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ABSTRACT

Error resilient video coding critically relies on the accuracy of end-

to-end distortion estimation. An established solution, the recursive

optimal per-pixel estimate (ROPE), is based on tracking the first

and second moments of the decoder reconstructed pixels. This pa-

per is focused on an alternative estimation approach, the spectral

coefficient-wise optimal recursive estimate (SCORE), whose recur-

sion is performed in the transform domain. The SCORE formula-

tion is extended to derive a new technique for effective end-to-end

distortion estimation, which accounts for sub-pixel motion compen-

sation. Specifically, this technique exploits properties of the trans-

form, such as coefficient de-correlation and energy compaction, to

overcome ROPE’s remaining shortcoming due to the proliferation

of cross-correlation terms requiring excessive complexity or rela-

tively crude approximations. Experiments show that the accuracy of

SCORE matches ROPE in the full-pixel motion compensation set-

ting, where ROPE is known to be optimal. More importantly, in the

problematic setting of sub-pixel motion compensation, SCORE sub-

stantially outperforms ROPE and yields highly accurate distortion

estimation.

Index Terms— end-to-end distortion, joint source channel cod-

ing, sub-pixel motion compensation

1. INTRODUCTION

Motion compensated prediction is employed in most video coders to

remove temporal redundancies, at the expense of increased vulner-

ability to packet loss, due to temporal and spatial error propagation

via the prediction loop. Many error resilience tools and paradigms

have been employed to mitigate this problem, including forward er-

ror correction, intra refresh, multiple description coding, macroblock

retransmission, etc., (see e.g. [1] for an overview of relevant tech-

niques). Since error resilience typically introduces redundancies in

the compressed signal, and hence incurs additional bit-rate costs, the

fundamental optimization problem that underlies the coder is for-

mulated in terms of the trade-off between bit-rate and the distortion

perceived at the decoder, also referred to as end-to-end distortion

(EED). Clearly, optimization of encoding decisions depends directly

on the encoder’s ability to accurately estimate the EED, while ac-

counting for all factors, including compression, packet loss and error

propagation due to the prediction loop, and concealment at the de-

coder. The recursive optimal per-pixel estimate (ROPE) [2], which

originated in our lab, is an efficient and effective approach to op-

timally estimate the EED. Since the packet losses are random, the

encoder must treat the decoder reconstruction of a pixel as a random

∗Vinay Melkote is now with Dolby Laboratories, Inc., 100 Potrero Av-
enue, San Francisco, CA 94103

variable. The main idea of ROPE is to recursively calculate the first

and second moments of reconstructed pixels, via update equations

that explicitly account for motion compensated prediction, packet

loss rate, and concealment at the decoder. The optimal EED esti-

mate is then directly obtained from the first and second moments of

the reconstructed pixels. ROPE has been successfully incorporated

into various methods for error-resilient video coding, including for

example [3, 4].

The basic version of ROPE [2] was extended in [3, 5] to better

comply with current standards by accounting for sub-pixel motion

compensation, which involves inter-pixel correlation terms. Most

sequences show performance advantage when using sub-pixel mo-

tion compensated coding, which generates pixels seated on the sub-

pixel grid as prediction reference, through interpolation filtering of

the reconstructed frame [6]. Ideally ROPE can estimate the EED

accurately by tracking the cross correlation between every pair of

pixels inside the frame, in addition to the first and second moments

of each individual pixel, but this incurs impractically large complex-

ity/memory requirements. Several pixel domain model-based meth-

ods were proposed in [3, 5] to approximate or model the cross cor-

relation term given marginal first and second moments.

An alternative perspective is provided by estimating the EED in

transform domain. There are source coding approaches of significant

interest that involve operations that are recursive in the transform do-

main. In particular, [7, 8, 9] propose estimation-theoretic approaches

for video source encoding/decoding that offer substantial compres-

sion gains, by recursively operating in the transform domain, typ-

ically the discrete cosine transform (DCT). Specifically, these ap-

proaches view the sequence of DCT coefficients at a given spatial

frequency, from blocks along a motion trajectory across consecu-

tive frames, as an autoregressive (AR) process, and exploit this per-

coefficient AR model to estimate the coefficients of a given block.

The need to provide such applications with a ROPE-like EED es-

timate capable of accounting for error propagation due to recursive

operations in the transform domain for effective error resilience mo-

tivates our recently proposed spectral coefficient-wise optimal re-

cursive estimate (SCORE) [10]. It was derived in a general set-

ting to recursively calculate the moments of each transform (in prac-

tice DCT) coefficient of blocks in a frame, and account for general

transform domain operations. The efficacy of SCORE was shown in

the context of the transform domain motion-compensated prediction

scheme, when deployed over a lossy network [10]. Other notable

DCT domain approaches include [11] where the motion compen-

sation is restricted only on-grid blocks in previous frame and [12]

where the recursion is performed in pixel domain as regular ROPE

before converting to transform domain (for detailed analysis, see

[10]). This paper substantially extends the SCORE framework in

order to resolve the longstanding difficulty of ROPE with sub-pixel

prediction. In this work, we further modify SCORE to better capture
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inter-pixel correlation due to sub-pixel filtering. It is experimentally

demonstrated that the proposed transform domain approach achieves

higher estimation accuracy compared to the pixel domain model-

based counterparts.

2. THE RECURSIVE OPTIMAL PER-PIXEL ESTIMATE

This section provides a brief review of ROPE and its various exten-

sions to account for sub-pixel motion compensated coding. Consider

point-to-point video communication, with encoder access to some

statistical information about the network condition. For simplicity

(but without implied loss of generality) assume that packet loss is

statistically uniformly distributed, and let the packet loss rate (PLR),

denoted p, be available to the encoder. Clearly, for optimal perfor-

mance, the encoder must optimize its decisions with respect to the

reconstructed video quality at the decoder. However, the decoder re-

construction is a random process as far as the encoder is concerned,

with the ultimate effect of channel loss greatly complicated by error

propagation through the prediction loop, error concealment efforts

at the decoder, etc.

Let f i
n denote the original value of pixel i in frame n, and let

f̂ i
n denote its encoder reconstruction. The reconstructed value at the

decoder, possibly after error concealment, is denoted by f̃ i
n, which

is a random variable for the encoder. The overall expected distor-

tion (in the mean squared sense) for this pixel is E{(f i
n − f̃ i

n)
2

} =

(f i
n)2 − 2f i

nE{f̃ i
n} + E{(f̃ i

n)2}. To evaluate this distortion only

requires the first and second moments of the decoder reconstructed

pixel f̃ i
n. ROPE employs the following recursion formulas, devel-

oped separately for the two cases of intra- and inter- coding, sequen-

tially to compute these two moments for each pixel.

Intra-coding: The packet containing pixel i is received correctly

with probability 1 − p, producing f̃ i
n = f̂ i

n. If the packet is lost

(with probability p), we conceal as f̃ i
n = f̃ i

n−1. The first and second

moments of f̃ i
n for an intra-coded pixel are computed as:

E{f̃ i
n}(I) = (1 − p)(f̂ i

n) + pE{f̃ i
n−1} ,

E{(f̃ i
n)

2

}(I) = (1 − p)(f̂ i
n)

2

+ pE{(f̃ i
n−1)

2

} . (1)

For simplicity we assume that all the intra-coded macroblocks are

self-contained and serve as instantaneous refresh points if received.

Inter-coding: Let pixel i be predicted from pixel j in the pre-

vious frame, i.e., the encoder generates the prediction error ei
n =

f i
n − f̂ j

n−1
, whose reconstruction (at encoder) is denoted by êi

n.

Even if the current packet is correctly received, the decoder must

use for prediction the decoder’s reconstruction of pixel j in the pre-

vious frame, f̃ j
n−1

, potentially different from f̂ j
n. Thus the first and

second moments of f̃ i
n for an inter-coded pixel are:

E{f̃ i
n}(P ) = (1 − p)(êi

n + E{f̃ j
n−1

}) + pE{f̃ i
n−1} , (2)

E{(f̃ i
n)

2

}(P ) = (1 − p)E{(êi
n + f̃ j

n−1
)
2

} + pE{(f̃ i
n−1)

2

}.

Once the first and second moments are calculated, the EED of

the pixel is readily available. Employing ROPE to optimize in-

ter/intra mode and quantization step selection within a rate-EED

framework [2] has been demonstrated to provide substantial gains

over heuristic methods for EED calculation.

The use of sub-pixel motion compensated coding requires linear

interpolation of pixel values. For illustration, consider a simple ex-

ample: Z = (X + Y )/2, where X and Y denote the reconstructed

pixels, and Z the interpolated pixel, all at the decoder. The expec-

tation of Z is computed directly from the first moments of X and

Y : E{Z} = 1

2
(E{X} + E{Y }). However, the expression for

the second moment E{Z2} = 1

4
(E{X2} + E{Y 2} + 2E{XY })

introduces a cross-correlation term E{XY }. Although these cross-

correlation terms can be computed via additional recursions, an ac-

curate estimation of all the required cross-correlation terms requires,

in general, an order of N2 additional computations (and memory

units), where N is the number of pixels in a frame (see [5] for more

details). Such complexity has been considered a practical limitation

on the applicability of ROPE. Prior approaches address this issue

by approximating the cross-correlation term in terms of the already

computed marginal first and second moments of individual pixels.

Cauchy-Schwarz approximation Cauchy-Schwarz inequality

suggests E{XY } ≤
√

E{X2}E{Y 2}. It is argued in [3] that since

the pixel values are always positive, the cross-correlation E{XY }
trends toward its upper bound, and can be approximated via equality.

Pixel distance model In [5] a pixel distance dependent correla-

tion coefficient model is proposed. Note that the correlation coeffi-

cient between X and Y is

ρXY = (E{XY } − E{X}E{Y })/(σXσY ), (3)

where σX and σY denote the standard deviation of X and Y re-

spectively. This is modeled as: ρXY = e−αdXY , where dXY is

Euclidian distance between pixels X and Y , and α is a constant.

3. SPECTRAL COEFFICIENT-WISE OPTIMAL

RECURSIVE ESTIMATE

Recently, in [10], we introduced SCORE for the purpose of provid-

ing a ROPE-like technique that works directly in transform domain,

and is capable of capturing operations performed therein. Instead

of calculating moments and distortion of individual pixels as ROPE

does, SCORE tracks the moments and distortion of individual trans-

form coefficients (we constrain the transform to be DCT with block

size restricted to 4x4).

Let xk,m
n denote the uncoded value of transform coefficient m

in block k of frame n, and x̂k,m
n and x̃k,m

n the encoder and decoder

reconstructions of this coefficient respectively. Note that this block

may not be predicted from an on-grid reference block in the pre-

vious frame. Let uk,m
n denote the uncoded value of coefficient m

in this (possibly off-grid) reference block.1 Again the encoder and

decoder reconstructions of this coefficient are denoted as ûk,m
n and

ũk,m
n . The encoder considers x̃k,m

n and ũk,m
n as random variables

due to the stochastic nature of packet loss. The expected distortion

at coefficient xk,m
n , called δk,m

n , is

E{(xk,m
n − x̃k,m

n )
2

} = (xk,m
n )2−2xk,m

n E{x̃k,m
n }+E{(x̃k,m

n )2}.

The computation of δk,m
n only requires the first and second moments

of the decoder reconstruction x̃k,m
n . SCORE employs the following

recursion functions, developed separately for the two cases of intra-

and inter-coding, to sequentially compute these two moments for

each transform coefficient in a frame.

Intra-coding: The recursions are the same as in ROPE, albeit

with transform coefficients replacing pixels. Since the assumed con-

cealment is “slice copy”, if x̂k,m
n is unavailable due to packet loss, it

is concealed as x̃k,m
n−1

, i.e., it is equivalent to copying in pixel domain.

E{x̃k,m
n }(I) = (1 − p)(x̂k,m

n ) + pE{x̃k,m
n−1

} ,

E{(x̃k,m
n )

2

}(I) = (1 − p)(x̂k,m
n )

2

+ pE{(x̃k,m
n−1

)
2

}. (4)

1Note that while u
k,m
n is indexed by n and k to indicate the location on

the current frame it provides a reference for, it is in fact a function of pixels
in frame n − 1.
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Inter-coding: We define ŷk,m
n to be the quantized transform co-

efficient residual. Following arguments similar to ROPE it can be

shown that,

E{x̃k,m
n }(P ) = (1 − p)(ŷk,m

n + E{ũk,m
n }) + pE{x̃k,m

n−1
},

E{(x̃k,m
n )

2

}(P ) = (1 − p)((ŷk,m
n )2 + 2ŷk,m

n E{ũk,m
n }

+E{(ũk,m
n )2}) + pE{(x̃k,m

n−1
)
2

} . (5)

Note that these equations involve the first and second moments

of transform coefficients of the motion compensated block, which

is potentially off-grid. We thus propose a complementary method

to extract the required moments of such blocks from the available

moments of on-grid blocks in frame n − 1.

XK1

n−1
XK2

n−1

XK3

n−1
XK4

n−1

Uk
n

Fig. 1. Each off-grid block in a frame overlaps with 4 on-grid blocks.

Here the blue blocks are on-grid, and the black off-grid block is em-

ployed for motion compensated prediction in the subsequent frame.

Any off-grid block in a frame overlaps with at most four on-grid

blocks (Fig. 1). Let block Uk
n shown in the figure be the reference

block for the current block k in frame n. This block, located in

frame n − 1, overlaps with on-grid blocks Xki
n−1

in the frame. The

decoder reconstruction of block Uk
n is associated with coefficients

ũk,m
n . Since DCT is a linear transformation, there exist constants

ai,m, named construction constants, such that,

ũk,m
n =

4∑

i=1

15∑

m=0

ai,mx̃ki,m
n−1

. (6)

These constants purely depend on the position of Uk
n relative to the

on-grid blocks. Thus, the first moment of uk,m
n is simply

E{ũk,m
n } =

4∑

i=1

15∑

m=0

ai,mE{x̃ki,m
n−1

} . (7)

The second moment of uk,m
n is more complicated, and involves

cross-correlations of DCT coefficient pairs of the on-grid blocks:

E{(ũk,m
n )2} =

4∑

i=1

4∑

j=1

15∑

m=0

15∑

l=0

ai,maj,lE{x̃ki,m
n−1

x̃
kj ,l

n−1
} . (8)

The advantage of transform domain is that it largely decorrelates the

block. Specifically, as we shall see later in the results, for the case

of full-pel motion compensated coding the following assumption of

‘uncorrelatedness’ holds well in the DCT domain:

E{x̃ki,m
n x̃

kj ,l
n } ≈ E{x̃ki,m

n }E{x̃
kj ,l
n } when j �= i or l �= m. (9)

4. EXTENSION OF SCORE FOR SUB-PIXEL MOTION

COMPENSATED CODING

The main contribution of this paper is a significant extension of

SCORE to effectively provide a ROPE-like technique for sub-pixel

motion compensated coding. Unlike in the full-pixel case where

each pixel is predicted from a reconstructed pixel in the reference

frame, in the sub-pixel case in effect the reference for any pixel in

the current frame is an area of pixels (typically of dimension 6x6)

in the previous frame (on account of the interpolation involved), and

thereby its moments depend on the joint statistics of all the pixels in

this area. This pixel domain operation consequently necessitates two

modifications to the SCORE approach.

Construction constants

Let us say that the reference block Uk
n is located on the sub-pixel

grid. Generating the 4x4 block Uk
n via a 6-tap filter could potentially

involve as many as 9x9 reconstructed pixels in frame n − 1, and

hence involve as many as 9 on-grid blocks (12x12 pixels) of that

frame. Since interpolation and DCT are both linear operations, there

exist a new set of construction constants bi,m, such that,

ũk,m
n =

9∑

i=1

15∑

m=0

bi,mx̃ki,m
n−1

. (10)

Consequently bk,m will be used to compute the moments of ũk,m
n

akin to (7) and (8).

Recursion approximations

Note that (9) is only an approximation. Although it holds well

in the full-pixel case (as will be evident from Sec. 5), experiments

revealed that the resulting approximation error propagates more ag-

gressively in the case of sub-pixel motion compensated coding (due

to the mixing of these errors in the pixel domain via sub-pixel inter-

polation filtering). This necessitates the following modifications to

the approximation in (9).

Cross-correlation within a block: Consider two transform coeffi-

cients x̃k,i
n−1

and x̃k,j
n−1

that are inside the same reference block k but

at different frequencies. Let x̃i
r denote the decoder reconstruction of

xk,i
n−1

when the packet containing the block is received, and x̃i
e de-

note the reconstruction when it is lost (i.e., after error concealment).

The notation x̃j
r and x̃j

e is to be interpreted similarly with respect to

x̃k,j
n−1

. Note that x̃i
r and x̃i

e, are both random variables with regards

to the encoder, and their first moments can be accurately tracked as

E{x̃i
r} = E{ũk,i

n−1
} + ŷk,i

n−1

E{x̃i
e} = E{x̃k,i

n−2
} . (11)

Since all the transform coefficients of a block are contained in a sin-

gle packet, they are received or lost simultaneously. Thus, the cross-

correlation of x̃k,i
n−1

and x̃k,j
n−1

is exactly:

E{x̃k,i
n−1

x̃k,j
n−1

} = (1 − p)E{x̃i
rx̃

j
r} + pE{x̃i

ex̃
j
e}. (12)

This involves the knowledge of the cross correlations E{x̃i
rx̃

j
r} and

E{x̃i
ex̃

j
e}. We now appeal to the ‘uncorrelatedness’ assumption in

DCT domain. Specifically:

E{x̃k,i
n−1

x̃k,j
n−1

} ≈ (1 − p)E{x̃i
r}E{x̃j

r} + pE{x̃i
e}E{x̃j

e}. (13)

In other words, uncorrelatedness is treated separately for the con-

cealment case, and the case when the packet is received.

Inter-block correlation: In the case of cross-correlation terms

that involve coefficients from two different blocks there is no guar-

antee that both coefficients will be lost or received simultaneously.

Although an extension of (13) for this scenario might still be feasi-

ble, in the current paper we follow a simple alternative: due to the

energy compaction property of DCT, the dominant inter-block cross

correlation term would likely be that between DC components, and

the corresponding correlation is assumed to be unity. While more

careful modeling will further improve the estimate accuracy, it is

experimentally demonstrated (see Sec. 5) that this rough approxi-

mation already outperforms pixel domain approaches.
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5. RESULTS

We first compare the EED estimation accuracy of SCORE and ROPE

in the setting of full-pixel motion compensated coding. A standard

H.264 encoder constrained to work only with full-pixel motion com-

pensation resolution generates the bit-stream, while incorporating

some error-resilience via random intra coding, i.e., in each frame

10% of the macroblocks are randomly selected to be intra-coded. In

parallel, the encoder maintains running distortion estimates via both

ROPE and SCORE, solely to evaluate their accuracy. We emphasize

that the encoder does not employ these distortion estimates for any

optimization of encoding decisions. The transmission of this video

sequence is simulated over 100 different realizations of a lossy chan-

nel. The distortion of each frame in the video sequence is averaged

over realizations. In the case of ROPE, the per-pixel EED estimate is

averaged across pixels in a frame, whereas in the case of SCORE the

average is across DCT coefficients within a frame. Fig. 2 compares

the PSNRs obtained by simulation, and the estimates obtained via

SCORE and ROPE. The SCORE estimate matches that of ROPE,

and both are very close to the simulation result.

10 15 20 25 30 35

20.5

21

21.5

22

22.5

23

23.5

frame index

PS
N

R
(d

B)

stefan full−pel motion compensated coding (p=0.05)

SCORE
ROPE
simulation

Fig. 2. Comparison of simulated and estimated PSNRs for the

stefan cif sequence encoded with full-pel motion compensation:

bit-rate is 200kbps, frame rate 30f/s, and PLR p = 5%.

Next, we compare SCORE and ROPE in the setting of sub-pixel

motion compensated coding. The encoder now works at sub-pixel

accuracy, and generates distortion estimates via the two modified

versions of ROPE that incorporate the Cauchy-Schwarz approxima-

tion (Sec.2 and [3]) and pixel distance model (Sec.2 and [5]), respec-

tively, and via SCORE modified in accordance with the approxima-

tions in Sec.4. Packet losses are simulated similarly as before. As

evident from Fig. 3 SCORE-base technique provides a much more

accurate EED estimate than ROPE with Cauchy-Schwarz or pixel

distance model approximations. Similar estimation accuracy trends

were observed with other video sequences as well, with diverse mo-

tion levels.

6. CONCLUSIONS

Our recently introduced technique, SCORE, performs its recursion

entirely in transform domain, to find the to estimate end-to-end dis-

tortion. SCORE is further extended to accurately account for sub-

pixel motion compensation. The scheme exploits the decorrelation

property of the transform as well as its energy compaction to closely

track the cross correlation introduced by sub-pixel linear interpola-

tion. The efficacy of the new approach is demonstrated via experi-

ments, which indicate that it substantially outperforms the compet-

ing pixel domain ROPE variants.

20 25 30 35 40 45
26.4

26.6

26.8

27

27.2

27.4

27.6

27.8

28

28.2

28.4

frame index

PS
N

R
(d

B)

foreman sub−pel motion compensated coding (p=0.05)

SCORE
ROPE with cauchy−schwarz approximation
ROPE with pixel distance model
simulation

Fig. 3. Comparison of simulated and estimated PSNRs for the

foreman cif sequence encoded with sub-pel motion compensa-

tion: bit-rate is 200kbps, frame rate 30f/s, and PLR p = 5%.
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