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Abstract

Current video coding schemes employ motion compensation to exploit the
fact that the signal forms an auto-regressive process along the motion trajec-
tory, and remove temporal redundancies with prior reconstructed samples via
prediction. However, the decoder may, in principle, also exploit correlations
with received encoding information of future frames. In contrast to current de-
coders that reconstruct every block immediately as the corresponding quantiza-
tion indices are available, we propose an estimation-theoretic delayed decoding
scheme which leverages quantization and motion information of one or more
future frames to refine the reconstruction of the current block. The scheme,
implemented in the transform domain, efficiently combines all available (includ-
ing future) information in an appropriately derived conditional pdf, to obtain
the optimal delayed reconstruction of each transform coefficient in the frame.
Experiments demonstrate substantial gains over the standard H.264 decoder.
The scheme learns the autoregressive model from information available to the
decoder, and compatibility with the standard syntax and existing encoders is
retained.

1 Introduction

Differential pulse code modulation (DPCM) in the form of motion-compensated cod-
ing is widely employed in modern video coders [1]. The underlying assumption is
that blocks of the video signal along a motion trajectory form an auto-regressive
(AR) source. While the emphasis of this paper is on video compression, for now,
consider a generic first order AR source {xn}, a stationary sequence of zero-mean,
real-valued random variables with,

xn = ρxn−1 + zn . (1)
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Figure 1: DPCM encoder

The random variables {zn} are independent and
identically distributed (i.i.d), with specific probabil-
ity density function (pdf) pZ(z), and are the driv-
ing innovation process. The correlation coefficient
of adjacent samples is ρ. A DPCM encoder (Fig.
1) generates a prediction x̃n, based on prior recon-
structions, and subtracts it from the current sample
xn to generate the prediction error en. This is quan-
tized to produce an index in which is entropy coded
and sent to the decoder. The reconstruction of xn

is x̂n = x̃n + ên, where ên is the reconstruction char-
acteristic of the quantizer cell with index in. At
high rates, x̂n−1 ≈ xn−1, and the optimal predictor
is x̃n = ρx̂n−1. This form of the predictor is often

employed at low bit-rates as well. In the AR source model, xn is correlated not just
with samples from the past, but also with the future, i.e., with {xl}l>n. At high rate,
the prediction error en ≈ zn ∀n, hence {in} are approximately i.i.d. In this case,
future quantization indices {il}l>n provide no additional information on the current
sample xn. In practical, limited bit-rate scenarios, however, future indices do contain
information about xn, which could potentially be used to improve its reconstruction
at the decoder. Naturally, doing so would entail decoding delay.

Consider now the case of a motion-compensated video compression scheme such
as H.264 [1]. It supports variable block-size motion compensation with a minimum
luminance partition of 4x4. Thus, inter-mode macroblocks consist of 4x4 blocks, each
(potentially) individually motion-compensated from previously decoded frames. 2-D
discrete cosine transform (DCT) is applied to the prediction residual and the resulting
transform coefficients are quantized, entropy coded and transmitted. The decoder re-
constructs these coefficients, applies an inverse DCT to reproduce the prediction error
blocks, and adds them to the corresponding motion compensated prediction. Except
for the transform, the similarity with DPCM is evident. Note that the decoder as
described reconstructs each block immediately as the corresponding quantization in-
dices are available (i.e., with zero delay). Whenever decoding delay is admissible,
the motion vectors of future frames could potentially be used to continue the motion
trajectory of every block in the current frame into subsequent frames, and the infor-
mation available about these future blocks could then be exploited to improve the
reconstruction of the current frame. In other words, similar to the DPCM case, de-
layed decoding could be employed to improve video reconstruction. This observation
is the key premise of the proposed approach.

In the case of DPCM, decoder delay has been previously exploited in [2] and [3],
both of which smooth (i.e., filter) the standard DPCM output, {x̂n}, with a suitable
non-causal post-processor. More recently, in [4], an estimation-theoretic (ET), opti-
mal delayed-decoder was proposed, which considerably outperformed the smoothing
approaches of [2] and [3], and provided evidence for the substantial gains achievable
by delayed-decoding. The ET scheme of [4] motivates the delayed-decoder for video
signals proposed herein. We currently limit the decoding delay to one future frame.
For each transform coefficient of a block in the current frame, we calculate its pdf
conditioned on information on the corresponding subsequent block lying on the same



motion trajectory, in addition to the usual available motion compensated informa-
tion from past frames, and the current quantization index. The reconstruction of
the transform coefficient is then obtained as the appropriate conditional expectation.
The proposed delayed video decoder is implemented in the H.264/AVC framework,
and is compatible with (i.e., requires no modification of) the standard syntax. In
other words, the proposed decoder does not necessitate any re-encoding of existing
compressed video sequences. The decoder learns the parameters/statistics needed
to obtain the conditional pdf, from information available in the H.264 bit-stream.
Experiments indicate that the proposed approach can provide PSNR improvements
of about 1.7 dB relative to the the standard decoder, at very modest increase in
complexity.

We note that, while end-to-end (or playback) latency in the form of bidirectional
prediction (i.e., B-frames) [5] is already a feature of H.264, the proposed delayed
decoding approach is of particular benefit to P-frames encountered very frequently
in the bit-stream. A rate-distortion based scheme that employs encoder-end filtering
along the motion trajectory has been described in [6] which, unlike the proposed
approach here, incorporates encoder delay to exploit correlation with future frames.
Other related prior work includes a closed-form quantitative characterization of the
trade-off between performance and decoder-latency for generic Gauss-Markov sources
[7], where temporal independence and gaussianity of the quantization noise were
also assumed. It is noteworthy that the pdf of the innovations in case of motion
compensated video is nearly laplacian [8].

This paper is organized as follows. Section 2 reviews the ET delayed decoding
algorithm proposed in [4] for regular DPCM. Extension and adaption to delayed video
decoding is presented in Section 3. Simulation results are provided in Section 4.

2 Estimation-Theoretic Delayed Decoding

The ET delayed decoding algorithm proposed in [4] is reviewed in this section, in
light of the first order AR process (1) and the DPCM scheme described in Sec. 1.
The distortion metric used is the mean squared error (MSE). Therefore, the optimal
reconstruction of the sample xn, given all the information (i.e., indices {il}l≤n+L)
available at the decoder for a fixed delay or look-ahead L, is the minimum MSE
estimate

x̂∗
n = E[xn|{il}l≤n+L] , (2)

the expectation over the conditional pdf p(xn|{il}l≤n+L). Thus, optimal reconstruc-
tion can be obtained once this pdf is derived. We use the streamlined notation p(·)
to denote any pdf or probabilities, and add a subscript when the interpretation is not
obvious from the context. We now note the following:

p(xn|{il}l≤n+L) =
p(xn|{il}l≤n)p({il}n<l≤n+L|xn)

∫

p(xn|{il}l≤n)p({il}n<l≤n+L|xn)dxn

. (3)

Unless otherwise indicated, integrals are over the real line. The above equation follows
from Bayes’ rule, and the Markov property of the process (1): given xn, future events
or indices {il}n<l≤n+L are independent of any other information preceding xn (i.e.,



{il}l≤n). Note that p(xn|{il}l≤n) is the pdf of xn conditioned on all information up to
the current time n. The optimal zero delay estimate of xn is simply the expectation
over this pdf. The optimal delayed decoder though, weighs it with p({il}n<l≤n+L|xn),
representing the probability given xn of the known future outcomes, to obtain the
composite pdf p(xn|{il}l≤n+L) in (3), that incorporates all known information up to
the fixed delay L. The estimate of xn is then x̂∗

n of (2). Two recursions were employed
to obtain the requisite probabilities [4].

One recursion updates the zero-delay pdf p(xn−1|{il}l≤n−1) employed at time n−1,
to the corresponding pdf p(xn|{il}l≤n) at time n. Specifically, the pdf of xn condi-
tioned on all past information, {il}l≤n−1, is obtained by,

p(xn|{il}l≤n−1) =

∫

p(xn−1|{il}l≤n−1)pZ(xn − ρxn−1)dxn−1

where the Markov property of the (1) is exploited. Note that the current index in
(along with x̃n) now provides the additional information that xn lies in a particular
interval In, i.e., the effective quantization interval. Thus, the above pdf is restricted
to In (and correspondingly re-normalized) to incorporate the information in in and
obtain:

p(xn|{il}l≤n) =

{

p(xn|{il}l≤n−1)
∫

In
p(xn|{il}l≤n−1)dxn

xn ∈ In

0 else
.

A second recursion obtains the the probability p({il}n<l≤n+L|xn) of the L future
events, as a function of xn. Suppose we know the probability, p({il}n+m<l≤n+L|xn+m),
of future events {il}n+m<l≤n+L given xn+m, where m < L. Then the Markov property
of (1) can be used to show that,

p({il}n+m−1<l≤n+L|xn+m−1) =

∫

In+m

p({il}n+m<l≤n+L|xn+m)pZ(xn+m−ρxn+m−1)dxn+m .

Initializing p(in+L|xn+L−1) =
∫

In+L

pZ(xn+L − ρxn+L−1)dxn+L, the above recursive

equation can be applied L−1 times to obtain the requisite probability p({il}n<l≤n+L|xn)
of the known future outcomes as a function of xn. These recursions together with (3)
and (2), provide x̂∗

n. We note that in combining time correlations with quantization
interval information, this approach was inspired by the method in [9] for optimal
prediction in scalable coding.

3 Design of the Delayed Video Decoder

The above estimation-theoretic delayed decoding algorithm is next extended and
applied, with suitable modifications, to delayed decoding of video sequences encoded
by motion compensation. This section discusses the problems encountered in the
video coding scenario and their solutions.

3.1 Motion Trajectory Construction

Delayed decoding of a block in the current frame requires the location, in neighboring
reconstructed frames, of samples that lie on the same motion trajectory. The statistics



Figure 2: The blocks A, B and C form a sequence in the underlying AR process. Mo-
tion vectors available in the H.264 bit-stream are exploited to identify such sequences.

of the underlying AR process can then be exploited using the ET approach in [4].
In Fig. 2, block B is the block of interest in the current frame (indexed n). The
available motion vector (in the H.264 bit-stream) indicates the corresponding block
A, in the previous frame (indexed n − 1), which is the predecessor of B in the AR
process. We also require the location of block C in the future, i.e., frame n + 1,
which is the succeeding block of the process. Since delayed decoding is employed, the
motion vectors of frame n+1 are available and can, in principle, be reversed to obtain
the location of future blocks relevant to a current block of interest. However, there
are complications. Note that motion vectors are available in the bit-stream for blocks
that are seated on the grid dividing the frame into 4x4 sections. Thus, the motion
vectors of frame n + 1 map its on-grid blocks to corresponding (potentially off-grid)
blocks of frame n. This is illustrated in Fig. 2. The dark-shaded block on the grid
of frame n + 1 is predicted by motion compensation from the block bounded by the
broken lines in the current frame. But the proposed algorithm requires a mapping
from on-grid blocks of frame n (for example, block B in Fig. 2), to corresponding
(possibly off-grid) blocks of frame n + 1 (i.e., similar to block C). To this end, we
employ an approximation. We seek the on-grid block in the reconstructed frame
n + 1, whose motion compensation maximally overlaps the block of interest, B, in
the current frame. The corresponding motion vector is reversed and, with reference
to the position of block B, provides the location of the required block C in frame
n + 1. This process of reversing already available motion vectors of the next frame,
and referencing them to on-grid blocks of the current frame, is a fast, low complexity
alternative to a complete motion search to find a block in the reconstruction of the
next frame that most resembles block B in the current frame. Some other methods
to construct motion trajectory were also discussed in [6, 10].

3.2 Transform Domain vs Pixel Domain

The ET approach in [4] was developed for a 1-D source. But the blocks A, B, and C
are 4x4 blocks of pixels. This issue is circumvented by implementing the ET decoder



in the transform domain, i.e., a sequence of corresponding DCT coefficients in blocks
along the motion trajectory is assumed to form a scalar AR process in time. Since the
function of the transform is to exploit spatial correlation, the transform coefficients
within the block are approximately uncorrelated, and estimation can thus be carried
out separately for each (spatial) frequency. This effectively reduces the blocks to a set
of 16 1-D AR sources. A second, more significant advantage is that the quantization
information, i.e., indices or intervals, exploited by the ET decoder (see Sec. 2) is
readily available in the transform domain. Such a transform domain approach has
also been adopted in [9] for scalable video coding.

3.3 Statistical Model

It is assumed that the evolution of DCT coefficients along the motion trajectory
follows the process (1), with xn denoting the DCT coefficient of a specific “frequency”
in a block of the current frame, and xn−1 denoting the corresponding DCT coefficient
in the previous frame. The ET decoder requires the density pZ(z) of the innovations
zn to calculate the various conditional pdfs involved in the estimation algorithm.
Since the motion-compensation is simply subtracted (without scaling) in standard
video coders, we assume for simplicity that the correlation coefficient ρ ≈ 1. With
such a model it has been shown in prior work [8, 11] that the innovation density is
well approximated by the zero-mean laplacian distribution, i.e.,

pZ(z) =
λ

2
e−λ|z| , (4)

where λ is the laplacian parameter.

3.4 Required Modifications for Delayed Video Decoding

We are now ready to apply the ET delayed decoding algorithm in the H.264 decoder
framework. We restrict our implementation to one frame latency case (i.e., L = 1 in
Sec. 2). In the following, we describe the application of this algorithm to the AR
process {xn} of DCT coefficients of one particular frequency.

It is evident from (3) that the optimal delayed decoder involves the density
p(xn|{il}l≤n) of the DCT coefficient in the current block, which is conditioned not
only on quantization index in of the coefficient of interest, but also the indices {il}l<n

corresponding to the same spatial frequency in all preceding blocks along the motion
trajectory. Since the encoder transforms the prediction residuals of blocks on the
grid, and quantizes and encodes these transform coefficients, the current index in is
readily available from the bit-stream. But this is generally not the case for the history
{il}l<n. Let us say the xn of interest belongs to the block B in frame n of Fig. 2. The
preceding block A is not seated on the grid of frame n − 1, and hence is not exactly
the block that is transformed and encoded as part of the bit-stream for the frame.
Therefore the corresponding index in−1 is not available. This is in general the case
with other past indices too. Therefore an approximation is needed. Specifically,

p(xn|{il}l≤n) ≈ p(xn|x̃n, in) ≈

{

pZ(xn−x̃n)
∫

In
pZ(xn−x̃n)dxn

xn ∈ In

0 else
(5)



In the above, the prediction x̃n = x̂n−1, the corresponding coefficient obtained by
transforming the standard motion compensation for the block, is employed in lieu
of the optimal combination (in p(xn|{il}l≤n)) of all past information. The fact that
ρ ≈ 1 is implicit. The interval In in which xn lies is determined by x̃n and in.

The second requirement in (3) is the probability p(in+1|xn), i.e., the probability
that the transform coefficient in the next frame (see block C of Fig. 2) is associated
with the index in+1. Again, this block in the future frame may not be seated on
the grid, and thus the index in+1 need not be available in the bit-stream. This
necessitates a second approximation. Note that the location of the block is already
determined by the motion trajectory construction of Sec. 3.1, and the standard
decoder provides a coarse estimate of the pixels in this block. 2-D DCT is now
applied to this coarse reconstruction. Denote x̂n+1 as the DCT coefficient in this
block, at the same frequency as xn. Hypothetically, if the interval In+1 in which the
transform coefficient xn+1 lay was known, then p(in+1|xn) =

∫

In+1
pZ(xn+1 − ρxn)dxn.

Since the index in+1, and hence this interval, are unknown, we approximate:

p(in+1|xn) = pZ(x̂n+1 − xn)∆ . (6)

This is interpreted as follows: the true value of xn+1 lies within an interval of length
∆ around the coarse estimate x̂n+1, with its pdf, conditioned on xn, nearly uniform
on the interval. Note that this is indeed the case at high bit-rates. But as observed
in the simulation results this approximation leads to good performance even at low
and medium bit-rates.

We now apply (5) and (6) to (3), and subsequently obtain the delayed reconstruc-
tion x̂∗

n through (2). This procedure is applied to all 16 transform coefficients in the
current block, and the inverse DCT is employed to obtain the delayed, pixel domain
reconstruction.

3.5 Estimation of the Process Distribution

Each of the 16 transform coefficients (and hence the 16 1-D AR processes) of a 4x4
block is assumed to be characterized by a different value of the laplacian parameter λ,
i.e., the laplacian innovation density has a frequency specific variance. The maximum-
likelihood estimate of λ, given outcomes z0, · · · , zN−1 of N independent draws of the
random variable Z, is

λML =
N

∑N−1
i=0 |zi|

. (7)

Ideally, one would need to obtain the innovations at each frequency from the original

video signal, and substitute in (7) to estimate the corresponding laplacian parameter.
Such estimation would necessitate sending these parameter values as side-information
in the bit-stream. This is avoided by instead estimating λ from information already
available in the H.264 bit-stream. Specifically, the encoded bit stream contains the
information needed to determine the reconstructed prediction error in the transform
domain. At high bit-rates these reconstructed errors closely approximate the innova-
tions of the transform domain AR processes. They are thus substituted for zi in (7)
to obtain the estimate of the laplacian parameters for each frequency, at the decoder
itself.



In summary, the reconstruction of frame n by the proposed approach involves the
following steps:

1. Decode as usual (e.g., by H.264) up to frame n+1: the standard reconstructions
x̂n−1 and x̂n+1 are used in (5) and (6).

2. Construct the motion trajectory as described in Sec. 3.1 by employing motion
vectors of frames n and n + 1.

3. With the quantization information of frame n estimate the laplacian parameters,
and obtain the interval In used in (5).

4. Apply the ET delayed decoder given by (5), (6), (3), and (2), to each transform
coefficient of every block of frame n, and then inverse transform to obtain the
spatial domain reconstruction.

5. Deblock the refined reconstruction of frame n.

It should be noted that laplacian density model for the innovation pdf (4) cou-
pled with the approximations (5) and (6) enable closed form expressions (formulae)
for the delayed reconstruction, i.e., the expectation (2). This considerably reduces
the complexity in obtaining this estimate, which would otherwise require numerical
computation of integrals.

4 Simulation Results

The proposed ET delayed decoder was implemented within the framework of H.264
Reference JM 16.0 [12] with frame-rate of 15 fps. The standard motion search, rate-
control, and residual compression methods for inter mode prediction and coding were
retained. Sub-pixel motion search was deactivated at this point to simplify the work-
ings of the ‘inverse’ motion mapping described in Sec. 3.1. The standard deblocking
function is employed.

The performance (in terms of PSNR) of the delayed decoder is compared with
that of standard H.264 in Fig. 3. These results were obtained by decoding the first
30 frames of the sequence coastguard qcif.yuv when encoded in IPPP format. Note
that H.264 uses a uniform quantizer whose reconstruction, in every quantizer cell,
is the midpoint of the interval. Since the innovations (and the prediction error) are
nearly laplacian, even the optimal zero-delay reconstruction is in fact shifted from the
midpoint towards the origin. Thus, even with no decoding delay the ET approach
offers benefits: the previously described estimation of laplacian parameters (λs) by
itself yields an improved reconstruction for each quantizer cell. To illustrate this fact,
we include the performance of this ET zero-delay decoder in Fig. 3. This causal
decoder already provides a gain of about 0.2-0.7 dB in PSNR. The delayed decoder
further improves the performance by almost 1 dB at most bit-rates. At very high
bit-rates, as explained in Sec. 1 for the regular DPCM case, the gains due to delayed
decoding are expected to be minimal. This is also observed in Fig. 3, where all three
decoders provide similar performance at high rates. Similar results with the Foreman

and Container sequences are provided in Table. 1. Then Table. 2 illustrates the
gains obtained via the ET delayed decoder (which is a temporal processing operation)
when the deblocking function (spatial smoothing) is retained or switched off. It is



noteworthy that the gains due to the two complementary operations are indeed largely
additive.
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Figure 3: Comparison of the performance of standard H.264, and ET zero-delay and
one-frame delayed decoders, on the Coastguard sequence

Rate(kbps) Standard ET Delayed
Decoder

100 32.37 34.41
160 36.38 37.33
200 37.90 38.77
320 40.56 41.63
400 42.00 43.06
580 45.28 46.34
900 50.48 51.13

(a)

Rate(kbps) Standard ET Delayed
Decoder

56 35.25 35.89
72 36.87 37.64
108 39.69 40.54
150 41.16 42.29
200 42.46 43.74
250 43.71 45.23
400 47.11 48.80

(b)

Table 1: PSNR values for (a) Foreman and (b) Container; at QCIF resolution

5 Conclusions

An ET delayed decoder for video sequences encoded using motion compensated pre-
diction is proposed in this paper. The approach combines the motion compensation
information from the past, the quantization index of transform coefficients in the
current frame, and motion vectors and reconstructions of one future frame, in an ET
framework, in order to produce the optimal estimate of the current frame. It achieves
significant performance gains compared to the standard H.264 reconstruction. The
decoder is applicable to all predictive coding systems, and can be specifically applied
to any bit-stream that complies with the H.264 standard. It learns the underlying AR
process from information available in the standard bit-stream and requires no side
information. The additional complexity and memory requirements of the proposed
approach are modest.



Deblocking on Deblocking off
Rate(kb/s) standard ET delayed standard ET delayed

116 32.14 33.26 30.75 31.65
160 33.24 34.57 31.59 32.60
220 34.70 36.35 33.16 34.35
280 36.32 37.96 34.64 35.82
330 37.63 39.36 36.07 37.33
420 39.39 41.18 38.25 39.66
500 41.12 42.75 40.26 41.62
680 44.86 46.05 44.69 45.83

Table 2: PSNR comparison for Coastguard at QCIF resolution with deblocking filter
active or switched off
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