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Abstract— This paper reports on advances in end-to-
end distortion estimation for streaming of pre-compressed
video. It builds on the “first-order distortion estimate”
(FODE) which employs a Taylor expansion of the distortion
about the operating point of zero packet loss rate (PLR),
while accounting for packet loss, error propagation and
error concealment at the decoder. Improved estimation can
be achieved by similar expansion about operating points
of non-zero PLR, but would normally involve impractical
complexity to evaluate the impact of many possible packet
loss patterns. Instead, we propose a new method where
FODE is combined with the “recursive optimal per-pixel
estimate” (ROPE) to provide accurate, low complexity es-
timates via expansion about an arbitrary reference PLR
vector. The reference vector need not be uniform and can
exhibit the expected profile of effective PLR versus packet
position in the group of packets (GOP). The method further
accounts for the commonly neglected error propagation
across GOP boundaries due to error concealment at the
decoder. The main experimental results show significant
gains in estimation accuracy at medium to high packet loss
rates. Some preliminary results on embedding the estimate
within a simple delivery policy selection system are also
provided.

I. INTRODUCTION

Video streaming over packet networks has received

wide attention in recent years. Despite many advances

in network technology and infrastructure, the best-effort

nature of current networks remains a fundamental prob-

lem and still poses a significant challenge to the design

of high-quality video streaming systems. Since most

networks are heterogeneous and do not offer guaranteed

end-to-end quality of service (QoS), packet loss cannot

be avoided. Hence, a good video streaming system needs

to incorporate error resilience/robustness mechanisms to

mitigate the impact of packet loss and enable graceful

performance degradation.

In live streaming, source-channel coding algorithms can

be used to optimize media delivery. The sender has access

to the source signal, and is aware of current network

conditions such as bandwidth, packet loss rate (PLR)

etc. Encoding and transmission decisions can be adapted

to optimize a tradeoff between source compression and

robustness to packet loss. This problem is naturally for-

mulated within a rate-distortion (RD) framework, wherein

various coding and transmission options are mapped to

points on the operational RD curve. The RD framework

enables managing the tradeoff between some resource-

cost measure (e.g., channel bit rate, transmission power)

and the resulting video quality. The key challenge in this

context is accurate estimation of the end-to-end distortion,

which accounts for all relevant factors such as quantiza-

tion, packet loss, error propagation, and error concealment

at the decoder. Most relevant to the work herein is the ac-

curate end-to-end distortion estimation technique, called

the “recursive optimal per-pixel estimate” (ROPE) [1].

When streaming pre-compressed video, compression is

performed off-line and ahead of time, without knowledge

of the eventual network condition. At the time of delivery,

the system only has access to the compressed video

signal (and possibly some side information). Hence, error

robustness can only be enhanced by optimizing trans-

port/delivery decisions. Some possible scenarios include:

(i) forward error correction (FEC) per packet (bit-error

channels) or between packets (packet erasure channels),

(ii) packet retransmission protocols, (iii) service class

selection in QoS networks (e.g., DiffServ), (iv) adaptation

of the transmission parameters such as transmission power

in wireless networks, etc.

Robust streaming of pre-compressed video has been

addressed extensively, see [2]–[5]. Here too, the core

problem evolves around accurate distortion estimation,

and various estimates have been proposed. The intractable

complexity of distortion estimation has been addressed

in various ways, including neglecting inter-frame error

propagation [2], or ignoring the effects of error con-

cealment [3], [4]. However, such simplification results

in inaccuracy in the distortion estimate that potentially

impairs the performance of adaptation strategies.

An alternative approach to reduce complexity was

proposed by our group in [6], [7], which introduced

the first-order distortion estimate (FODE). The approach

performs a first-order Taylor expansion of the end-to-

end distortion, viewed as function of the packet loss rate

(PLR), about a given reference point (in fact the origin

p = 0). It produces a linear estimate of the distortion at

any given set of PLR values for the packets, in terms of

contributions from individual packets. It provides good

estimation accuracy at low to medium packet loss rates.
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Chakareski et al. proposed distortion chains to predict the

decoder distortion [5]. Their zeroth-order distortion chain

bears some similarity to FODE, but they seem to rely on

the assumption that errors fade over time due to refresh,

rather than build up.

Motivated by the potential of FODE and the recog-

nition of the need to expand its applicability, the main

contribution of this paper is an estimation algorithm that

builds on FODE to achieve: (i) improved estimation at

medium to high packet loss rates and, more importantly,

(ii) estimation at arbitrary reference points for better

adaptation to the channel statistics. The main experimen-

tal results demonstrate the improved estimation accuracy

over various video sequences and over a variety of net-

work conditions. We also show preliminary results on

exploiting the distortion estimate within a simple delivery

policy optimization system.

This paper is organized as follows: Section II reviews

the basic FODE algorithm for end-to-end distortion esti-

mation in pre-compressed video streaming. In Section III,

we identify the main limiting factors that compromise

estimation accuracy at medium to high PLRs, and develop

an extension of FODE which leverages ROPE to achieve

better estimates at higher PLR while maintaining accept-

able computational complexity. Results are provided to

evaluate the estimation quality. In Section IV, we provide

results for a straightforward integration of the estimate

within an RD framework for delivery of pre-compressed

video.

II. END-TO-END DISTORTION ESTIMATION

This section reviews the basic FODE algorithm for

end-to-end distortion estimation in streaming of pre-

compressed video. FODE is also compared to Chou

and Miao’s “incremental additive distortion estimate”

(IADE) [3], [4], to illustrate the performance potential

of FODE.

A. Distortion Analysis

Without loss of generality, we assume that the com-

pressed video is packetized into independent groups of

packets (GOPs). The expected distortion of each GOP

can be calculated separately since there is no coding

dependency across GOPs (we will revisit and refine

this statement later). However, packets within a GOP

may depend on each other due to prediction or error

concealment. Thus, the distortion for all packets in one

GOP must be calculated jointly.

Let there be N source packets per GOP. Let pi denote

the effective PLR of packet i. Note that pi is a function

of both network condition and resilience strategy used for

this packet. The PLR vector for the entire GOP is given

by:

P = {p0, ..., pi, ..., pN−1}. (1)

Packet i can either be received correctly, or considered

lost, and we denote the random outcome by the binary

variable bi. The packet is received correctly if bi = 0, and

is lost if bi = 1. The delivery status of the entire GOP is

denoted by the binary random vector B. There are a total

of 2N possible delivery events for each GOP. A particular

event vector of the entire GOP is the realization of the

delivery status vector and is represented by:

B(k) = {b
(k)
0 , b

(k)
1 , ..., b

(k)
i , ..., b

(k)
N−1}, (2)

where k = 0, 1, ..., 2N −1 denotes the index of the event.

The probability of the kth event vector B(k) is given by:

p(k) =
N−1
∏

i=0

(1 − pi)
(1−b

(k)
i

)pi
b
(k)
i . (3)

Let f , f̃ denote the value of some pixel in the original

video and its corresponding reconstruction at the receiver,

respectively. For the transmitter, f̃ is a random variable,

since it depends on the actual delivery event, which is

unknown to the transmitter. However, the decoder recon-

struction is completely determined if the event vector of

the entire GOP is given. Thus, the decoder reconstruction

for the pixel under the kth event f̃ (k) can be computed

exactly. The end-to-end distortion of this pixel under the

kth event is given by:

d(k) = (f − f̃ (k))2. (4)

The overall GOP distortion under the kth event is:

D(k) =
∑

f∈GOP

d(k). (5)

During the compression phase, the encoder can (in prin-

ciple) compute D(k) for k = 0, 1, ..., 2N − 1 and store

these quantities as side-information at the server.

We can calculate the expected GOP distortion given

the PLR vector P (which depends on the current channel

status and delivery strategy):

EP{D} =

2N
−1

∑

k=0

p(k)D(k)

=

2N
−1

∑

k=0

(

N−1
∏

i=0

(1 − pi)
(1−b

(k)
i

)pi
b
(k)
i )D(k) (6)

Note that this expectation is exact: it considers all possible

events and accounts for all sources of distortion.

In practical applications, however, there are two major

and obvious drawbacks. First, 2N values for Dk need to

be computed and stored as side information for each GOP.

Second, the expected distortion is a complicated function

of the individual PLRs as seen in (6). Therefore, the exact

analysis requires impractical complexity.

B. First-Order Approximation

Note that the exact expression for the expected end-to-

end distortion in (6) is a polynomial function of the pi in

the PLR vector. Hence, we proposed to approximate (6) at

any PLR vector P by using a first-order Taylor expansion

around a reference PLR vector P̄:



EP{D} ≈ EP̄{D} +
N−1
∑

i=0

∂EP{D}

∂pi

|P=P̄(pi − p̄i)

= EP̄{D} +

N−1
∑

i=0

γi∆pi, (7)

where pi, p̄i denote the effective PLR and the reference

PLR of packet i, respectively, and

γi =
∂EP{D}

∂pi

|P=P̄ , (8)

∆pi = pi − p̄i. (9)

If we let P̄ = P̄0 = {0, . . . , 0}, i.e., use the origin

as reference PLR, then the value of EP̄{D} can easily

be pre-calculated. For this choice, EP̄{D} becomes the

source coding (quantization) distortion per GOP and is

simply computed during encoding. The only remaining

task is to derive an algorithm to calculate the partial

derivatives γi. The expected distortion (6) can be rewritten

as

EP{D} = (1 − pi)EP{D|bi = 0} + piEP{D|bi = 1}.

The first-order partial derivative is hence given by

γi =
∂

∂pi

EP{D}|P=P̄

= EP̄{D|bi = 1} − EP̄{D|bi = 0}. (10)

Note that, in general, computation of γi involves two dis-

tortion calculations (i.e. decoding runs), one with packet

i received and one with packet i lost. This needs to

be performed for each packet. However, the choice of

P̄ = P̄0 implies that EP̄{D|bi = 0} = EP̄{D}, which is

already known. Hence the calculation of γi only requires

one decoding run per packet, and the γi values for all

packets in a GOP are easily computed by simulating all

single packet loss patterns.

C. Estimation Accuracy

Since the actual PLR in the network is usually not

far from zero, it is indeed convenient to use an “all-

zero” reference PLR vector P̄0 = {0, . . . , 0} for the

Taylor expansion. To illustrate the estimation accuracy,

we encoded the qcif sequence coastguard as H.264 [8]

bitstream (JM 12.2 [9], 75kbps, 10fps, GOP=30 frames,

512 bytes/packet). We implemented basic FODE to cal-

culate the partial derivatives during compression and use

them for distortion estimation at different PLR vectors.

For comparison, we implemented IADE [3], [4], which

neglects error concealment (yielding a pessimistic bias to

its estimate).

Figure 1(a) plots the FODE and IADE distortion es-

timates and the effective average distortion (averaged

over 1000 patterns) in dB as a function of the PLR p.

FODE tracks the distortion accurately. It provides a good

estimate at low to medium PLRs, and the estimation error

rises slowly towards the high PLRs as the distance from

the reference PLR vector P̄0 increases. The IADE algo-

rithm overestimates the distortion due to the underlying

assumption that a packet can only be decoded (and hence

reduce the distortion), if all packets it depends on have

been received correctly.

D. Delivery Optimization

Following [6], [7], we integrated both distortion esti-

mates into an RD framework to optimize delivery policies

for unequal error protection (UEP) by protecting the

data packets of each frame with a variable number of

FEC redundancy packets (for details refer to Section IV).

We evaluated the delivery performance for the salesman

sequence (qcif, 75kbps, 512 bytes/packet, 10fps, GOP=30

frames) achieved with the delivery policies selected under

basic FODE and IADE. Performance was averaged over

1000 simulated loss patterns at each PLR.

Note that while IADE neglects error concealment

during distortion estimation, during delivery FODE and

IADE employ the same concealment algorithm. Hence

any difference in delivery performance can be attributed

to improved estimation and subsequent delivery policy

selection. The FODE algorithm outperforms IADE (Fig-

ure 1(b)).

III. REFERENCE PLR VECTOR

We start this section with some observations about

FODE’s estimation accuracy at medium to high PLRs. We

identify issues that impair the estimate, which relate to the

fact that the original FODE algorithm expands its estimate

about the no-loss reference PLR vector P̄0. Hence, a

different, non-zero reference PLR vector should improve

estimation, and we investigate how this can be achieved

while avoiding an excessive increase in complexity.

A. Estimation Mismatch

Referring back to Figure 1(a), we notice that FODE

provides good estimation accuracy at low to medium

PLRs, but the estimation error grows with the PLR.

Recall that FODE is based on the first-order Taylor

approximation (7). The quality of the approximation can

be improved at the cost of increased complexity, e.g., via

a second-order expansion [6], [7]. However, the funda-

mental problem remains that the approximation accuracy

deteriorates with the distance from the reference point P̄0.

Note further that, during delivery (e.g., using UEP), the

effective PLR for each packet pi is adjusted individually,

thus further increasing the distance from the uniform

reference PLR vector P̄0.

Moreover, the assumption that GOPs are independent is

not truly valid. When data from the first frame in a GOP is

lost, the accumulated error from the previous GOP spills

over into the current one due to error concealment at the

decoder — this effect is more pronounced at higher PLRs.

B. Non-zero Reference PLR Vector

For improved estimation accuracy, it would be ben-

eficial to use a reference PLR vector closer to the

actual channel PLR p. Hence, it would be beneficial

to expand the FODE estimate about a non-zero PLR

reference vector. Estimating the expected distortion and
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partial derivative thereof at non-zero reference vectors

may, however, be costly in computational complexity.

One approach would be to use the “many decoders in

the encoder” (MDE) estimate [10], [11] during the com-

putation of FODE’s partial derivatives. A typical MDE

implementation (see, e.g., the JM reference sofware [9])

requires the encoder to track M different reconstructions

for the current frame from M simulated loss patterns. In

this case, the complexity is increased by a factor of M .

Recall that, in general, two decoding runs are needed

per packet (10). Since these distortion terms must be

computed over the entire GOP, this requires the simulation

of 2MN loss patterns compared to only N patterns for

the basic FODE. Moreover, to achieve good accuracy, M

will be considerably large as we will see in simulations.

Hence, the MDE estimate involves prohibitive complexity

in terms of computation and storage.

Our objective is, therefore, to find an alternative ap-

proach to achieve FODE estimation about a non-zero

reference PLR P̄ without incurring a substantial increase

in complexity. In the context of live video networking, our

group has previously proposed the recursive optimal per-

pixel estimate (ROPE) [1]. ROPE is precisely the needed

tool as it offers a means to efficiently and optimally track

error propagation at any given PLR. Hence, we propose to

complement FODE with a ROPE module for computation

of the partial derivatives at low complexity, yet high

accuracy. This combination provides a viable solution and

offers FODE functionality at any appropriate reference

PLR, thereby enabling considerably higher accuracy.

C. ROPE

This subsection provides a brief review of ROPE in its

original setting of live video coding where the encoder

has access to the source video signal, and some statis-

tical information about the network. For simplicity (but

without loss of generality) assume independent, uniformly

distributed PLR p, and let the decoder employ standard

temporal concealment of lost data. From the perspective

of the encoder, the decoder reconstruction is a random

process. It is not simply given by some additive uncorre-

lated noise as is often assumed in basic communication

problems, but the ultimate effect of channel loss depends

on error propagation through the prediction loop, error

concealment efforts at the decoder and the impact of

defensive measures at the encoder, etc.

1) Distortion Analysis: Let f i
n denote the original

value of pixel i in frame n, and let f̂ i
n denote its encoder

reconstruction. The reconstructed value at the decoder,

possibly after error concealment, is denoted by f̃ i
n. Note

that, for the encoder, f̃ i
n is a random variable. Using

mean-squared error (MSE) as the distortion metric, the

overall expected distortion for this pixel is

di
n = E{(f i

n − f̃ i
n)

2
}

= (f i
n)2 − 2f i

nE{f̃ i
n} + E{(f̃ i

n)2}. (11)

The computation of di
n requires the first and second

moments of each random variable in the sequence f̃ i
n.

These can be computed recursively, based on the mo-

ments from the previous frame, f̃ i
n−1. For the recursion

step, there are two cases depending on whether motion-

compensated prediction is disabled or enabled, called

intra-coding or inter-coding, respectively.

2) Intra-coding: The packet containing pixel i is re-

ceived correctly with probability 1 − p, producing f̃ i
n =

f̂ i
n. If the packet is lost, the lost block is concealed

as f̃ i
n = f̃ i

n−1, with probability p. Therefore, the first

and second moments of f̃ i
n for an intra-coded pixel are

computed as:

E{f̃ i
n} = (1 − p)f̂ i

n + pE{f̃ i
n−1} (12)

E{(f̃ i
n)

2
} = (1 − p)(f̂ i

n)
2

+ pE{(f̃ i
n−1)

2} (13)

3) Inter-coding: Let pixel i be predicted from pixel j

in the previous frame, i.e. the encoder prediction is f̂
j
n−1.

The prediction error, ei
n, is quantized to the value êi

n,

which is transmitted together with the motion vector. Even

if the current packet is correctly received, the decoder



uses the decoder reconstruction of pixel j in the previous

frame, f̃
j
n−1, for prediction, which is potentially different

from the value used by the encoder: f̃ i
n = f̃

j
n−1 + êi

n. The

first and second moments of f̃ i
n for an inter-coded pixel

are:

E{f̃ i
n}

= (1 − p)
(

êi
n + E{f̃ j

n−1}
)

+ pE{f̃ i
n−1}, (14)

E
{

(f̃ i
n)2

}

= (1 − p)E
{

(êi
n + f̃

j
n−1)

2
}

+ pE
{

(f̃ i
n−1)

2
}

= (1 − p)
(

(êi
n)2 + 2êi

nE{f̃ j
n−1}

+E{(f̃ j
n−1)

2}
)

+ pE
{

(f̃ i
n−1)

2
}

(15)

Due to the recursive nature of the above formulae,

we call this distortion estimate the “recursive optimal

per-pixel estimate” (ROPE). It is optimal in the mean

squared error sense, and uses all information available

at the encoder to estimate the moments of the decoder

reconstruction. Despite their imposing appearance, the

recursion formulae are clearly benign in actual update

computation of the first and second moments in terms

of those of the previous frame.

4) Estimation Accuracy: In order to evaluate ROPE’s

estimation accuracy, we compare it against the MDE

algorithm [10], [11] with M = 60 packet loss patterns.

Figure 2 plots the absolute estimation error (in dB) of the

ROPE and MDE estimates for the qcif sequence news.

ROPE achieves a low estimation error across the whole

PLR range. MDE60 provides a reasonable estimate, but

it fluctuates. Most of the time, its estimation error is

significantly bigger, but sometimes it is closer to the

actual distortion than ROPE. This effect is caused by the

discrete nature and insufficient statistics of the MDE60

estimate (this effect is even more pronounced on a per-

frame basis).

In terms of complexity, the amount of computation

required for ROPE is similar to MDE for M = 2 ∼ 3.

Even with twenty-fold complexity (MDE with M =
60), MDE has worse estimation accuracy than ROPE.

MDE’s estimation precision increases with M , but so does

the complexity. Comparing the memory overhead, ROPE

needs two floating point values per pixel (8 = 2×4 bytes

at single precision), while MDE requires M bytes/pixel

(2M if pixels have more than 8 bits). Overall, ROPE’s

complexity is significantly lower, while providing a better

estimate. Note that a reduced complexity scheme has been

proposed for MDE, called “few decoders in the encoder”

(FDE) [12]. It models the underlying PLR distribution in

order to simulate fewer patterns, but it assumes a limited

window length for error propagation.

5) Subpixel Estimation: The original ROPE [1] was

developed in the context of full-pixel motion compen-

sation. Subsequently, an extension to estimate cross-

correlation terms (e.g. due to pixel filtering operations

such as subpixel interpolation) was proposed [13]. How-

ever, this method incurred substantial computational and
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Fig. 2. Estimation error (absolute difference in dB) vs. PLR p
(news, qcif, 10fps, 60kbps, 512 bytes/packet, GOP=30 frames)

storage complexity. Recently, a low complexity and high

accuracy method to enable ROPE to accurately deal with

subpixel interpolation and subsequent rounding [14], [15].

In this paper, we focus on full-pixel estimation only,

but these ROPE extensions can easily be integrated into

the FODE-ROPE algorithm.

D. FODE-ROPE Estimation

As proposed in Section III-B, we complemented FODE

with a ROPE module to extend the applicability to non-

zero reference PLR vectors.

Estimation of the expected distortion EP{D} in equa-

tion (7) involves the distortion at the reference PLR

vector EP̄{D} and the partial derivatives γi. Recall from

Section II-B that, in the basic FODE algorithm, these

were computed by conventional decoding, accumulating

the distortion over all frames in a GOP. The calculation of

EP̄′
{D} requires decoding the GOP once without losses,

while the γi for the N GOP source packets are calculated

by simulating all N single packet loss patterns.

For FODE-ROPE estimation, the same basic procedure

is performed. However, instead of conventional decod-

ing, we track the (first and second) ROPE moments

and employ those to calculate the (expected) distortion

terms. The PLR p in the ROPE update equations (12)–

(15) is replaced with the p̄i corresponding to the source

packet i from the reference PLR vector P̄ . Note that

the error propagation across GOP boundaries is elegantly

accounted for as part of EP̄′
{D}. Further, calculation of

the γi in equation (10)) now requires two decoding runs,

one with pi = 1 and another with pi = 0 (the other

pj = p̄j from P̄ for i 6= j).

To evaluate the impact of the reference vector, we

plot the resulting estimate for P̄ = 5% and P̄ =
10% (uniform) in Figure 3 (qcif sequences, 10 fps,

512 bytes/packet, GOP = 30 frames). Note that there

is no requirement that P̄ be uniform, and these vectors

were chosen to provide a simple evaluation of the new

capabilities.

Figure 3(a) plots the estimation accuracy for a conven-

tional loss-less encoding of the sequence stefan (150kbps,
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Fig. 3. Absolute estimation error (dB) vs. PLR p (qcif, 10 fps, 512 bytes/packet, GOP=30 frames)

10fps). Clearly, the P̄ = 10% estimate tracks the distor-

tion better at higher PLRs than the conventional FODE

algorithm. However, there is an inherent trade-off between

accuracy at low and high PLRs. As expected, at low PLRs

the FODE estimate outperforms the P̄ = 10% reference

vector. The estimate based on the P̄ = 5% reference

PLR vector is closer to FODE at low PLRs (but still

worse), performs better for medium PLRs, but worse than

P̄ = 10% at higher PLRs.

Figure 3(b) shows the distortion accuracy for an error-

resilient encoding of the sequence carphone at 60kbps.

Once again, the new estimates outperform the FODE P̄0

estimate, with the P̄ = 10% maintaining good accuracy

until p = 20%, and then slowly diverging.

IV. DELIVERY OF PRE-COMPRESSED VIDEO

In this section, we integrate the different distortion

estimates into an RD framework to optimize the delivery

decisions for a pre-compressed video stream. As an exam-

ple, we provide results for a non-scalable encoder using

unequal error protection (UEP) based on FEC protection.

We demonstrate that improved estimation translates to

better delivery performance.

A. RD Framework

An adaptive error-resilience scheme can be described as

a set of policy choices π ∈ {π(0), π(1), . . . , π(S)} for each

packet. Each choice π results in an effective loss rate pi

for packet i, and incurs a rate/cost c(π). Depending on the

employed resilience scheme, the policy choices could be

the number of retransmissions, the strength of the applied

FEC, or the transmission power or coding scheme for

wireless transmission etc.

The policy vector for a group of source packets (GOP)

is defined as Π = {π0, . . . , πN−1}. The corresponding

PLR vector and the cost vector are denoted by P(Π) and

C(Π), respectively. The RD costs (expected end-to-end

distortion and total cost) for a GOP are

E{D(P(Π))} ≈ E{D(P̄)} +
N−1
∑

i=0

γi(pi(πi) − p̄i) (16)

C(Π) =
N−1
∑

0

ci(πi) (17)

.

The optimal delivery policy is the policy that minimizes

the Lagrangian:

E{D(P(Π))} + λC(Π)

≈ E{D(P̄)} +

N−1
∑

i=0

γi(pi(πi) − p̄i) + λci(πi) (18)

Note that the distortion estimate is additive in terms

of contributions from the various pi. Theoretically, the

policies can be chosen independently for each packet, but

practically the optimization may involve cluster decisions

at the appropriate granularity level, e.g., grouping the

packets in one frame for combined FEC policy selection.

B. Simulation Results

We simulate a non-scalable system with UEP using

Reed-Solomon codes. The video is pre-compressed using

the JM 12.2 reference software [9]. We use adaptive

packetization: each packet is ≤ 512 bytes and contains

one slice of the encoded frame (adaptive slicing).

Unlike the setting we employed for estimation accuracy

evaluation (Section III-D), the current setting of delivery

policy optimization calls for a nonuniform reference PLR

vector closer to the effective loss rate experienced by each

packet (after UEP).

We compare the performance achieved under three

algorithms: baseline FODE (P̄ = P̄0), FODE-ROPE

and IADE. How do we generate the nonuniform ref-

erence PLR vector for FODE-ROPE? We observe that

the effective PLR vector P̄eff,FODE from the deliv-

ery policy obtained under the baseline FODE algorithm

provides a reasonable approximation. Hence, we choose

P̄ = P̄eff,FODE and compute the FODE-ROPE partial

derivatives using that reference PLR vector. Finally, the

FODE-ROPE delivery policy is computed using the new

partial derivatives.
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Fig. 4. Delivery performance, PSNR vs. PLR p (qcif, 10fps, 512 bytes/packet, GOP=30 frames)

Figure 4 shows the results for the three qcif sequences

akiyo, coastguard and container for the medium to high

PLR range (10 ∼ 25%). In Figure 4(a), the baseline

FODE algorithm achieves a nice improvement over IADE,

but the FODE-ROPE policy achieves an additional gain.

In the case of the coastguard sequence (Figure 4(b)),

baseline FODE only shows modest gains over IADE.

Here, the FODE-ROPE method achieves significant gains

over baseline FODE.

Finally, consider Figure 4(c). Baseline FODE barely

improves upon IADE, and even performs worse than

IADE at p=25% (far from its reference). Again, FODE-

ROPE achieves a nice gain. We conclude that these gains

are a direct result of improved estimation, since the

underlying optimization algorithm is exactly the same for

both FODE methods.

V. CONCLUSION

End-to-end distortion estimation is a fundamental and

crucial problem in RD-optimized adaptive delivery of pre-

compressed video over lossy networks. We build on the

FODE algorithm, which offers accurate estimates of end-

to-end distortion at low packet loss rates [6], [7]. Specif-

ically, we complement FODE with the ROPE algorithm

(originally proposed for distortion estimation in live video

settings) to enable more flexible and accurate estimation

about arbitrary reference PLR vectors. Simulation results

demonstrate significant estimation gains at moderate to

high packet loss rates.

The proposed estimation algorithm can be integrated

with various delivery schemes, and provides robust trans-

mission of pre-compressed video at low complexity. The

basic approach is independent of the specific set of

strategies or policies and is presented within a high-level

rate-distortion optimized framework. It requires modest

complexity due to the simplicity of the approximation /

estimation model. A practical system with UEP through

FEC is simulated and provides an example of potential

gains for our approach.

In the future, we plan to investigate how estimates from

different reference points can be combined for optimal

estimation across the entire PLR range. Interesting appli-

cations include scalable coding with higher PLRs in the

enhancement layers and packet scheduling.
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