can
be written as the sum of individual contribution by pixels in a
region of interest (e.g., a block). The end-to-end additive distor-
tion can be expressed as

(30)

where denotes the region of interest. For example, the mean
absolute error is an additive non-MSE distortion that is com-
monly used. Note that no restrictions are imposed on the com-
ponent-wise distortion measures . The additive prop-
erty implies that only marginal (and not joint) distributions are
needed in order to calculate the distortion. There has been much
interest in identifying distortion measures that better quantify
the perceptual impact than MSE, e.g., [37]–[39]. The above
opens the door to ROPE extensions that offer end-to-end estima-
tion of a much broader class of distortion measures. Note that the
same task is highly difficult, if not impossible, for block-based

estimation approaches, as they heavily rely on second moment
properties of MSE for the separation of overall EED into source
coding induced distortion and channel loss induced distortion.
Such properties, however, do not generally hold for other dis-
tortion metrics (e.g., mean absolute error).

IV. SIMULATION RESULTS

A. Estimation Accuracy

We employed the JM9.0 H.264/AVC codec [40]. The perfor-
mance of the proposed ROPE extensions is examined in the con-
text of subpixel prediction, where 1/2-pel and 1/4-pel prediction
were enabled. In our experiments, we only used single reference
frame in motion estimation, and DIF was disabled. intra-pre-
diction is only allowed from neighboring intra-coded MBs. The
first frame in a sequence is coded as I-frame, and all remaining
frames are coded as P-frames. There are no B-frames, and no
weighted prediction. In this testing scenario, subpixel prediction
is the only pixel-averaging operation to affect EED estimation.

We adopted the simple random intra-updating of the codec as
implemented in the JM9.0 encoder [40], where for each frame a
certain percentage of MBs (termed “intra-ratio”) is forced to be
intra-coded. At the encoder, data of one frame were packed into
one packet for transmission. At the decoder, unless otherwise
noted, when a packet was lost, the simple frame-copy scheme
was used for concealment, which was also assumed at the en-
coder for distortion estimation.

A set of 500 randomly generated loss patterns were applied
at each PLR, and the actual average distortion was computed
for each pixel of a frame. Unless otherwise noted, the encoder
assumed the correct value of PLR in its ROPE procedures. Es-
timation performance is measured by the “distortion difference
ratio” defined as

(31)

Here, and denote, for pixel of frame , the distor-
tion estimated at the encoder, and the actual decoder distortion
averaged over all loss patterns, respectively.

All the testing sequences are QCIF sequences with fps,
and the first 150 frames of each sequence are coded. Due to
limited space, figures are only given for the medium motion se-
quence Carphone (“Carphone”) results. Results on many other
sequences are summarized in the tables.

We tested the four CCA models of Section III-A, denoted by
“CCA0”–“CCA3”. For comparison, we also tested the simple
Schwarz upper-bound only method proposed in [3], denoted by
“sCCA1,” to distinguish it from “CCA1” which combines the
Schwarz inequality with the additional constraint .
For REC, we tested the MEP-based and QT-based methods,
denoted by “MEP” and “QT,” respectively. Unless otherwise
noted, we set in (13) of CCA3 to 0.10 and in (28) of QT
REC to . For low-end benchmarking, we included the per-
formance of ROPE where full-pixel prediction is assumed in
the estimate as an approximation, despite the fact that the en-
coder actually employs subpixel motion compensation, thereby
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Fig. 1. Distortion estimation performance versus intra-ratio. Carphone, p = 5%, 100 kb/s. (a) High level view. (b) Various CCA models. (c) Two REC schemes.

Fig. 2. Distortion estimation performance versus PLR (at coding rate of 100 kb/s), on Carphone with intra ratio = 5%. (a) Various CCA models. (b) Two REC
schemes. (c) Performance versus coding bit rate, with p = 5%.

circumventing the need for CCA and REC (“Full”) [1]. For
high-end benchmarking, we included the results of the decoder
simulation method proposed in [8] wherein the encoder simu-
lates numerous packet loss patterns and the decoder reconstruc-
tion in order to produce an average EED estimate. For example,
“Dec200” denotes applying 200 different packet loss patterns
and decoding, while its actually represents the distortion mea-
surement error between applying 200 and 500 loss patterns.

First, let us take a look at the estimation error versus intra-
ratio results in Fig. 1. Fig. 1(a) gives a high level view. In com-
parison with “Full” which ignores both CCA and REC, it is evi-
dent that CCA generally improves estimation performance, and
achieves high estimation accuracy at high intra-ratios, e.g., 20%.
However, without REC, the performance dramatically degrades
at low intra-ratios. At intra-ratio below 5%, the relative estima-
tion error of CCA3 may exceed 100%, rendering the estimate
unusable. On the other hand, the combination of both CCA and
REC consistently yields high estimation accuracy at all intra-ra-
tios. This result strongly demonstrates the importance of REC,
especially at low intra-ratios.

Fig. 1(b) evaluates the various CCA models in conjunction
with QT REC. We observe that all CCA models, except CCA0,
achieve fairly high estimation accuracy, as their performance
closely approaches the performance of Dec200. The somewhat
surprising fact that the perhaps naive “maximum correlation”
model of CCA1 consistently outperforms the linear signal
model of CCA2, can be explained by the prevalence of very

high correlation in the context of H.264/AVC subpixel predic-
tion. It is further easy to see that overall CCA3 achieves the
best performance. We also note from the comparison of CCA1
with the “Schwarz upper-bound only” approach sCCA1 [3],
that further imposing improves estimation accuracy.

In Fig. 1(c), we compare the performance of the two pro-
posed REC schemes combined with CCA3. For benchmark
comparison, we also provide the accuracy of the “decoder
simulation method” at various levels of complexity (number
of packet loss patterns). Both MEP and QT generally provide
considerable performance gains over Dec30, which is the de
facto scheme in the JM11.0 reference encoder. Furthermore,
we can see that with intra-ratio larger than 5%, the accuracy
of the proposed schemes is always between those of Dec100
and Dec200, which signifies a fairly high estimation accuracy.
In other words, to achieve a level of distortion estimation
accuracy similar to the proposed approaches, one has to ex-
haustively simulate 100 200 decoding runs at the encoder,
which represents considerably higher computational, storage
and delay costs, as will be discussed further in Section IV-C-2.
Comparing QT REC with MEP REC, we note that the overall
performance of CCA3 QT is better than that of CCA3 MEP.
Since, as discussed in Section III-B, QT REC is of very low
complexity, we consider QT-based REC the preferred choice.

More results at various PLRs, coding bit rates, and over a va-
riety of sequences are summarized in Fig. 2 and Table I, respec-
tively. These show that the observations and conclusions we de-
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TABLE I
DISTORTION ESTIMATION PERFORMANCE ON VARIOUS SEQUENCES. intra ratio = 5%, p = 5%, STEFAN AND FOOTBALL: 200 kb/s, OTHERS: 100 kb/s

Fig. 3. Distortion frame-level estimation performance. Carphone, intra ratio =
5%, p = 5%, 100 kb/s.

rived from the previous figures largely hold across the broad test
scenarios.

Fig. 3 depicts the time evolution of frame-level estimation
performance results. We observe that CCA3 QT achieves
highly accurate estimation as compared with Dec500, and that
the absence of either REC or both CCA and REC always causes
considerable performance degradation. interestingly, such
degradation takes the form of overestimation of the distortion.
Since pixel-averaging generally reduces error propagation,
without CCA, an overestimated EED will be computed. REC
yields an EED estimation procedure that better mimics or
accounts for the actual encoding process, hence is
generally closer to in (1). Moreover, REC generally de-
creases the variance of as seen from (26) and (27). Both of
these factors tend to reduce the estimated EED in (1). Hence,
excluding REC also results in distortion overestimation.

The experiments also evaluated the impact of the CCA3
model parameter in (13). We found that for various se-
quences, both QCIF and CIF, at a variety of PLRs, intra-ratios,
etc., the estimation performance was not highly sensitive to ,
and the optimal value of was always between 0.05 and 0.20.
(Hence, we adopted .) Due to limited space, we omit
the detailed results herein.

B. Impact on Coding Mode Selection

As discussed in Section I,ROPE can be applied in variousways
to improve the error resilience of video coding. Here we demon-
strate this in the context of REED coding mode selection. The
mode selection problem is usually formulated as independently
selecting the best coding mode for each MB/block to minimize
a Lagrangian cost that weighs EED versus bit rate [1], [5].

The general experiment settings are identical to those of
the previous subsection. System performance is measured by

decoder average luminance PSNR over 500 loss patterns. We
tested the performance of REED coding mode selection, where
competitors differ in EED estimation: original ROPE with
full-pixel approximation (“Full REED”), revised ROPE with
CCA3 only (“CCA REED”), and revised ROPE with CCA3
and QT REC (“CCA & REC REED”). For comparison, we
also tested the aforementioned random intra-updating scheme
(“Random intra”), where the forced intra-ratio per frame ex-
actly equals the PLR.

1) REED Performance Without Mismatch: Results on REED
performance without mismatch are summarized in Fig. 4(a) and
Table II. We can see that both “CCA REED” and “CCA & REC
REED” significantly outperform “Full REED” and “Random
intra,” especially at low PLRs, e.g., . This proves that
the EED estimation accuracy increase offered by the revised
ROPE generally translates into significant overall system per-
formance gains. From the results, a “surprising” observation is
that more accurate distortion estimation does not always lead
to better overall PSNR performance, as “CCA REED” con-
sistently achieves higher average PSNR than “CCA & REC
REED.” The gain even reaches 0.72 dB for Mobile sequence
in Table II. To understand this result, we emphasize that in most
existing REED schemes (including in our experiment), coding
parameters (in our case the MB coding mode) are optimized
for each frame without considering future frames. However, due
to motion compensated prediction, inter-frame dependency in-
herently exists in video coding, which implies that MB coding
mode decisions in the current frame will affect the REED La-
grangian cost, and thus, MB coding mode decisions in the fol-
lowing frames. Hence, this “zero delay” REED is only locally
optimal, but not globally optimal. Existing efforts on more glob-
ally optimal (delayed decision) coding parameter selection can
be found in [42] for non-error-resilient RD coding, and [43] for
REED coding methods, where coding parameters of a group of
frames are jointly optimized. Intuitively, accounting for propa-
gation impact on future frames, which implies more distortion
cost, is somewhat equivalent to overestimating EED in the cur-
rent frame. On the other hand, as shown earlier in Fig. 3, both
“CCA3” and “Full” yield overestimation of EED. With EED
“properly” overestimated, overall REED performance may be
improved. One can also observe that performance will degrade
with excessive overestimation of EED, as is the case of “Full.”

2) REED Performance With Mismatch: So far, we assumed
that both the PLR and EC scheme used by the encoder for
ROPE computations correspond exactly to the actual PLR and
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Fig. 4. REED mode selection performance. Carphone, 100 kb/s. (a) Without mismatch, 100 kb/s. (b) With PLR mismatch. (c) With DIF mismatch.

TABLE II
REED MODE SELECTION PERFORMANCE ON VARIOUS SEQUENCES. p = 2%, STEFAN AND FOOTBALL: 200 kb/s, OTHERS: 100 kb/s

TABLE III
REED MODE SELECTION PERFORMANCE WITH EC MISMATCH ON VARIOUS SEQUENCES. p = 5%, STEFAN AND FOOTBALL: 200 kb/s, OTHERS: 100 kb/s

EC scheme at the decoder. We also assumed that there is no
DIF in both encoding and decoding. However, as discussed in
Section II, mismatched PLR, EC, or DIF is of practical con-
cern. Clearly, mismatch will compromise the EED estimation
accuracy. Next, we investigate the impacts from such mismatch
on the overall REED mode selection performance.

Results with mismatched PLR are shown in Fig. 4(b). The
first observation is that mismatched does not necessarily
yield worse performance. In fact, the highest PSNR is always
achieved by slightly overestimating . This result is very con-
sistent with our earlier observation that the fact that ROPE
neglects the impact on future frames may be roughly compen-
sated for by overestimating EED.

Fig. 4(c) gives the DIF mismatch result. Here ROPE assumes
(for simplicity) that no DIF is employed, while in reality DIF
is employed at various levels of filtering strength. Deblocking
filtering strength is given by the threshold table offset, ranging
from 6 (lowest filtering strength) to 6 (highest filtering
strength) [23]. Herein, “No deblocking” denotes the case of
no DIF mismatch, while “Deblock 6” “Deblock 6”
denote the mismatch cases at different DIF strength levels.
In the figure, we directly give the average PSNR gains of the
cases with DIF mismatch over those without DIF (and without
mismatch). It is easy to see that, although DIF mismatch de-
grades the estimation performance, this does not necessarily
lead to degraded overall REED performance. For deblocking
strength between 3 and 3, DIF mismatch usually yields

TABLE IV
COMPUTATIONAL COMPLEXITY MEASURED BY CODING TIME INCREASE OVER

STANDARD (NOT ERROR-RESILIENT) CODER, AVERAGED OVER ALL TESTING

SEQUENCES AT p = 5% AND intra ratio = 5%

better performance than that without mismatch. Note that
pixel-averaging operations in DIF generally have the effect of
reducing error propagation from packet loss. Therefore, ROPE
overestimates EED, and the overestimation argument suggests
that the damage will not be excessive. Finally, it is clear that the
benefits of employing DIF at mild strength, at least outweigh
any damage due to mismatch.

To investigate the EC mismatch impact on REED mode se-
lection, we use motion-copy EC as the mismatched EC scheme
at the decoder. The encoder always assumes frame-copy EC.
Recall that motion-copy EC employs motion-vectors from
collocated MBs in the previous frame to conceal the MBs
of the current frame via motion compensation [41]. The re-
sults are summarized in Table III. We can see that except for
Carphone, applying motion-copy EC at the decoder, although
mismatched, always yields better performance than that of
applying the matched frame-copy EC. In the experiment,
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TABLE V
COMPUTATIONAL COMPLEXITY COMPARISON BETWEEN REVISED ROPE AND THE DECODER SIMULATION METHOD

we also evaluated the effectiveness of the two different EC
schemes for different sequences without REED, and found
that motion-copy EC outperforms frame-copy EC for all the
sequences except Carphone. The bottom line is clearly that
the impact of mismatch here is much less significant that the
relative effectiveness of the EC methods themselves.

C. Complexity

1) Complexity of Proposed ROPE Variants: Simulations
were run on Pentium IV 3.0 GHz with 504 MB RAM. Table IV
summarizes the average increase in encoding time due to ROPE
variants, in terms of a percentage of standard encoding time
(i.e., without ROPE). We note that ROPE with CCA3 QT in-
creases the encoding time by 149.15%. It should be mentioned
that these results are for the existing ROPE implementation,
which has not been optimized to reduce the run time. For ex-
ample, for implementation expediency, we currently maintain
two complete 1/4-pel resolution maps for the first and second
moments respectively for each frame. However, not all calcu-
lated subpixel moments of the reference frame will be used in
calculating the full-pixel moments of the current frame. Hence,
computation and storage complexity may be greatly reduced,
if subpixel quantities are only calculated whenever they are
needed. In terms of storage/memory consumption, we note that
for each pixel, the standard coded integer pixel costs 1 byte,
while ROPE additionally needs bytes to store in
floating point the first and second moments. As for the various
proposed extensions, they only require some small amount
of in-field local calculation memory, which incurs a modest
memory cost increase. Overall, it appears that the revised ROPE
offers significant performance benefits at complexity cost that
would be acceptable in many applications.

2) Complexity Comparison With the Decoder-Simulation
Method: We compare the complexity of ROPE (with CCA3
and QT REC) with that of the exhaustive decoder simulation
method. DecK denotes decoder simulation with decoding
runs, and denotes the total number of integer pixels in a
frame. We assume that only the first frame is an I-frame and
all the rest are P-frames. We consider the distortion estimation
complexity for one single P-frame. Moreover, for simplicity
but without loss of generality, we assume that all the MBs in a
P-frame are coded with inter-16 16 mode. For each P-frame,
we consider the computational complexity of estimating the
complete 1/4-pel resolution EED map. Hence, one needs to
first calculate the full-pixel resolution distortion map, then the
1/2-pel distortion map, and finally the 1/4-pel distortion map.

First, we take a look at full-pixel distortion map calculation.
We denote the memory fetching, addition, and multiplication
operation by , , and , respectively. For DecK, if in a

certain decoding run, the current P-frame is lost, frame-copy EC
will be applied, which only requires one time memory fetching
operation per MB, i.e., . Otherwise, one needs to calcu-
late the simulated decoder reconstruction with per MB
and one addition, i.e., per full-pixel. For simplicity, we ig-
nore the memory fetching operation complexity of frame-copy
EC. Approximately, there are no loss runs, and
loss runs. After that, one needs to average over decoder recon-
structions, which takes and . Finally, calculating
distortion takes and . Similarly, for the basic ROPE
calculation described in (1), (4) and (5), for each full-pixel, it
takes and for first moment calculation, and
for second moment calculation, and and for distor-
tion calculation, while for each MB it takes . In sum-
mary, to calculate the full-pixel distortion map, DecK requires

, ,
and , while ROPE requires , and

.
As for 1/2-pel and 1/4-pel distortion map calculation, we as-

sume fast table-look-up is used to get the exponential number in
(13) (as overall there are only five different possible inter-pixel
distance values in subpixel interpolations). Moreover, we
approximate the complexity of one square root operation in
the Schwarz upper-bound calculation to be the same as that of
one time multiplication, i.e., . Similarly, one can work out
the overall complexity for 1/2-pel and 1/4-pel distortion map
calculations.

The final complexity results are summarized in Table V.
Regarding memory costs, it is easy to see that for each pixel,
DecK additionally needs bytes for the decoding runs.
From the table, it is obvious that both computational com-
plexity and memory cost of DecK grow linearly with , while
our revised ROPE only requires a limited increase on com-
putational and memory costs. As specific examples, Table V
also gives the costs of the Dec100 and Dec30 methods, both
of which considerably exceed that of revised ROPE. Recall
that the EED estimation accuracy of revised ROPE is better
than that of Dec100, as shown earlier. Therefore, overall, the
revised ROPE approach is much more cost-effective than the
exhaustive decoder simulation method.

V. CONCLUSION

In this paper we considered open problems that pose prac-
tical obstacles to the general applicability of ROPE. One is the
emergence of cross-correlation terms in the estimate. Another
problem involves proper accounting for rounding operations and
their cumulative impact, within the recursive estimate. We pro-
pose low-complexity solutions to these problems and demon-
strate by simulations (H.264/AVC with 1/4-pel prediction) that
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the problems are of significant impact, and that the solutions
substantially enhance the estimation performance, as well as the
overall system performance.

The proposed techniques are applicable to other modules
where the underlying problem emerges including, in particular,
weighted prediction, intra-prediction, overlapped block motion
compensation, linear transforms, and a variety of advanced
error concealment schemes. Moreover, a spin-off of this work
was the introduction of a means to estimate the distribution of
the decoder reconstructed pixel based on the inference principle
of maximum entropy. This opens the door to broaden the scope
of ROPE applications to include end-to-end estimation for any
additive distortion measure, clipping error compensation, and
more. The proposed modifications demonstrate the potential
and applicability of ROPE and its variants within a broad spec-
trum of practical settings, and in particular that of H.264/AVC.

In this paper, we also investigated the impacts of PLR, EC and
DIF mismatch on the overall REED optimization performance.
We found that although such mismatch compromises distor-
tion estimation, in practice, it may not significantly degrade the
overall REED coding performance. It should be noted that our
observations regarding the impact of EC mismatch, while en-
couraging, were obtained experimentally in the context of spe-
cific choices of EC and may not generalize to other settings.
Clearly, it is important to examine the mismatch impact given
any specific system settings.
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