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Abstract—This letter investigates source-channel coding for
error-resilient video streaming using redundant encoding. We
estimate the end-to-end distortion per redundantly encoded
macroblock (MB) via extension of the recursive optimal per-
pixel estimate to encompass redundant transmissions. Redun-
dant encoding is formulated as joint optimization of the MB
parameters in the primary and redundant transmissions. We
present three encoding strategies with different gain-complexity
tradeoffs. The proposed methods are general in nature, and could
be implemented on top of any (hybrid) video codec. Simulation
results employing H.264’s redundant slice mechanism show
significant performance gains over conventional error-resilient
encoding methods and naive redundant encoding schemes.

Index Terms—Error resilience, H.264, redundant slices, source-
channel coding, video streaming.

I. Introduction

Video streaming over packet networks remains a fundamen-
tal challenge due to the best-effort nature of the underlying
network and lack of end-to-end quality of service (QoS). This
motivates ongoing research into error resilience mechanisms
to mitigate the impact of packet loss.

A traditional video streaming system consists of several key
modules which can be modified to improve error robustness.
The encoder may adjust its macroblock (MB) coding mode
decisions, e.g., using intra refresh to stop error propagation.
Error propagation can be reduced by appropriate selection
of motion parameters such as motion vector (MV) and ref-
erence frame. Packetization techniques can improve error
resilience by dispersing spatially adjacent MBs into different
packets [e.g., H.264’s flexible macroblock ordering (FMO)],
or scattering data temporally to guard against burst losses.
Data partitioning can be used in tandem with unequal error
protection. At the transport level, channel coding tools such
as forward error correction (FEC) or automatic re-transmission
requests (ARQ) can protect data packets. Finally, an error-
resilient decoder may perform suitable error concealment.
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Rate-distortion optimization for live video streaming de-
pends critically on accurate end-to-end distortion estima-
tion. We resort to the “recursive optimal per-pixel estimate”
(ROPE) [1], [2], which has been successfully applied to MB
coding mode and quantization parameter (QP) selection [1],
[2], error-resilient motion estimation/compensation [3] and
reference picture selection [4], multiple description (video)
coding (MDC) [5], and joint mode and QoS selection [6]. An
error-resilient encoder must balance the conflicting objectives
of minimizing error propagation versus efficient compression.
Rather than allocate the entire bit budget for source coding,
some rate may be designated for channel protection, trad-
ing some source coding fidelity for reduced effective packet
loss rate (PLR). Channel coding mechanisms are subject
to practical drawbacks. ARQ trades feedback effectiveness
versus latency and scalability. FEC rate allocation is usually
performed at the packet level, after encoding. Due to uneven
packet sizes and padding, it is difficult to estimate the effective
coding rate and loss probability at encode time. A Trellis-based
algorithm has been proposed in [6], albeit at the cost of delay
and complexity. In practice, channel coding mechanisms lower
the effective PLR experienced by the source coder, mitigating
but not eliminating the traditional issue of error propagation.

Recently, redundant encoding has been proposed [9]–
[18], e.g., as enabled by the redundant slice mechanism in
H.264 [7]. Wu and Boyce [9] investigated streaming of pre-
compressed video. After offline compression with several re-
dundant representations of variable quality, the delivery policy
(which redundant slices to transmit) is optimized during trans-
mission. Baccichet et al. [10] proposed a redundant encoding
scheme for live video streaming. The primary picture is coded
independently from the redundant slices, which may cover the
entire picture or just a region of interest (ROI). Redundant
MBs use the same coding parameters as the primary MBs,
but a larger QP selected on a GOP-by-GOP basis via a
concealment distortion model. In the MDC scheme in [11],
each frame is split into two slice groups. Two balanced
descriptions are generated by combining the primary slices
from one group with the redundant slices from the other.

In [12], a custom FMO pattern distributes MB losses and
enables improved concealment. To lower the risk of simulta-
neous primary and redundant slice loss due to channel fading,
a method for dynamic redundant slice allocation is presented.
Another approach transmits the edge information of the en-
coded frame via redundant slices, guiding image-inpainting
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concealment via structural hints [13]. [14] proposes redundant
encoding of the MVs without residual.

Rane et al. [15] combined redundant slices and Reed-
Solomon coding to generate a Wyner-Ziv bitstream. The parity
information is generated over the redundant slices, which use
the same MB parameters as the primary bitstream, but a higher
QP. The decoder regenerates redundant data for received
primary slices, and uses it and the received parity information
to recover the redundant information for lost primary data.

Finally, two methods for picture-adaptive redundant encod-
ing are proposed in [16]. Hierarchical encoding uses a fixed
structure that divides each GOP into smaller units, and allo-
cates redundant pictures between them. Adaptive redundant
picture allocation identifies which pictures need protection
most, based on heuristics for distortion propagation. We have
previously investigated redundant encoding in [17] and [18];
this letter builds on our previous contributions in this area.

II. Redundant Encoding

A. Motivation

Several issues affect redundant encoding performance. In
terms of redundancy allocation, adaptability is coarse. Some
methods redundantly encode every frame [10], [11]. Others
protect only some frames [16] or a ROI [10], [12], which
only works well in scenarios with a clear ROI. Redundancy
allocation is based on heuristic distortion models. To adjust the
redundant data rate, the QP is usually increased by an offset
over the primary QP [11], [16]. [14] only retransmits the MVs,
but no coded residual. Since not all MBs contribute equally to-
ward end-to-end distortion, a locally adaptive approach should
allocate rate toward important areas by adjusting the redundant
QP, based on accurate distortion estimation. This is a tradeoff
of limiting error propagation versus introducing drift when the
secondary data is reconstructed.

Finally, there is the issue of coding mode selection for
the primary and redundant MB encodings, and overall RD
optimization (RDO). Both encodings contribute to the rate and
end-to-end distortion costs. Hence, their coding parameters
and rates should be decided jointly. Existing work simplifies
mode decision, e.g., encoding the primary and redundant pic-
ture independently (JM reference software [8] or as proposed
in [16]), or using the same MB modes for both encodings [10],
[11], [15]. Joint MB-level decisions naturally provide the local
adaptivity outlined above, and enable the encoder to optimize
the error resilience versus drift tradeoff. Previously, error-
resilient live video streaming has been posed as optimization of
the MB coding mode and QP [1]. In this letter, we investigate
redundant encoding as a mode decision problem over the joint
space of the primary and redundant MBs.

B. End-to-End Distortion Estimation

Let f i
n denote the original value of pixel i in frame n, and let

f̂ i
n denote its encoder reconstruction. The reconstructed value

at the decoder is f̃ i
n. The expected distortion for this pixel is

di
n = E{(f i

n − f̃ i
n)

2}
= (f i

n)2 − 2f i
nE{f̃ i

n} + E{(f̃ i
n)2}. (1)

The computation of di
n requires the first and second mo-

ments of each random variable in the sequence f̃ i
n, (f̃ i

n)2.
These can be computed recursively, using the previous frame’s
moments f̃ i

n−1, (f̃ i
n−1)2. For redundant encoding with a pri-

mary and a secondary description (in separate packets),
there are four possible channel outcomes (denoted by the
binary variables bi

1, b
i
2), leading to three different decoding

results:

1) primary data received and reconstructed (the secondary
data is irrelevant in this case, i.e., bi

1 = 0, bi
2 = 0, 1);

2) primary data lost, but secondary data received and
reconstructed (bi

1 = 1, bi
2 = 0), and finally;

3) both transmissions lost and the affected region needs to
be concealed (bi

1 = bi
2 = 1).

Assuming iid packet loss for simplicity,1 these outcomes
have probabilities 1−p, p(1−p), and p2. The first and second
moments of f̃ i

n, (f̃ i
n)2 can then be calculated as

E{f̃ i
n} = (1 − p)E{f̃ i

n|bi
1 = 0}

+ p(1 − p)E{f̃ i
n|bi

1 = 1, bi
2 = 0}

+ p2E{f̃ i
n|bi

1 = bi
2 = 1}

(2)

E{(f̃ i
n)2} = (1 − p)E{(f̃ i

n)2|bi
1 = 0}

+ p(1 − p)E{(f̃ i
n)2|bi

1 = 1, bi
2 = 0}

+ p2E{(f̃ i
n)2|bi

1 = bi
2 = 1}.

(3)

Let f̃ i
n,1, (f̃ i

n,1)2 and f̃ i
n,2, (f̃ i

n,2)2 denote the successful recon-
struction and its squared value of the primary and secondary
coded data, respectively. With

E{f̃ i
n|bi

1 = 0} = E{f̃ i
n,1} (4)

E{(f̃ i
n)2|bi

1 = 0} = E{(f̃ i
n,1)2} (5)

E{f̃ i
n|bi

1 = 1, bi
2 = 0} = E{f̃ i

n,2} (6)

E{(f̃ i
n)2|bi

1 = 1, bi
2 = 0} = E{(f̃ i

n,2)2} (7)

and using simple frame copy concealment (f̃ i
n = f̃ i

n−1)

E{f̃ i
n|bi

1 = bi
2 = 1} = E{f̃ i

n−1} (8)

E{(f̃ i
n)2|bi

1 = bi
2 = 1} = E{(f̃ i

n−1)2} (9)

we rewrite (2), (3) as

E{f̃ i
n} = (1 − p)E{f̃ i

n,1}
+ p(1 − p)E{f̃ i

n,2} + p2E{f̃ i
n−1}

(10)

E{(f̃ i
n)2} = (1 − p)E{(f̃ i

n,1)2}
+ p(1 − p)E{(f̃ i

n,2)2} + p2E{(f̃ i
n−1)2}.

(11)

We need to compute the moments for successful reconstruc-
tion of the primary and secondary data. The recursion step
is identical for both descriptions. Hence, r = 1, 2 denotes the
description index in the equations below. For intra-coding with

1Note that ROPE is extensible to other channel models.
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Fig. 1. Delivery performance, PSNR Y versus PLR p (CIF, 15 frames/s). (a) Foreman, 300 kb/s, p = 0 . . . 25%. (b) News, 200 kb/s, p = 0 . . . 25%.

constrained prediction, the decoder reconstruction is directly
given by the transmitted value

E{f̃ i
n,r}(I) = f̂ i

n,r (12)

E{(f̃ i
n,r)

2}(I) = (f̂ i
n,r)

2
. (13)

In inter-coding, pixel i is predicted from pixel j = i + mv in
the previous frame n−1, i.e., the encoder prediction is f̂

j
n−1.2

The prediction error ei
n,r is quantized to the value êi

n,r, which
is transmitted together with the motion vector mv. Even if
the current packet is received correctly, the decoder uses the
decoder reconstruction of pixel j in the previous frame, f̃

j
n−1,

for prediction, which is potentially different from the value
used by the encoder f̃ i

n,r = f̃
j
n−1 + êi

n,r. The first and second
moments of f̃ i

n for an inter-coded pixel are

E{f̃ i
n,r}(P) = E{f̃ j

n−1} + êi
n,r (14)

E{(f̃ i
n,r)

2}(P) = E
{

(f̃ j
n−1 + êi

n,r)
2
}

(15)

= E{(f̃ j
n−1)2} + 2êi

n,rE{f̃ j
n−1} + (êi

n,r)
2.

The expected end-to-end distortion (per MB) is

E{DMB} =
∑
i∈MB

(
(f i

n)2 − 2f i
nE{f̃ i

n} + E{(f̃ i
n)2}) . (16)

C. RD Optimization
Given (10)–(16), error-resilient encoding can be posed as a

well-known RD optimization problem

min
k

J
(k)
MB = min

k

(
E{D(k)

MB} + λR
(k)
MB

)
(17)

where k indexes the encoding modes, λ is the Lagrange factor,
and R

(k)
MB = R

(k)
1 + R

(k)
2 is the rate for mode k.

For non-redundant encoding using ROPE [1], mode deci-
sion optimizes the main MB parameters: {mode, QP}. Other
parameters have been included in the optimization, e.g., MVs
and reference frame(s) [3], [4], but their impact is additive
and not central to the problem of optimal redundant encoding

2ROPE has been successfully extended to subpixel motion, whose estimation
involves cross-correlation terms due to interpolation (e.g., [2]). This issue is
orthogonal to the estimation of redundantly coded data considered here.

considered here. For redundant encoding with a primary and
secondary transmission, the decision space encompasses the
parameters of both coded MBs: {mode1, mode2, QP1, QP2}.

Equations (10)–(16) illustrate that the primary MB has a
larger weight toward end-to-end distortion than the redundant
MB. The redundant MB should be coded at a lower rate
R2 < R1, i.e., QP2 > QP1. A smaller primary QP1 allows
for superior decoded video quality, but leaves a smaller rate
budget for the secondary encoding. In case of primary loss,
the secondary reconstruction will thus be of poorer quality,
and introduce more drift. It is not clear how to best distribute
the rate RMB between the two encodings, i.e., what choices
are optimal for QP1 and QP2. A larger QP results in lower
rate from a smaller coded residual, while the rate for the side
information is (mostly) unchanged. Therefore, the primary MB
mode1 may not be the optimal choice for mode2. Recall that
both MB encodings impact end-to-end performance. Optimal
performance can only be obtained by jointly considering all
parameter combinations for the MB pair.

1) Compute the rates R
(k)
1 and values f̃

i,(k)
n,1 , (f̃ i,(k)

n,1 )2 for suc-
cessful reconstruction of all available combinations of
{mode1, QP1}(k) for the primary MB encoding (indexed
by k):

a) P-SKIP;
b) inter modes with different values QP

(k)
1 ;

c) intra modes with different QP
(k)
1 .

2) Repeat step 1 for the redundant MB transmission:
determine rates R

(l)
2 and values f̃

i,(l)
n,2 , (f̃ i,(l)

n,2 )2 for suc-
cessful reconstruction of all available combinations of
{mode2, QP2}(l) for the secondary MB (indexed by l):

a) P-SKIP (due to different secondary MB decisions,
the secondary P-SKIP may be different from the
primary);

b) inter modes with different QP
(l)
2 (recycle primary

MVs, but requantize residual with QP
(l)
2 );

c) intra modes with different QP
(l)
2 .

3) For each combination (k, l) of {mode1, QP1}(k) and
{mode2, QP2}(l), determine the combined rate R

(k,l)
MB and

end-to-end distortion E{DMB}(k,l).
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Fig. 2. Delivery performance, PSNR Y versus rate (CIF, 15 frames/s). (a) Foreman, 400–800 kb/s, p = 10%. (b) Table Tennis, 300–600 kb/s, p = 20%.

4) For λ given by the rate control, pick the parameter
combination (k, l) that achieves the best Lagrangian

min
(k,l)

J (k,l) = min
(k,l)

(
E{DMB}(k,l) + λR

(k,l)
MB

)
. (18)

We refer to this method as full-joint optimization. The num-
ber of parameter combinations considered is large; reasonable
complexity can be achieved by pruning the decision space.

D. Reduced-Complexity Approaches

In operational RDO, there is a close relationship between
the Lagrangian factor λ and the QP, e.g., H.264 uses [19]

λ = 0.85 ∗ 2(QP−12)/3. (19)

Thus, we separate the MB QP consideration, and focus on
the optimal combination of primary and secondary coding
mode {mode1, mode2}. QP1 is selected by the rate control,
and we use a fixed offset dQP for QP2 = QP1 + dQP . We
will evaluate the impact of the choice of dQP later.

Combined mode selection significantly reduces encoding
complexity, but it still considers N2 combinations for N

available modes. A simplified encoding algorithm could in-
deed use the same mode for the primary and secondary
MB as in [10], [11], and [15]: {mode1 = mode2}. Recall
that the key contribution of this letter is accurate end-to-
end distortion estimation of the MB pair. Optimization over a
limited parameter space may not realize maximum gains, but
better distortion estimation should still improve performance
over other approaches.

III. Experimental Results

A. Simulation Details

We implemented the proposed algorithms for redundant
encoding on top of the JM 13.2 reference software [8]. For
comparison, we implemented a redundant encoding algorithm
similar to the current state of the art [10], [11]. Every frame is
encoded redundantly, and the redundant transmission uses the

same MB modes and motion information as the primary pic-
ture, but a higher secondary QP. Mode decision for the primary
MB is based on loss-aware RD optimization (LARDO) [20]
with K = 100 simulated decoders.3 Unlike in [10] and [11],
we select a fixed dQP offset for the secondary transmission
(constant throughout the entire sequence); the displayed results
use the best dQP for the respective sequence.

In the results, full-joint optimization, combined primary
and secondary mode selection and our low complexity encod-
ing algorithm are labeled as “m1, m2, QP1, QP2”, “m1, m2”,
“m1 = m2”, respectively. The redundant encoding scheme with
LARDO is labeled “Red+LARDO”. We also provide results of
conventional non-redundant MB mode selection using ROPE
(“Opt m1”). All sequences were encoded at 15 frames/s, CIF
resolution, each packet contains one slice and is ≤ 512 bytes.
The bitstreams were then simulated at different PLRs, and
results averaged over 500 loss patterns at each PLR.

B. Performance Versus PLR p

The first experiment compares the algorithms across a PLR
range of p = 1, . . . 25%. For the Foreman sequence [300 kb/s,
150 frames, Fig. 2(a)], full-joint optimization outperforms all
other methods: 0.9–1.1 dB over basic redundant encoding with
LARDO at low to medium PLR, and 0.4 dB at high PLR.
Optimal non-redundant encoding is close at p = 1%, but then
falls behind the redundant encoding schemes. Combined mode
selection (without QP consideration) only results in a slight
PSNR drop of 0.2 dB relative to full-joint optimization. Low-
complexity encoding trails by another 0.4–0.6 dB. Redundant
encoding uses 6%–16% (p = 1, . . . , 25%) of the total rate.

For the sequence news [200 kb/s, 150 frames, Fig. 1(b)],
full-joint optimization and combined mode selection perform
similarly at low and medium PLR, with a 0.2–0.3 dB gap
at high PLR. Low-complexity redundant encoding trails by
1 dB at low PLR due to poor adaptivity; the gap narrows to
0.5 dB at high PLR. The rate for the secondary description
varies between 5% and 18% of the total. Note the bad
performance of the general redundant encoding scheme. This

3LARDO with K = 100 has significantly higher complexity than ROPE.
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Fig. 3. Operational RD points and lower convex hull: MSE (per pixel) versus
effective bit rate (Akiyo, p = 10%, λ = 8, 16, . . . 256).

is partially caused by poor adaptivity (redundancy allocation):
our naive implementation redundantly encodes every frame,
when only some frames need full protection, most are fine
protecting an ROI, and some may need none. However, part
of the performance degradation is due to suboptimal distortion
estimation.

C. Performance Versus Bit Rate

We also compared performance across a range of target
bit rates, with the PLR fixed. For Foreman [400–800 kb/s,
PLR p = 10%, Fig. 2(a)], the proposed algorithms out-
perform current state-of-the-art redundant coding. Full-joint
optimization consistently gains 1.4–1.6 dB over LARDO-
based redundant coding. Equivalently, it can achieve a 30–40%
bit rate reduction. Joint-mode optimization still enables most
of the gains: performance only drops by 0.2 dB, or an
equivalent rate increase of about 4–6%. Performance under
our low complexity algorithm degrades by 0.6 dB, or incurs a
rate increase of 17–25%. Similar results are shown in Fig. 2(b)
(Table Tennis, 150 frames, 300–600 kb/s, p = 20%).

D. Complexity Versus Performance Tradeoff, Impact of dQP

Our last experiment evaluates pure operational RD perfor-
mance. With rate control disabled, we varied λ = 8, . . . , 256,
and generated one encoding for each λ using full-joint opti-
mization. Additional encodings were performed for each triplet
{λ, QP1, dQP} (QP1 = 24, 26, . . . , 40, dQP = 6, 8, 10),
using combined mode selection. Fig. 3 plots all RD points for
the Akiyo sequence (p = 10%, MSE per pixel versus effective
bit rate), and the lower convex hull.

Full-joint optimization achieves points on the lower convex
hull for all λ (intermediate values added). For the other points,
each set corresponds to the RD performance of combined
mode selection under one particular value of λ. For each
value of λ, there are several points on, or close to, the lower
convex hull. We conclude that combined mode selection is able
to achieve performance close to full-joint optimization, and
that the difference is primarily due to rate control issues and
coarser-grain adaptation. Further, note that RD points with the

same (λ, QP) pair form clusters. The choice of the secondary
QP offset dQP has minor impact, but appears non-critical.

IV. Conclusion and Future Work

We presented a new error-resilient encoding framework that
enables accurate end-to-end distortion estimation for redun-
dant encoding, jointly considering the contributions from the
primary and secondary transmissions. Based on this frame-
work, we proposed several algorithms to select the primary and
secondary MB parameters (modes and QPs). Results show sig-
nificant RD performance gains over current redundant coding
schemes and conventional ROPE-based optimal MB coding
mode selection. The proposed scheme can be further enhanced
beyond the results presented here: The algorithm could employ
principles of multiple descriptions (e.g., prediction from dif-
ferent reference pictures) and enable improved reconstruction
when both descriptions are received. FMO [7] could enable
improved concealment within our scheme: the gains from
optimal redundant encoding and improved concealment should
be additive. Finally, note that while redundant encoding is
inefficient compared to true scalable representation, it is more
error-resilient than SVC, where the loss of the base layer
renders the bit stream useless.
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