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ABSTRACT

This paper builds on our recent work on optimal prediction in spa-
tially scalable video coding, and is inspired by earlier work in our
lab on optimal approaches for quality (or SNR) scalability. The ap-
proach we propose herein complements the optimal enhancement-
layer prediction, enabled by transform domain resampling that en-
sures the base layer information is maximally accessible and usable
at the enhancement layer despite their differing signal resolutions,
with an optimal approach to quantization and entropy coding that
exploits all available information, encapsulated in the appropriate
conditional distribution for transform coefficients, to yield a unified
coding engine for spatial scalability. For such quantizers to fully ex-
ploit base layer information, the enhancement layer transform block
size must proportionally match the signal block transformed at the
base layer. The overall system incorporates switching that applies
the full estimation-theoretic quantizer and entropy coder at the right
block size, but may optionally employ other block sizes where it de-
faults to optimal prediction followed by standard quantization. It is
experimentally shown that the proposed scheme provides consider-
able performance gains over conventional codec and other leading
competitors.

Index Terms— Scalable video coding, spatial scalability, esti-
mation theory, entropy-constrained quantizer, arithmetic coding

1. INTRODUCTION

Scalable video coding (SVC) consists of encoding a video sequence
into a single bit-stream comprising multiple layers with progres-
sively higher spatial, temporal, or quantization resolutions [1, 2]. Of
the various features of SVC, this work is focused on spatial scalabil-
ity. For simplicity of exposition, we restrict our discussion through-
out the text to a two-layered codec, while emphasizing that the pro-
posed approach is extensible to more layers.

A spatial SVC scheme downsamples a high resolution video se-
quence to lower resolutions, and encodes them into separate layers.
The lowest resolution signal is essentially coded by a single-layer
coder, while the enhancement layers encode information necessary
to reconstruct the sequence at progressively higher spatial resolution.
Conventional designs of the enhancement layer coder typically in-
herit the base layer coder structure, while allowing utilization of ad-
ditional base layer information to improve the prediction quality, and
hence the coding performance. For instance, standard approaches
perform the enhancement layer prediction in the pixel domain by
selecting amongst the inter-layer and inter-frame references the one
that minimizes rate-distortion cost (see Sec. 2 for detailed discus-
sion). Significant earlier research has focused on prediction accu-
racy, e.g., [2, 3]. A notable approach was proposed in [4], where an
additional prediction mode that is formed as a linear combination of

inter-layer and motion compensated predictions is introduced, which
substantially improves the enhancement layer coding performance.

The inherent limitation of the above schemes that do not fully
exploit all available information, motivates the search for a truly
optimal approach to spatial SVC. Inspiration was drawn from an
estimation-theoretic (ET) approach earlier developed by our group
[5] for the special SVC setting of quality (SNR) scalability, where
the same original sequence is coded by all the layers but at different
quantization resolutions. Thus, the true value of a transform coeffi-
cient must lie in the interval determined by base layer quantization.
This observation effectively captures all the information provided
by the base layer, and is the central postulate of the ET approach in
[5], which employs a conditional probability density function (pdf),
truncated by the base layer quantization interval, and computes the
exact conditional expectation that forms the optimal prediction for
the transform coefficient. The ET approach was later enhanced by al-
lowing delayed prediction [6], and extended to incorporate resilience
to packet loss [7]. It was also applied in Wyner-Ziv scalable coding
[8]. Our recent work [9] further expands this approach to optimize
entropy-constrained quantization. All these advances were in the
setting of quality scalability.

In the setting of spatial scalability, however, the base layer en-
codes a downsampled version of the sequence encoded by an en-
hancement layer, i.e., different layers quantize different transform
coefficients. This poses a major challenge in that the precise quan-
tization intervals and other related base layer information are not
directly usable at the enhancement layer. To overcome this obstacle,
we developed in [10] a paradigm tailored to enable full exploitation
of base layer information, which in conjunction with inter-frame mo-
tion compensation provides optimal enhancement layer prediction.
In [10], a transform domain resampling technique was employed to
render base layer quantization intervals accessible and relevant to the
enhancement layer codec. It discards high frequency transform coef-
ficients of the original signal and rebuilds the downsampled version
from the remaining low frequency coefficients, thereby ensuring a
direct mapping between coefficients of the two layers.

Such correspondence opens the door to achieving optimality of
additional coder components. Consider the quantization of a ran-
dom variable given its probability density function (pdf). It is effec-
tively a partition of the support into several mutually exclusive cells,
each represented by the corresponding centroid and associated with
a probability of containing the source sample. The fundamental de-
sign problem can be formulated as a tradeoff between the expected
reconstruction distortion (typically measured as the mean squared
error), and the rate cost for specifying the cell, which is approxi-
mated by the entropy, as is justified in the case of arithmetic cod-
ing [11]. The design of the optimal quantizer that minimizes the
rate-distortion cost has been intensively studied over decades [12].
In particular, it was shown that for a Laplacian process, a common
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model for a video signal’s temporal innovations in the transform do-
main, the deadzone quantizer can achieve coding performance fairly
close to the optimum [13]. The deadzone quantizer and its vari-
ants are widely adopted in single-layer video encoders that employ
motion-compensated prediction, and were also “inherited” by the
SVC codecs. However, for low frequency transform coefficients the
enhancement layer has additional access to base layer information,
conditioned on which, the effective pdf may differ significantly from
the Laplacian distribution, thereby casting doubt about the efficacy
of deadzone quantizers. In this paper, we approach this problem by
first deriving the conditional probability distribution, given informa-
tion from both the base and enhancement layers, based on which
an optimal entropy-constrained quantizer can be selected for lossy
compression, per transform coefficient of low frequencies.

Further, observe that the above derivation also provides both en-
coder and decoder with the probability of each cell (or quantization
index), which is critical to the efficacy of arithmetic coding. We
hence develop a quantizer-adaptive m-ary arithmetic coding (QA-
MAC) for 2-D blocks of quantization indices at the enhancement
layer, to replace the context-based adaptive binary arithmetic coding
(CABAC) inherited from single-layer coding [14]. We note that such
coding engine implicitly requires a proportionately larger transform
block used at the enhancement layer. Practical hybrid transform
coders consider transform blocks of various sizes to optimize trade-
offs between coding performance on stationary signals and adaptiv-
ity to changes in statistics. To preserve such flexibility here, when-
ever a smaller block is needed, the ET prediction approach of [10]
is employed followed by standard residual coding. The overall pro-
posed coding scheme hence switches between the two spatial scala-
bility modes so as to minimize the rate-distortion cost.

Related prior work in adaptive quantization includes a scalar
quantizer design approach that exploits previously encoded local tex-
ture information for image coding [15]; and in [16], where a coding
scheme switches quantizers depending on base layer information in
scalable audio coding, a setting that does not exploit inter frame cor-
relation. Related work offering improvement in entropy coding for
SVC includes [17], where better probability estimation was devised
for the CABAC context models for successive bit-plane coding, pre-
cluding temporal prediction from the enhancement layers.

The proposed approach is implemented in H.264/AVC Scalable
Video Coding Extension reference framework to demonstrate its ef-
ficacy, but its principles are generally applicable to achieve optimal
spatially scalable extensions of other predictive codecs, e.g., HEVC
[18] and VPNext [19].

2. BASELINE SPATIALLY SCALABLE CODEC

The standard SVC coder spatially downsamples the original input
sequence, and the resultant lower resolution signal is encoded by a
standard single-layer codec into the base layer. The choice of down-
sampler is not standardized by H.264/AVC SVC, and commonly em-
ployed strategies include the windowed sinc filter, pixel decimation,
etc. The enhancement layer predictor switches between the motion
compensated reference from prior frames at the same layer, and the
current base layer reconstruction (upsampled via pixel filtering), for
the minimal rate-distortion cost. A significant amount of study has
been devoted to designing the interpolation filter, and to determine
whether supporting additional filters would be beneficial. However,
no clear winner was identified [2]. A notable method was proposed
in [3] where the upsampling filter is derived to match the downsam-
pling operation while accounting for the quantization noise in the
base layer reconstructed pixels. In [4], an additional mode that gen-

erates the prediction as a linear combination of inter-layer and inter-
frame predictions is proposed for more efficient enhancement layer
coding, where the weight coefficients are derived as a function of the
resampling operations.

The above scheme is commonly referred to as multi-loop de-
sign. The standard codec uses a variant called single-loop design,
where the base layer reconstructed residuals are upsampled and op-
tionally added to the inter-frame motion compensated reference. It is
known that multi-loop provides slightly better coding performance
than single-loop design. We hence modify the H.264/SVC frame-
work to support multi-loop prediction and use it as reference.

3. THE UNIFIED ESTIMATION-THEORETIC
FRAMEWORK FOR RESAMPLING AND QUANTIZATION

We devise a unified ET approach that incorporates transform domain
resampling operations to enable optimum enhancement layer predic-
tive quantization. In the discussion that follows, the base layer block
is of dimension M ×M , and is obtained by downsampling a block
of size N ×N at the enhancement layer.

3.1. Transform Domain Resampling
We assume separability of the 2-D transform, and hence first present
the basic principle in the framework of a 1-D transform. Con-
sider a vector of pixels a = [a0, a1, · · · , aN−1]

T , with inter-
pixel correlation ≈ 1. Here the superscript T denotes transpo-
sition. The optimal approach to convert a into a vector of di-
mension M(< N) is to apply the Karhunen-Loeve transform
(KLT) to fully decorrelate the samples and discard the lower en-
ergy N −M coefficients. It is well known that the DCT exhibits
decorrelation and energy compaction properties approaching that
of the KLT, and it is commonly adopted as a substitute due to
its low implementation complexity. Let TN denote the N -point
DCT matrix, and αN = TNa is the DCT of vector a. Define

f0(t) =
√

1
N
; fj(t) =

√
2
N
cos(jπt), j = 1, · · · , N − 1, analog

cosine functions with a period that is a sub-multiple of the time inter-
val [0, 1]. Thus, the basis functions (rows) of TN can be generated
by sampling {fj(t)} at time instances t = 1

2N
, 3
2N
, · · · , 2N−1

2N
.

Consequently, sampling at the rate 1
N

the continuous-time signal
a(t) =

∑N−1
j=0 αjfj(t), where αj are the transform coefficients

in αN , yields exactly the discrete-time signal a. Now define

g0(t) =
√

1
M
, gj(t) =

√
2
M
cos(jπt), j = 1, · · · ,M − 1,

the analog cosine functions to be sampled at rate 1
M

to yield the
basis functions for a DCT of dimension M . Approximating the
signal a(t) using only M of the N transform coefficients in αN is
done by retaining the M lowest frequency coefficients:

ã(t) ≈
M−1∑
j=0

αjfj(t) =

M−1∑
j=0

(√
M

N
αj

)
gj(t). (1)

Hence we downsample fromN -point pixel vector a toM -point vec-

tor b =
√

M
N
TTM

(
IM 0M

)
TNa, where IM and 0M denote

identity and null matrices, respectively. Conversely, up-sampling
from M -point pixel vector b to N -tuple is accomplished by zero-
padding the high frequency coefficients:

â =

√
N

M
TTN

(
IM
0M

)
TMb.

Under the assumption that the DCT possesses performance very
close to the KLT, the resultant â has minimum mean squared dis-
tance from the original vector a, and downsampling to b maximally
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preserves the information in a. Related material on DCT domain
resampling can be found in, e.g., [10, 20, 21]. The extension to
2D blocks is straightforward by applying downsampling (or upsam-
pling) sequentially to columns and rows. This transform domain re-
sampling approach can in general serve as an alternative to the pixel-
domain downsampling and interpolation traditionally employed in
spatial SVC. However, as discussed next, this resampling method is
of particular advantage to the proposed ET spatial SVC paradigm.

3.2. Estimation-Theoretic Coding Engine
We now consider encoding the enhancement layer blocks {Ai, i =
0, · · · , 3} in frame n (Fig.1). The entire region R is mapped into
block B in the base layer frame via the transform domain down-
sampling previously described in Sec. 3.1. Let xen(i, j), where
i, j ∈ {0, · · · , N − 1}, denote the value of the transform coeffi-
cient at frequency (i, j) obtained by applying a DCT of size N ×N
to R. Using (1), the first M ×M transform coefficients of the resul-
tant DCT are scaled appropriately to yield the transform coefficients
of the base layer block B:

xbn(i, j) =
M

N
xen(i, j), i, j ∈ {0, · · · ,M − 1}. (2)

The base layer coding process essentially prescribes a quantization
interval Ibn(i, j) that contains the true value of xbn(i, j), which sum-
marizes all the information provided by the base layer about the
transform coefficient xbn(i, j). Accordingly the interval that contains
the true value of xen(i, j) is:

xen(i, j) ∈ Ien(i, j) =
N

M
Ibn(i, j) (3)

3.2.1. Optimal Entropy-Constrained Predictive Quantizer

Having established the correspondence between xen(i, j) and xbn(i, j),
we are now able to derive the optimal quantizer and subsequent
entropy coding, while fully accounting for all the available in-
formation. Let x̂en−1(i, j) denote the transform coefficient of the
same frequency as xen(i, j) of the motion-compensated reference
block generated from the previously reconstructed frame. This en-
hancement layer reference can then be combined with the known
interval Ien(i, j), in an estimation-theoretic framework to obtain the
conditional pdf of coefficient xen(i, j).

Frame nFrame n-1

A0 A1

A2 A3

R

TMB

Ibn(i, j)

TN

x̃en(i, j)

T−1
N (optional)

base layer

enhancement layer

Fig. 1: Estimation-theoretic enhancement layer coding.

We model the DCT coefficients of blocks along a motion trajec-
tory as an AR process per frequency coefficient [5]: xn = ρxn−1 +
zn, where {zn} are i.i.d innovations of the process with pdf pZ(zn).

The implicit assumption in standard pixel domain motion compen-
sated prediction that the temporal correlation coefficient ρ ≈ 1,
is retained here for simplicity at all frequencies. Assuming that
x̂en−1(i, j) ≈ xen−1(i, j), we obtain the temporally conditioned pdf
p(xen(i, j)|x̂en−1(i, j)) ≈ pZ(xen(i, j)−x̂en−1(i, j)). The base layer
further indicates that xen(i, j) ∈ Ien(i, j), which refines the condi-
tional pdf of xen to1

p(xen|x̂en−1, Ien) ≈

{
pZ(xn−x̂en−1)∫

Ibn
pZ(xn−x̂en−1)dxn

xn ∈ Ibn
0 else

. (4)

We assume {zn} form Laplacian distribution, i.e., pZ(zn) =
1
2
λe−λ|zn|, where λ is a frequency dependent factor [5]-[7]. The

optimal predictor at the enhancement layer is hence

x̃en = E[xn|x̂en−1, Ien], (5)

the centroid of the above pdf over the entire interval Ien [5].
If the prediction and quantization operations are separately pro-

cessed, then the traditional course of action would now be to quan-
tize the residual (xen − x̃en) via a deadzone quantizer and encode the
index (typically) using CABAC. However, such separate treatment
of the prediction and quantization suffers from significant under-
utilization of the available information. In particular, in anticipation
of the optimally matched entropy coder to be discussed next, the
optimal entropy-constrained quantizer for xen, given the conditional
pdf p(xen|x̂en−1, Ien) can be obtained via a variant of the Lloyd-Max
algorithm [22]. Consider a scalar quantizer of N levels. Let the
decision or boundary points of the partition be denoted by {ti|i =
0, 1, · · · , N}, and the reproduction levels by {ri|i = 1, 2, · · · , N}.
The interval Ien bounds the support of the signal, t0 and tN . The nec-
essary conditions for optimality of an entropy-constrained quantizer
of N levels were specified in [12]:

β log2(
Pi+1

Pi
) = (ri+1−ri)(ri+1+ri−2ti), ∀i = 1, 2, · · · , N−1,

where Pi is the probability of the ith region, and β is the Lagrangian
multiplier whose value may be varied to obtain the desired point on
the operational rate-distortion curve. This necessary condition leads
to an entropy-constrained Lloyd-Max quantizer design. The variant
of the design algorithm for the enhancement layer quantizer is de-
rived in a straightforward manner and the pseudo-code is given in
Fig. 2, where ε determines the convergence test. Upon convergence,
the rate-distortion cost associated with this N -level scalar quantizer
can be calculated. We then vary the value of positive integer N to
find the one that provides overall minimum rate-distortion cost as the
optimum quantizer for xn, given conditional pdf p(xn|x̂en−1, Ibn).

The Laplacian memoryless property allows for a set of generic
quantizers to be pre-calculated and stored during the initial stage
of coding process. The encoder can then simply fetch the needed
quantizer, conditioned on the motion compensated reference and
base layer information, eliminating the need to redesign quantizers.
Hence the overall increment in computational complexity is modest.

3.2.2. Quantizer-Adaptive M-ary Arithmetic Coding

The H.264/AVC standard and the SVC extension employ CABAC
for entropy coding, which adjusts the probability models according

1The frequency index (i, j) is omitted to streamline notation where there
is no risk of confusion.
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repeat
rN ← c
for i = 1 to (N − 1) do

ri ←
∫ ti
ti−1

xn p(xn|x̂en−1,I
e
n)dxn∫ ti

ti−1
p(xn|x̂en−1,I

e
n)dxn

Pi ←
∫ ti
ti−1

p(xn|x̂en−1, Ien)dxn
Pi+1 ←

∫ ti+1

ti
p(xn|x̂en−1, Ien)dxn

ti ← 1
2
(ri + ri+1)− β

2

log2(Pi+1/Pi)

ri+1−ri
end for

c←
∫ tN
tN−1

xn p(xn|x̂en−1,I
e
n)dxn∫ ti

ti−1
p(xn|x̂en−1,I

e
n)dxn

until |c− rN | < ε

Fig. 2: Pseudo code for the enhancement layer entropy-constrained
predictive quantizer design.

to coding information of the neighboring blocks in a spatially adap-
tive manner, thereby achieving significant rate reduction over other
variable length based methods [14].

The entropy coder proposed here exploits the fact that the op-
timal quantizer explicitly provides the probability mass function,
which can be used to optimize the index coding, namely, the pro-
posed quantizer-adaptive m-ary arithmetic coding (QAMAC). In
particular, we assign to the most probable cell of each transform
coefficient the index zero. The encoder then scans the 2-D block in
descending order of coefficient total probability of significance (in-
stead of the traditional zig-zag order), and generates a binary-valued
significance map which is coded by the binary arithmetic coder. To
encode the significant coefficients, the QAMAC employs an m-ary
arithmetic coder, the recursive interval subdivisions of which are
conditioned on the quantizers for the significant coefficients. Sup-
pose a transform coefficient is coded by anN -level quantizer, where
the kth region is most probable. The significance map indicates that
the true value of this coefficient does not fall into the most probable
region, which eliminates rk (indexed zero) from the sample space
and refines the probability mass function of this significant coeffi-
cient as P̃i = Pi

1−Pk
, ∀i 6= k, i ∈ {1, 2, · · · , N}. The internal

range of the arithmetic coder is thus divided into (N − 1) subinter-
vals, the ith of which has a length proportional to P̃i. Depending
on the observed symbol value, the corresponding subinterval will
be chosen as the new current interval. The binary expansion of the
number pointing into this interval effectively represents the sequence
of symbols coded so far, and hence forms the coded bit stream.

For coding the high frequency coefficients, a regular dead-zone
quantizer followed by CABAC is employed as usual. It is impor-
tant to note that the above unified coding engine requires that a fixed
transform dimension is used by the enhancement layer, and is op-
timal for locally stationary signals. In practice, it is worthwhile
to allow various transform block sizes, to optimize the tradeoff be-
tween coding performance of stationary signal and adaptivity to the
changes in statistics. To maintain the flexibility in transform choices,
whenever a smaller transform block is needed, the ET prediction
of [10] is used followed by regular residual coding. The overall
scheme hence switches between these two modes to minimize the
rate-distortion cost.

4. SIMULATION RESULTS

The proposed ET coding engine is implemented in H.264/SVC
framework, and is referred to as ETQ-SVC. The standard SVC codec
was modified to support multi-loop design denoted by H.264/SVC-
ML. The linear combination approach of [4] was also included and
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Fig. 3: Enhancement layer coding performance of coastguard at
CIF resolution. The base layer is coded at 700 kbit/s and QCIF .
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Fig. 4: Enhancement layer coding performance of harbour at CIF
resolution. The base layer is coded at 1000 kbit/s and QCIF .

marked by H.264/SVC-LC. The ET prediction for spatial SVC [10]
recently developed by us to improve prediction but not quantizer
and entropy encoder, was also included as H.264/SVC-ET. All the
competing SVC codecs use the same base layer coder, and employ
regular quarter-pixel motion search and single reference frame. We
emphasize that more sophisticated inter-frame motion compensated
prediction methods can be directly incorporated in the proposed
framework. The test sequences are coded in IPPP format at frame
rate of 30 f/s. The enhancement layer coding performance for se-
quence coastguard at CIF resolution is presented in Fig.3, where
we fix the base layer and vary the Lagrangian multiplier β to gen-
erate enhancement layer operational points. Clearly, the proposed
scheme significantly outperforms other competing schemes. Sim-
ilar coding performance gains are achieved for sequence harbour
at CIF resolution (Fig.4). Experiments with other test sequences
yielded similar gains.

5. CONCLUSIONS

This paper proposes a novel enhancement layer coding engine for
optimal compression in spatial SVC. The approach complements a
transform domain resampling technique and efficiently combines all
relevant information from both base and enhancement layers in an
ET framework to derive the conditional pdf, which enables deriva-
tion of the optimal entropy-constrained predictive quantizer and con-
ditional arithmetic coder. Considerable and consistent coding gains
are obtained by using the proposed ET coding engine, in comparison
to standard H.264/SVC as well as our earlier ET approach to spatial
SVC, which focused on enhancement layer prediction.
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