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ABSTRACT

End-to-end distortion estimation is critical to effective error-

resilient video coding. The recursive optimal per-pixel esti-

mate (ROPE) is a known approach to compute up to second

moments of decoder-reconstructed pixels, and thereby opti-

mally estimate the distortion. ROPE accurately accounts for

encoding/decoding operations that are recursive in the pixel

domain, and their interaction with packet loss and decoder

concealment. The premise of this work is that considerable

gains could be recouped by a dual estimation technique that

would perform its recursion in the transform domain. This

opens the door to accurate distortion estimation in conjunc-

tion with estimation-theoretic source coding approaches that

involve transform domain operations, including improved

prediction in both single-layer and scalable video coding.

We present a novel recursive optimal estimate that oper-

ates entirely in the transform domain, namely, the spectral

coefficient-wise optimal recursive estimate (SCORE). The

method overcomes intricacies due to motion compensation

from “off-grid” blocks. We first demonstrate that its accuracy

matches ROPE in the usual setting where ROPE is known

to be optimal. Then we consider an enhanced encoding sce-

nario involving spectral operations that cannot be accurately

tracked by ROPE, but for which SCORE still maintains opti-

mality and hence enables substantial end-to-end performance

gains over a large range of packet loss rates.

Index Terms— recursive estimate, end-to-end distortion,

ROPE, mode decision, optimization

1. INTRODUCTION

Most current video coders employ motion compensated pre-

diction to exploit temporal redundancies, at the cost of in-

creased sensitivity to packet loss, due to temporal and spa-

tial error propagation via the prediction loop. Many error re-

silience tools and paradigms have been employed to mitigate

this problem, including forward error correction, intra refresh,

multiple description coding, macroblock retransmission, etc.,

(see [1] for an overview of some relevant techniques). Since

The work was supported in part by the NSF under grant CCF-091723.

error-resilience typically incurs additional bit-rate costs, the

fundamental optimization problem that underlies the coder is

formulated in terms of the tradeoff between bit rate and the

distortion perceived at the decoder, also referred to as end-to-

end distortion (EED). Clearly, optimization of encoding deci-

sions depends directly on the encoder’s ability to accurately

estimate the EED, while accounting for all factors, including

compression, packet loss and error propagation due to the pre-

diction loop, and concealment at the decoder. The recursive

optimal per-pixel estimate (ROPE) [2], which originated in

our lab, is an efficient and effective approach to optimally es-

timate the EED. Since packet losses are random, the encoder

must treat the decoder reconstruction of a pixel as a random

variable. The main idea of ROPE is to recursively calculate

the first and second moments of reconstructed pixels, via up-

date equations that explicitly account for motion compensated

prediction, packet loss rate, and concealment at the decoder.

The optimal EED estimate is then directly obtained from the

first and second moments of the reconstructed pixels (details

in Sec. 2.1). The basic version of ROPE [2] was extended in

[3] to better comply with current standard options by account-

ing for operations such as sub-pixel motion compensation, de-

blocking, rounding, etc., which involve inter-pixel correlation

terms.

Basic ROPE and its extensions have been successfully in-

corporated into various methods for error-resilient video cod-

ing, including for example [4]-[6]. We note, however, that it

is inherently restricted to account for error propagation due

to recursive operations performed in the pixel domain. This

is not a significant limitation for many or most current video

coding applications, where both prediction and error conceal-

ment are either actually performed in the spatial (pixel) do-

main, or are equivalent to such spatial operation. However,

there are source coding approaches of significant interest that

involve operations that are recursive in the transform domain

rather than the pixel domain. The need to provide such ap-

plications with a ROPE-like EED estimate for effective er-

ror resilience is a main motivation for this work. In par-

ticular, [7]-[10] propose estimation-theoretic approaches for

video source encoding/decoding that offer substantial com-

pression gains, by recursively operating in the transform do-

main, typically the discrete cosine transform (DCT). Specifi-



cally, these approaches view the sequence of DCT coefficients

at a given spatial frequency, from blocks along a motion tra-

jectory across consecutive frames, as an autoregressive (AR)

process, and exploit this per-coefficient AR model to esti-

mate the coefficients of a given block, either for prediction

[7, 8, 10], or for reconstruction [9]. Let us focus specifically

on a transform domain motion-compensated prediction (TD-

MCP) scheme that was proposed in [8] which largely elimi-

nates spatial correlations before spectral components (trans-

form coefficients) are independently predicted. This tech-

nique incorporates the true temporal correlations that only

emerge after signal decomposition, and which vary consid-

erably from low to high frequency components. This precise

nature of temporal dependencies is entirely masked by pixel

domain prediction of standard video codecs, by the uniformly

high correlation coefficient (ρ ≈ 1) imposed on all pixels due

to the dominance of low frequency components. Consider-

able coding gains were obtained by TD-MCP over the stan-

dard H.264 video codec.

Recent work in the context of distributed source coding al-

ready faced the need to estimate EED for DCT coefficients. In

[11] this was achieved by exploiting the linearity of the trans-

form to perform approximate conversion of pixel domain mo-

ments obtained by basic ROPE to the DCT domain, aided by

the calculation of some inter-pixel correlation terms. On the

other hand, [12] developed a recursive calculation of trans-

form domain moments, which is in the spirit of the general

approach we will propose here, but in order to circumvent the

main complications due to “off-grid” reference blocks, the au-

thors simply approximated motion compensation with motion

vectors that point to on-grid blocks. This assumption yields

substantially sub-optimal EED estimates as was demonstrated

in [11]. It is in fact the reason why [11] reverted to applying

basic ROPE in the pixel domain, and then converted the mo-

ments to the DCT domain. This is a feasible solution in cer-

tain applications but it is not general enough. In the case of

TD-MCP, although the unitarity of the transform ensures that

the DCT-domain distortion in a block equals the pixel-domain

distortion, basic ROPE is nevertheless mismatched because it

calculates a wrong pixel domain distortion, due to its inability

to account for transform domain weighting (temporal corre-

lations and corresponding prediction coefficients vary across

frequencies).

Having established the need for a ROPE-like technique

capable of accounting for error propagation due to recur-

sive operations in the transform domain, this paper pro-

poses the spectral coefficient-wise optimal recursive estimate

(SCORE). We derive SCORE in a general setting to recur-

sively calculate the moments of each transform (in practice

DCT) coefficient of blocks in a frame, and account for gen-

eral transform domain operations. The efficacy of this EED

estimate is demonstrated in the setting of the TD-MCP video

codec described in [8]. It is first shown that SCORE pro-

vides an accurate EED estimate when the TD-MCP codec

is deployed over a lossy network, while basic ROPE is mis-

matched due to its inability to account for DCT domain re-

cursions. Since standard pixel domain prediction is a special

case of TD-MCP, it is experimentally verified that SCORE

and ROPE coincide in this case, i.e., SCORE effectively sub-

sumes basic ROPE. We finally exploit the EED estimates for

improved (intra-inter) mode decisions. It is demonstrated

that indeed the estimation accuracy of SCORE translates into

improved rate-distortion performance of video transmission

over a lossy network.

2. RELEVANT BACKGROUND

This section provides a brief review of ROPE and the TD-

MCP approach of [8].

2.1. The recursive optimal per-pixel estimate

Consider point-to-point video communication, with encoder

access to some statistical information about the network con-

dition. For simplicity (but without implied loss of generality)

assume that packet loss is statistically uniformly distributed,

and let the packet loss rate (PLR), denoted p, be available to

the encoder. Clearly, for optimal performance, the encoder

must optimize its decisions with respect to the reconstructed

video quality at the decoder. However, the decoder recon-

struction is a random process as far as the encoder is con-

cerned, with the ultimate effect of channel loss greatly com-

plicated by error propagation through the prediction loop, er-

ror concealment efforts at the decoder, etc.

Let f i
n denote the original value of pixel i in frame n, and

let f̂ i
n denote its encoder reconstruction. The reconstructed

value at the decoder, possibly after error concealment, is de-

noted by f̃ i
n, which is a random variable for the encoder. The

overall expected distortion (in the mean squared sense) for

this pixel is

E{(f i
n − f̃ i

n)
2

} = (f i
n)2 − 2f i

nE{f̃ i
n} + E{(f̃ i

n)2}. (1)

Observe that evaluating this distortion only requires the first

and second moments of the decoder reconstructed pixel f̃ i
n.

ROPE employs the following recursion formulas, developed

separately for the two cases of intra- and inter- coding, se-

quentially to compute these two moments for each pixel.

Intra-coding: The packet containing pixel i is received

correctly with probability 1 − p, producing f̃ i
n = f̂ i

n. If the

packet is lost, we set the motion vector estimate to zero, and

conceal as f̃ i
n = f̃ i

n−1
with probability p 1. The first and

second moments of f̃ i
n for an intra-coded pixel are computed

1Although more sophisticated error concealment schemes can be handled

in the ROPE framework, for simplicity of exposition we employ here the

‘slice copy’ concealment technique.



as:

E{f̃ i
n}(I) = (1 − p)(f̂ i

n) + pE{f̃ i
n−1

} , (2)

E{(f̃ i
n)

2

}(I) = (1 − p)(f̂ i
n)

2

+ pE{(f̃ i
n−1

)
2

} . (3)

For simplicity we assume throughout this paper that intra-

prediction (from spatially neighboring blocks) available in the

H.264 standard is disabled. Thus, all the intra-coded mac-

roblocks are self-contained and serve as instantaneous refresh

points if received by the decoder.

Inter-coding: Let pixel i be predicted from pixel j in the

previous frame, i.e., the encoder generates the prediction error

ei
n = f i

n − f̂ j
n−1

. (4)

The prediction errors in a block are spatially transformed,

quantized, encoded, and transmitted together with the motion

vector. We denote by êi
n the effective reconstruction of the

prediction error at the encoder. Even if the current packet is

correctly received, the decoder must use for prediction the de-

coder’s reconstruction of pixel j in the previous frame, f̃ j
n−1

,

which is potentially different from f̂ j
n−1

used by the encoder.

Thus the first and second moments of f̃ i
n for an inter-coded

pixel are:

E{f̃ i
n}(P ) = (1 − p)(êi

n + E{f̃ j
n−1

}) + pE{f̃ i
n−1

} , (5)

E{(f̃ i
n)

2

}(P ) = (1 − p)E{(êi
n + f̃ j

n−1
)
2

} + pE{(f̃ i
n−1

)
2

}

= (1 − p)((êi
n)2 + 2êi

nE{f̃ j
n−1

}

+E{(f̃ j
n−1

)2}) + pE{(f̃ i
n−1

)
2

} . (6)

Once the first and second moments are calculated, (1) pro-

vides the EED of the pixel. Employing ROPE to optimize

inter/intra mode and quantization step selection within a rate-

EED framework [2] has been demonstrated to provide sub-

stantial gains over heuristic methods for EED calculation.

2.2. Transform-domain motion-compensated prediction

Conventional motion-compensated prediction inherently as-

sumes that a sequence of pixels (from consecutive frames)

along a motion trajectory forms a temporal AR process, and

effectively assumes that such sequences are independent of

each other. Thus, inter-pixel (spatial) correlation within each

block is ignored during temporal (motion compensated) pre-

diction. In [8], we instead modeled the pair of transform co-

efficients, denoted by (xn, xn−1), at the same frequency of an

inter-coded block and its motion compensated reference, as

two successive samples of a scalar AR process with

xn = ρxn−1 + zn (7)

where the innovations zn are zero-mean, independent, and

identically distributed. We henceforth assume that the trans-

form is DCT with block size restricted to the 4 × 4 option

available in H.264. By running regular pixel domain mo-

tion search to get matched pairs of blocks between an (un-

coded) frame and its (uncoded) preceding frame, and for

multiple frame pairs, the correlation coefficient ρ at each

frequency coefficient can be calculated by averaging pair-

wise correlations over all matched blocks. Provided in Table.

1 is the matrix of 16 correlation coefficients in the case of

coastguard qcif.yuv. Note that the correlation is close to

1 for DC, but quite different otherwise. Such characteristics

are also exhibited by other video sequences. The variation in

0.9998 0.9946 0.9916 0.9470

0.9893 0.9424 0.9068 0.8056

0.9807 0.9215 0.8696 0.7717

0.9680 0.9015 0.8309 0.7317

Table 1. Matrix of correlation coefficients for the 16 DCT

coefficients in coastguard qcif.yuv

temporal correlation across frequencies, as observed above,

motivated the transform domain motion-compensated predic-

tion (TD-MCP) approach of [8].

Unlike the conventional approach that applies spatial

transformation on the residual pixel domain block, in TD-

MCP each block and its motion compensated reference are

individually transformed, the DCT coefficients of the latter

are weighted by frequency-appropriate correlation coeffi-

cients, and the prediction residue directly calculated in the

transform domain. In other words, in inter-mode, the TD-

MCP codec encodes the transform domain prediction error

yn = xn − ρx̂n−1 (8)

at each frequency in every block of frame n. Here x̂n−1 is

the corresponding motion compensated transform coefficient

from the previous frame, and ρ is the correlation coefficient

appropriate to that frequency. Note that by linearity of DCT,

conventional pixel domain prediction (4) is equivalent to em-

ploying ρ = 1 at all frequencies, and is thus a special case of

TD-MCP. Performance improvement as high as 1dB in PSNR

was observed when TD-MCP was substituted into the H.264

codec (in place of the standard pixel domain motion compen-

sated prediction).

It is important to emphasize that, in [8] the performance

of TD-MCP was demonstrated in the setting of lossless trans-

mission. The question of whether such gains can be main-

tained despite transmission over lossy networks illustrates

both the motivation and focus of this paper. TD-MCP is

therefore a representative example for enhanced source cod-

ing techniques that require new EED estimation tools. It is

useful to note that the standard H.264 codec and the TD-MCP

codec differ only in inter-mode coding, and not in intra-mode.

Further, for the purpose of simplifying the presentation of this

paper we assume that decoders in both cases employ the same

‘slice copy’ concealment scheme described in Sec. 2.1.



3. LIMITATIONS OF PIXEL DOMAIN ESTIMATION

Consider employing ROPE for EED estimation in the TD-

MCP encoder. The update equations (2) and (3) are still

valid: TD-MCP does not differ from the standard encoder

in terms of intra-coding, the slice copy concealment scheme

is retained, and the transform is linear. But the inter mode

update equations of ROPE, (5) and (6), are no longer valid for

the TD-MCP codec. Clearly, the transform domain weighting

in (8) cannot be accounted for via these per-pixel recursions.

One could view the transform domain weighting (i.e.,

multiplication) involved in TD-MCP as the application of an

equivalent 2-D linear filter on the corresponding pixel domain

motion compensation block (i.e., convolution). The filtered

output is then employed as the pixel domain prediction block.

But it can be easily shown that accounting for any type of

pixel filtering operations in ROPE requires, in addition to

first and second order moments, the recursive calculation of

cross-correlations between all pixel pairs within the frame,

which tremendously increases complexity and memory re-

quirements. This is a well known difficulty of ROPE, with

various approximative solutions including, e.g., [3] where

ROPE was extended to approximately account for sub-pixel

motion estimation, an operation that involves interpolation

(i.e., filtering) between pixels. This difficulty is further ex-

acerbated if the objective is to account for transform domain

operations that are also non-linear in nature, such as some of

the estimation-theoretic techniques in [7], [10], and [9].

4. SPECTRAL COEFFICIENT-WISE OPTIMAL

RECURSIVE ESTIMATE

4.1. The method

The previous observations indicate the requirement for a

ROPE-like technique for EED estimation that works di-

rectly in the transform domain, and hence can efficiently

account for operations in that domain. This motivates the

proposed SCORE approach for EED estimation described

below. Rather than calculate moments and distortion of in-

dividual pixels as ROPE does, SCORE directly tracks the

moments and distortion of individual transform coefficients.

To concretize the presentation, we describe SCORE in con-

junction with the TD-MCP codec.

We expand on the notation of Sec. 2.2 to define xk,m
n as

the unquantized value of transform coefficient m in block k of

frame n. In keeping with the convention in Sec. 2.1, x̂k,m
n and

x̃k,m
n denote the encoder and decoder reconstructions of this

coefficient, respectively. Note that this block may not be pre-

dicted from an on-grid reference block in the previous frame.

Let uk,m
n denote the unquantized value of coefficient m in this

(possibly off-grid) reference block.2 The encoder and decoder

2Note that while u
k,m
n is indexed by n and k to indicate the location on

the current frame it provides a reference for, it is in fact a function of pixels

in frame n − 1.

reconstructions of this coefficient are denoted, as ûk,m
n and

ũk,m
n , respectively. The encoder considers x̃k,m

n and ũk,m
n as

random variables due to the stochastic nature of packet loss.

The correlation coefficient at coefficient frequency m of block

k is denoted ρk,m
n . The TD-MCP prediction error (8) is thus

rewritten as

yk,m
n = xk,m

n − ρk,m
n ûk,m

n (9)

Let ŷk,m
n denote the quantized transform domain prediction

error, whose value is encoded and transmitted to the de-

coder. The notation ρk,m
n admits variation of the frequency-

dependent correlation coefficient across frames, as well as

blocks within a frame, i.e., TD-MCP could involve adapta-

tion to temporal and spatial variations in temporal correlation.

The expected distortion at coefficient xk,m
n is

δk,m
n = E{(xk,m

n − x̃k,m
n )

2

}

= (xk,m
n )2 − 2xk,m

n E{x̃k,m
n } + E{(x̃k,m

n )2}. (10)

The computation of δk,m
n only requires the first and second

moments of the decoder reconstruction x̃k,m
n . SCORE em-

ploys the following recursion functions, developed separately

for the two cases of intra- and inter-coding, to sequentially

compute these two moments for each transform coefficient in

a frame.

Intra-coding: The recursions are practically the same as

in ROPE, albeit with transform coefficients replacing pixels.

Since the assumed concealment is “slice copy”, if x̂k,m
n is un-

available due to packet loss, it is concealed as x̃k,m
n−1

, i.e., it is

equivalent to copying in the pixel domain.

E{x̃k,m
n }(I) = (1 − p)(x̂k,m

n ) + pE{x̃k,m
n−1

} , (11)

E{(x̃k,m
n )

2

}(I) = (1 − p)(x̂k,m
n )

2

+ pE{(x̃k,m
n−1

)
2

}. (12)

Inter-coding: Following arguments similar to ROPE it is

easily shown that,

E{x̃k,m
n }(P ) = (1 − p)(ŷk,m

n + ρk,m
n E{ũk,m

n }) + pE{x̃k,m
n−1

},

(13)

E{(x̃k,m
n )

2

}(P ) = (1 − p)E{(ŷk,m
n + ρk,m

n ũk,m
n )

2

} + pE{(x̃k,m
n−1

)
2

}

= (1 − p)((ŷk,m
n )2 + 2ρk,m

n ŷk,m
n E{ũk,m

n }

+(ρk,m
n )2E{(ũk,m

n )2}) + pE{(x̃k,m
n−1

)
2

} . (14)

It is obvious that the SCORE update equations, (11)-(14),

are very similar to that of ROPE, except for the important

fact that SCORE has a natural ability to incorporate trans-

form domain weighting as is evident in (13) and (14). Note

that these equations also involve the first and second moments

of transform coefficients of the motion compensated block,

which is potentially off the grid. We thus propose a comple-

mentary method to extract the required moments of off-grid

blocks from the already available moments of on-grid blocks

in frame n − 1.



Fig. 1. Each off-grid block in a frame overlaps with 4 on-grid

blocks. Here the blue blocks are on-grid, and the black off-

grid block is employed for motion compensated prediction in

the subsequent frame.

Any off-grid block in a frame overlaps with at most four

on-grid blocks (Fig. 1). Let block Uk
n shown in the figure be

the reference block for the current block k in frame n. This

block, located in frame n − 1, overlaps with on-grid blocks

Xki

n−1
in the frame. The decoder reconstruction of block Uk

n is

associated with coefficients ũk,m
n . Since we assume a linear

transformation (e.g., DCT), there exist constants ai,m such

that,

ũk,m
n =

4∑

i=1

15∑

m=0

ai,mx̃ki,m
n−1

. (15)

These constants purely depend on the position of Uk
n relative

to the on-grid blocks3. Thus, the first moment of uk,m
n is sim-

ply

E{ũk,m
n } =

4∑

i=1

15∑

m=0

ai,mE{x̃ki,m
n−1

} . (16)

The second moment of uk,m
n is more complicated, and in-

volves cross-correlations of DCT coefficient pairs of the on-

grid blocks:

E{(ũk,m
n )2} =

4∑

i=1

4∑

j=1

15∑

m=0

15∑

l=0

ai,maj,lE{x̃ki,m
n−1

x̃
kj ,l

n−1
} .

(17)

In Sec. 3 it was observed that a limitation of extending ROPE

to account for transform domain weighting is the necessity of

calculating inter-pixel correlation terms that appear as a re-

sult of the implied pixel domain filtering. But (17) suggests

that the calculation of cross-correlations cannot be avoided

even if moments are updated directly in the transform do-

main. However, there is a major advantage to the transform

domain if we assume a largely decorrelating transformation

as is indeed sought in compression applications, such as DCT

in video coding. Specifically, the following approximation of

3Without loss of generality, the top-left corner of Uk
n is one of the 16

pixel locations in block X
k1

n−1
. Each of these positions has an associated set

of constants ai,m.

‘uncorrelatedness’ holds well in the DCT domain:

E{x̃ki,m
n x̃kj ,l

n } = E{x̃ki,m
n }E{x̃kj ,l

n } when j 6= i or l 6= m.
(18)

On the other hand, the analogous pixel domain approxima-

tion:

E{f̃ i
nf̃ j

n} = E{f̃ j
n}E{f̃ j

n} j 6= i (19)

has been demonstrated to be inaccurate [3]. Results presented

in Sec. 4.2 support the approximation (18). Substituting (18)

in (17), and subsequent use of (16), yields the required trans-

form domain first and second moments of the motion com-

pensated blocks as a simple linear combination of the mo-

ments of on-grid blocks in that frame. We now summarize

the update procedure of SCORE.

SCORE update steps

Given the transform domain first and second moments of co-

efficients of on-grid blocks in frame n − 1:

1. Identify the (motion compensated) reference block Uk
n

in frame n − 1 for each on-grid block k in frame n.

2. Compute the transform domain first and second mo-

ments of Uk
n via (16) - (18).

3. Compute the transform domain first and second mo-

ments of on-grid blocks in frame n via (11)-(14).

4.2. SCORE accuracy results

We first compare the EED estimation accuracy of SCORE and

ROPE in the setting of the TD-MCP codec described in Sec.

2.2. Recall that this codec is simply the standard H.264 codec

with transform domain weighted prediction replacing pixel

domain prediction in inter mode coding. The current imple-

mentation does not adapt the correlations over time or across

blocks. Some error resilience is incorporated into the codec

via the ‘random intra’ technique: in each frame 10% of the

macroblocks are randomly selected to be intra-coded. Both

SCORE and ROPE are embedded in the encoder to obtain re-

spective EED estimates assuming a certain PLR p. But it must

be emphasized that neither estimate influences the encoder’s

decisions in any way, i.e., these estimates are calculated solely

for the purpose of evaluating their accuracy. In other words,

both approaches provide a corresponding estimated EED for

the same coded video sequence. The transmission of this

video sequence is now simulated over 100 different realiza-

tions of the lossy channel. In the simulation, each packet, as-

sumed to contain a row of macroblocks, was deemed lost with

probability p. The distortion of each frame in the video se-

quence is averaged over realizations, and converted to a PSNR

value for the frame. In the case of ROPE, the per-pixel EED

estimate is averaged across pixels in a frame, whereas in the

case of SCORE the average is over DCT coefficients within

a frame. Fig. 2 compares the PSNR of different frames ob-

tained via simulation with its estimate obtained via ROPE and
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Fig. 2. Comparison of simulated and estimated PSNRs for

the mobile cif sequence encoded by TD-MCP: bit-rate is

800kbps, frame rate 30f/s, and PLR p = 5%.
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Fig. 3. Comparison of simulated and estimated PSNRs for the

mobile cif sequence encoded by standard H.264: bit-rate is

800kbps, frame rate 30f/s, and PLR p = 5%.

SCORE. It is evident that SCORE provides a very accurate es-

timate of EED while ROPE is mismatched to the working of

the encoder, i.e., to the DCT domain weighted prediction.

We next compare SCORE and ROPE estimates in the

framework of the standard H.264 codec that employs regular

pixel domain motion compensated prediction. Note that, as

described in Sec. 2.2, this codec is merely a special case of

the TD-MCP codec with ρ assumed to be uniformly unity

at all frequencies, and the SCORE update equations are still

valid. Random intra again provides some error resilience.

Fig. 3 compares the PSNRs by simulation and estimation

under the same conditions as the previous experiment. Note

that SCORE and ROPE estimates of PSNR practically match

for each frame, and in this case both estimates are very close

to the value obtained by simulation. Thus, SCORE subsumes

in it at least the functionality of basic ROPE. Further, the

accuracy of SCORE in both these experiments support the

‘uncorrelatedness’ approximation of (18).

5. CODING PERFORMANCE

5.1. Optimal mode decisions

In this section we compare SCORE and ROPE in terms of

the performance obtained when the estimates are employed

to optimize the coding mode (Intra/Inter). The EED and bit

costs incurred in encoding macroblock k of frame n in coding

mode µ and quantization parameter q are denoted Dk
n(q, µ)

and Bk
n(q, µ), respectively. The optimization entails the fol-

lowing minimization per block (given the quantization param-

eter):

µk
n(λ, qn) = arg min

µ
{Dk

n(qn, µ) + λBk
n(qn, µ)}, (20)

and the per frame optimization:

qn(λ) = arg min
q

∑

k

Dk
n(q, µk

n) + λBk
n(q, µk

n) , (21)

where λ is a Lagrange parameter whose value is fixed for all

frames in the simulation. Varying λ provides an operational

rate-distortion curve. The above can be performed for either

SCORE or ROPE, given an assumed packet loss rate p. Mul-

tiple realizations of the lossy channel (i.e., instances of the

packet loss sequence) are now simulated, where a packet is

randomly deemed lost with probability p. The encoded video

sequence is decoded over each channel realization, and dis-

tortion is averaged over the entire video sequence as well as

different channel realizations, and converted to a PSNR value,

which is coupled with the bit rate to produce a point on the

curve.

5.2. Performance results

We consider two encoders:

1) The standard H.264 encoder with pixel domain mo-

tion compensated prediction where macroblock mode deci-

sions and frame QPs are optimized via the above algorithm

but with EED calculated using ROPE, i.e., EED of a mac-

roblock is defined as the sum of the estimated distortion for

each pixel in the macroblock. Note that ROPE does provide

the optimal estimate of EED in this case. We refer to this

codec as H.264-ROPE.

2) The pixel domain motion compensated prediction in

the standard encoder is now replaced by TD-MCP. The cor-

relations at each DCT frequency are calculated and employed

for transform domain weighting of the motion compensation.

The mode decisions are now optimized with EED defined by

SCORE, which is optimal in this case, i.e., the EED of each

macroblock is defined as the sum of estimated distortion of

DCT coefficients in its 4 × 4 on-grid sub-blocks. We refer to

this codec as TD-MCP-SCORE.

The decoders for both encoders employ the slice-copy

concealment technique. Fig. 4 and Fig. 5 compares the



performance of H.264-ROPE and TD-MCP-SCORE via rate-

PSNR plots at PLRs of 1% and 5% for the video sequences

mobile in CIF resolution, and coastguard in QCIF resolu-

tion. The plots for 0% PLR are included in each case as a

reference to demonstrate the gains of TD-MCP over standard

H.264. Substantial performance gains over H.264-ROPE are

obtained via TD-MCP-SCORE, in particular at the lower

PLR. The decrease in gains with increasing PLR is attributed

to the fact that intra mode is chosen more frequently when

PLR is high, and TD-MCP differs from standard H.264 only

in inter mode coding. Further note that at higher PLRs con-

cealment plays a bigger role, and the employment of the

same slice-copy technique (a purely pixel domain operation)

in both codecs marginalizes the gains due to exploiting the

true temporal correlations in the DCT domain.

6. GENERALIZATION OF SCORE

Although the update equations in Sec. 4 were presented in

the context of the TD-MCP framework, the SCORE concept

itself is fairly general and can accommodate other transform

domain operations. For instance, instead of the simple ‘slice

copy’ technique, alternate concealment schemes that exploit

transform domain correlations could be employed, and ac-

counted for in SCORE. Such a concealment scheme is also

expected to further improve the performance of TD-MCP-

SCORE compared to H.264-ROPE at high PLRs. While this

paper focused exclusively on single layer video coding, meth-

ods such as the estimation-theoretic enhancement layer pre-

diction scheme proposed in [7] for scalable video coding, and

its extension in [10] to exploit transform domain correlations,

are also compatible with the SCORE concept. These latter

methods involve non-linear transform domain operations (as

opposed to the linear weighting involved in TD-MCP), and

appropriate linearizations lead to update equations similar in

spirit with (11)-(14).

7. CONCLUSIONS

A technique to find the optimal per-spectral coefficient es-

timate of end-to-end distortion is proposed. This approach,

called SCORE, is motivated by the need to account for coding

operations that are recursive in the transform domain, rather

than in the pixel domain. It operates via update equations that

recursively calculate the first and second moments of decoder

reconstructed transform coefficients. The efficacy of the ap-

proach is demonstrated in comparison with the well estab-

lished ROPE technique that only accounts for pixel domain

operations. The two end-to-end distortion estimation tech-

niques are employed in appropriate encoders to perform mac-

roblock coding mode decision optimization, and substantial

coding gains are observed for the SCORE-based encoder.
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Fig. 4. Results of mode decision optimization for the se-

quence mobile cif via SCORE and ROPE in terms of rate-

PSNR curves at different PLRs. The case p = 0% is provided

as a reference to indicate the gains due to TD-MCP over stan-

dard H.264.

200 250 300 350 400

31.5

32

32.5

33

33.5

34

34.5

35

35.5

bit−rate(kbit/s)

P
S

N
R

(d
B

)

 

 

TD−MCP−SCORE
H.264−ROPE

(a) p = 0%

200 250 300 350 400 450 500
31

31.5

32

32.5

33

33.5

34

34.5

bit−rate(kbit/s)

P
S

N
R

(d
B

)

 

 

TD−MCP−SCORE
H.264−ROPE

(b) p = 1%

200 250 300 350 400 450 500 550 600
30.5

31

31.5

32

32.5

33

33.5

bit−rate(kbit/s)

P
S

N
R

(d
B

)

 

 

TD−MCP−SCORE
H.264−ROPE

(c) p = 5%

Fig. 5. Results of mode decision optimization for the se-

quence coastguard qcif via SCORE and ROPE in terms of

rate-PSNR curves at different PLRs. The case p = 0% is

provided as a reference to indicate the gains due to TD-MCP

over standard H.264.


