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ABSTRACT

A novel filtering approach that naturally combines informa-
tion from both intra-frame and motion compensated refer-
encing for efficient prediction is proposed to fully exploit
the spatio-temporal correlations of video signals, thereby
achieving superior compression performance. Inspiration was
drawn from our recent work on extrapolation filter based intra
prediction, which views the spatial signal as a non-separable
first-order Markov process and employs a 3-tap recursive fil-
ter to effectively capture the statistical characteristics. This
work significantly extends the scope to further incorporate
motion compensated reference in a filtering framework,
whose coefficients were optimized via a “k-modes”-like it-
eration that accounts for various factors in the compression
process including variation in statistics in the prediction loop,
to minimize the rate-distortion cost. Experiments validate
the efficacy of the proposed spatio-temporal approach, which
translates into consistent coding performance gains.

Index Terms— Spatio-temporal prediction, extrapolation
filter, rate-distortion optimization, video coding

1. INTRODUCTION

Modern video codecs exploit temporal and spatial redundan-
cies in the format of inter and intra predictions, respectively.
Inter prediction employs motion compensation to predict
from previously coded frames, while Intra prediction gener-
ates the prediction from previously reconstructed boundary
pixels in the same frame along a given angle to imitate the
directionality of the texture content [1][2].

An inter-frame coded block usually has access to multi-
ple information sources, namely, reconstructed top and left
boundaries in the same frame, and motion compensated ref-
erence block in the prior frames. Current video coders, how-
ever, choose amongst the two prediction modes separately,
and hence rendering the prediction sub-optimal due to the fact
that such ad hoc switch can not fully utilize all the available
information.
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A recent approach to intra prediction building on 2-D sep-
arable first order Markov models appeared in [3]. Our own
recent work on intra frame coding was premised on the real-
ization of the importance of non-separable models to capture
the true spatial correlations [4]. Besides spatial correlations
one has to account for temporal correlations, which are typi-
cally modeled as a first order (motion compensated) Markov
process. This motivates our proposed spatio-temporal filter-
ing approach that efficiently combines information from the
available boundaries of the same frame and from the motion
compensated reference of previous frames for optimal predic-
tion and hence compression.

Prior work on jointly exploiting spatial and temporal re-
dundancies includes [5], where it predicts a block as a sim-
ple linear combination of the inter-frame reference block and
the intra predicted block. It largely ignores the variation in
statistics across the block and is unable to fully exploit the in-
teraction of spatial and temporal correlations therein. Recent
algorithms that exploit all neighboring information to design
adaptive optimal predictors inevitably incurs overly expensive
computational complexity [6, 7, 8]. In [9], a prediction perfor-
mance study of higher order spatio-temporal filtering which
subsumes sub-pixel motion compensation is presented with-
out recourse to the important step of rate-distortion optimized
integration within a video coder.

Built upon our prior work on recursive extrapolation
approach to intra prediction [4], we propose a joint spatio-
temporal 4-tap prediction filter approach (where 3 tap are for
spatial information and 1 tap captures the temporal correla-
tion). It recursively predicts block content from the boundary,
and is naturally capable of capturing the variations in spatial
correlations in both the current and the motion compen-
sated reference blocks, thereby exploiting all the available
information for superior coding performance. The filters are
optimized via a “K-modes” like iterative training modified to
account for various factors in the predictive coding loop. In
particular, it consists three major phases: (1) optimal linear
filter estimation (with simplifying Markov model assump-
tions) to obtain a good initialization for the parameters; (2)
direct gradient descent adjustments that do not depend on any
model assumptions; and (3) optimization to incorporate rate-
distortion optimization process. Experimental results validate
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Fig. 1. Spatio-Temporal 3-D Markov model

that the proposed scheme provides substantial coding perfor-
mance gains over the conventional approach.

2. THE RECURSIVE SPATIO-TEMPORAL
PREDICTOR

In [4], we proposed a recursive extrapolation filter to tackle
the underutilization of available boundary information in
conventional ‘pixel copying’ based intra prediction. The im-
age signal were modeled by a 2-D non-separable first-order
Markov process whose evolution recursion can be written as:

X = cvV + chH + cdD + ε , (1)

where V , H , and D are neighbors of X , and ε denotes the
innovation. The coefficients cv , ch, and cd effectively capture
the correlation gradients in the 2-D space, or ‘directionality’
of the image signal. This intra prediction scheme achieved
significant coding performance gains.

We extend this framework to further incorporate the tem-
poral correlation:

X = cvV + chH + cdD + cmM + ε , (2)

where, M is the motion compensated prediction of X drawn
from either one previous frame or as a filtered output of sev-
eral references, and the coefficient cm is the weight of tem-
poral reference in the spatio-temporal model. An example
illustration of the proposed 3-D model is shown in Fig. 1.

In a medium to high bit-rate setting, the reference pixels
are well approximated by their reconstructions, thus we pro-
pose to use a linear spatio-temporal predictor:

X̃ = cvV̂ + chĤ + cdD̂ + cmM̂ . (3)

An illustration of the proposed prediction paradigm is shown
in Fig. 2. One problem we can see from this figure is that
in a block-based video coder, only the top-left pixel has
previously reconstructed spatial neighbors available. We
overcome this limitation by predicting target pixels inside the
block from predictions of its neighbors. Specifically, predic-
tion is started from the pixel adjacent to the boundary and
then continued recursively in a raster scanning order. This
structure, well characterizes the decaying correlation with the

Frame T-1

M
otion C

om
pensation

Frame T-1

Frame T

Decoded Boundary

Fig. 2. Spatio-Temporal Prediction Paradigm

spatial boundary across the block and a consistent correla-
tion with temporal reference in the entire block. The choice
of filter coefficients controls directionality of spatial predic-
tion and dependency on motion compensation. Note that the
proposed filter subsumes conventional intra prediction and
motion compensation, e.g., cv = 1, cd = 0, ch = 0 and
cm = 0 corresponds to vertical ‘pixel copying’ intra mode,
and cv = 0, ch = 0, cd = 0 and cm = 1 corresponds to pure
motion compensation.

We integrate this prediction scheme into a video coder by
introducing a set of spatio-temporal prediction modes, tai-
lored for varying texture directionalities and dependency on
motion compensation. The prediction filters are designed off-
line using training data and embedded in the coder. Note that
the additional side information rate to indicate the mode se-
lected is very low when compared to directly transmitting the
filter coefficients.

3. FILTER DESIGN

In this section, an off-line design of K candidate spatio-
temporal prediction filters for blocks of size B × B is de-
scribed. First, frames from a diverse set of video sequences
are divided into B × B blocks to form our training set. The
temporal references (M ) are produced by employing the reg-
ular inter coder to estimate optimal motion compensation
with quarter-pixel precision, at a high bit-rate. A variant of
K-means clustering is then applied to iteratively partition the
training set into clusters (or equivalently, modes), and an opti-
mal spatio-temporal filter is redesigned per cluster/mode, i.e,
a “K-modes” iterative approach is employed. We first mini-
mize the mean squared prediction error over the training data
and then extend the optimization to account for the overall
rate-distortion criterion.
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3.1. K-Modes Iterative Clustering to Obtain LMS Filters

Consider the non-separable spatio-temporal Markov model of
(2) with known correlation statistics. Let c = [cv, ch, cd, cm].
The predictor coefficients minimizing overall squared predic-
tion error are given by

copt =


RXV

RXH

RXD

RXM


T 

RV V RV H RV D RV M

RV H RHH RHD RHM

RV D RHD RDD RDM

RV M RHM RDM RMM


−1

, (4)

where RAB denotes the cross correlation between A and B.
We initialize the algorithm by clustering the training data

only based on the conventional intra prediction modes, cor-
responding to commonly occurring textures. Then, 2-step
iterations involving re-design of filters and re-partitioning
described below are executed until convergence. As the
overall mean squared prediction error is monotonically non-
increasing in every step, convergence is guaranteed.

Re-design of prediction filters: Given a partition of
the training set, LMS filters are derived from the statistics of
each subgroup. The directional cross-correlations in equation
(4) are estimated using the original pixel values, xi,j , and the
motion compensation reference, xMi,j . For instance, RXV and
RHM is estimated as

RXV =
∑

(xi,j − x)(xi+1,j − x),

RVM =
∑

(xi+1,j − x)(xMi,j − xM ), (5)

where, x is the block mean of original pixels values, and xM

is the block mean of motion compensated reference. This
ensures reduction in overall squared prediction error as each
of the K filters best serve the subset they represent.

Re-partitioning of the training set: Each training
block is now assigned to the mode minimizing squared pre-
diction error. This again ensures reduction in overall squared
prediction error due to the reduction of error for each block.

After convergence we have LMS solution for a set of K
spatio-temporal filters.

3.2. Gradient Decent Approach to Minimize Actual Pre-
diction Error

A second phase of design is motivated by the recognitions
that, there is possible mismatches between the Markov model
and real signals, and in block-wise prediction, some pixels are
predicted from boundary and others are predicted from pre-
dictions of pixels, which is ignored in the first phase. Starting
from the optimal filter in Section 3.1, a gradient descent ap-
proach is used to minimize the prediction error resulting from
applying the 4-tap recursive filter to the entire block. The
“K-modes” technique is again employed to iterate between
assigning modes to each block and re-optimizing the filters
by gradient descent approach in each mode. To minimize the

squared prediction error J =
∑
∀ blocks

∑
i,j

(x̃i,j − xi,j)2, we do

line search along the negative of the gradient of squared pre-
diction error for each mode. For a mode k, the gradient is
given as,

∇k =



∑
blocks ∈ mode k

∑
i,j

∂(x̃i,j−xi,j)
2

∂cv,k∑
blocks ∈ mode k

∑
i,j

∂(x̃i,j−xi,j)
2

∂ch,k∑
blocks ∈ mode k

∑
i,j

∂(x̃i,j−xi,j)
2

∂cd,k∑
blocks ∈ mode k

∑
i,j

∂(x̃i,j−xi,j)
2

∂cm,k



T

, (6)

where the vector elements are partial derivatives with respect
to the filter coefficients. The partial derivative with respect to
the vertical coefficient is,

∂J

∂cv,k
=

∑
blocks ∈ mode k

∑
i,j

∂(x̃i,j − xi,j)2

∂cv,k

=
∑

blocks ∈ mode k

∑
i,j

2 (x̃i,j − xi,j)
∂x̃i,j
∂cv,k

.

(7)

where ∂x̃i,j

∂cv,k
can be derived using (3), as

∂x̃i,j

∂cv,k
= x̃i−1,j + cv,k

∂x̃i−1,j

∂cv,k
+ ch,k

∂x̃i,j−1

∂cv,k
+ cd,k

∂x̃i,j−1

∂cv,k
.

Similarly, the other partial derivatives can be derivated
through

∂x̃i,j

∂ch,k
= x̃i,j−1 + cv,k

∂x̃i−1,j

∂ch,k
+ ch,k

∂x̃i,j−1

∂ch,k
+ cd,k

∂x̃i,j−1

∂ch,k
,

∂x̃i,j

∂cd,k
= x̃i−1,j−1 + cv,k

∂x̃i−1,j

∂cd,k
+ ch,k

∂x̃i,j−1

∂cd,k
+ cd,k

∂x̃i,j−1

∂cd,k
,

∂x̃i,j

∂cm,k
=xM

i,j + cv,k
∂x̃i−1,j

∂cm,k
+ ch,k

∂x̃i,j−1

∂cm,k
+ cd,k

∂x̃i,j−1

∂cm,k
.

Even in this design phase the overall squared prediction er-
ror is monotonic non-increasing in every step, guaranteeing
convergence.

3.3. Overall Rate-Distortion Optimization

Until here the filter design minimized the squared prediction
error, however, the performance of a video codec is evaluated
according to the rate-distortion cost. This cost has complex
dependency on both the quantization error energy, and bit-
rate required to encode the mode indices and the quantized
transformed prediction residuals. In such a complex system,
simply minimizing the prediction residue need not improve
the codec performance. Thus the ultimate rate-distortion cri-
teria of a video coder is taken into account in the third filter
design phase by building on the training results of Section 3.2.

Let ci, 1 ≤ i ≤ 4K, denote all the filter coefficients.
First, the prediction filters obtained from Section 3.2 are
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incorporated into the encoder, and the initial rate-distortion
cost, Lopt, is calculated by running the encoder. Then, each
filter coefficient is fine tuned by running the following itera-
tions until convergence:

1. Update ci = ci + ∆, calculate the new rate-distortion
cost L.

2. If L < Lopt, update Lopt = L, repeat Step 1. If not,
update ci = ci −∆, continue to Step 3.

3. Update ci = ci − ∆, calculate the new rate-distortion
cost L.

4. If L < Lopt, update Lopt = L, repeat Step 3. If not,
update ci = ci + ∆, continue to Step 1.

4. EXPERIMENTAL RESULTS

The above spatio-temporal prediction approach was imple-
mented in the VP9 reference framework as a new coding op-
tion in addition to the inter and intra prediction modes avail-
able for the inter frames. A preliminary experiment that ap-
plied K = 7 filters to prediction of blocks using a single
frame as motion compensation reference and ranging from
8 × 8 to 32 × 32 was included to validate the potential of
the proposed scheme. The filter coefficients were optimized
using the iterative ”K-modes” approach of Sec. 3. The test
sequences (all apart from those used as training set to obtain
the filter coefficients) were coded in IPPP format and the
performance gains, in terms of BD-rate[10], over the refer-
ence VP9 codec are presented in Table 1. Our spatio-temporal
filtering scheme achieves consistent gains over the conven-
tional separate inter/intra coding, even under limited and and
preliminary settings. Future directions include enabling the
proposed approach for prediction of blocks using compound-
frames as motion compensation reference and also for the re-
maining block sizes, hence fully exploiting its efficacy.

Table 1. BD-rate reduction due to the spatio-temporal predic-
tion approach relative to the VP9 Inter coder.

Test Sequence Resolution Bit Savings (%)

foreman CIF 0.274
football CIF 0.820
crew CIF 1.072
ice CIF 0.539
city 720p 0.615

5. CONCLUSION

A novel recursive filtering approach was proposed to jointly
exploit spatio-temporal redundancy of video signal for op-
timal prediction. It builds on a non-separable first-order

Markov model, which well approximates the underlying sta-
tistical characteristics. The requisite filter coefficients, which
effectively capture the spatial and temporal correlations, were
optimized using a “k-modes” like framework that iteratively
minimizes the overall rate-distortion cost. It was experi-
mentally demonstrated that the proposed scheme achieved
consistent performance gains.
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