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ABSTRACT

Linear prediction is widely used in speech, audio and video
coding systems. Predictive coders often operate over unreliable
channels or networks prone to packet loss, wherein errors propa-
gate through the prediction loop and may catastrophically degrade
the reconstructed signal at the decoder. To mitigate this problem,
end-to-end distortion (EED) estimation, accounting for error prop-
agation and concealment at the decoder, has been developed for
video coding, and enables optimal rate-distortion (RD) decisions at
the encoder. However, this approach was limited to the video coder’s
simple setting of a single tap constant coefficient temporal predic-
tor. This paper considerably generalizes the framework to account
for: i) high order prediction filters, and ii) filter adaptation to local
signal statistics. Specifically, we propose to simultaneously track
the decoder statistics of the reconstructed signal and the prediction
parameters, which enable effective estimation of the overall EED.
We first demonstrate the accuracy of the EED estimate in compari-
son to extensive simulation of transmission through a lossy network.
Finally, experimental results demonstrate how this EED estimate
can be leveraged, by an encoder with short and long term linear
prediction, to improve RD decisions and achieve major performance
gains.

Index Terms— Error resilience, rate-distortion optimization,
end-to-end distortion, adaptive prediction

1. INTRODUCTION

Exploiting correlation is a critical component of all compression and
communication systems. One central approach to do so involves pre-
diction, wherein typically linear short term and/or long term predic-
tion filters are employed. Modern packet-switched networks, such
as the Internet, provide limited or no end-to-end Quality of Service
(QoS) [1] guarantees, where packets may be discarded due to buffer
overflow at intermediate nodes of the network, or considered lost due
to long queuing delays. Thus, robustness to packet loss is a crucial
requirement, especially in the case of predictive coding, where the
prediction loop propagates errors and causes substantial, and some-
times catastrophic, deterioration of the received signal.

The problem of packet loss is mitigated by adding redundancy
in the bitstream to recover from errors, e.g., by resetting prediction
[2] at appropriate intervals to stop propagation of error, or employing
error correcting codes [3] to protect critical information. In such sce-
narios, the overall performance of coders depends on optimizing the
trade-off between compression and redundancy for error resilience.
A formal illustration of the problem setup is shown in Fig. 1. En-
coderE compresses source X to Z , while accounting for channel or
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Fig. 1. A general compression and communication system

network unreliability. The Decoder D receives Ẑ and decodes the
reconstructed source X̂ . The overall problem is formally posed as
optimizing encoder parameters and decisions to minimize the end-
to-end distortion (EED), which accounts for quantization, packet
loss, error propagation and concealment at the decoder, given the
prescribed bit rate. Clearly, effective EED estimation at the encoder
is critical to solving this problem.

In [4] the recursive optimal per-pixel estimate (ROPE) of EED
was proposed for video coders, wherein EED is estimated at the en-
coder via tracking the first and second moments of the reconstructed
signal at the decoder, which are recursively updated. ROPE was
demonstrably optimal for the video coding setting it addressed, and
its superior accuracy yielded significant performance gains over ear-
lier heuristic methods. Nevertheless, ROPE was derived for a rather
simple setting, which limits its applicability to more general settings.
Specifically, ROPE was derived for a predictor with single tap for ev-
ery pixel in a video frame (pointing to a motion-compensated posi-
tion in the previous frame), but many coders employ a combination
of short term and long term prediction filters, which lead to com-
plex dependencies across consecutive samples. Moreover, ROPE as-
sumes a fixed temporal prediction coefficient, which is obviously
not affected by packet loss, while many compression techniques use
time varying prediction parameters adapted to the local statistics.
When a packet generated by an adaptive predictive coder is lost, in-
formation necessary to determine the prediction parameters is lost as
well. Thus recursively estimating the EED while accounting for this
uncertainty entails considerable challenges. Some techniques were
previously proposed in [5, 6] to extend ROPE for handling cross cor-
relation terms that arise due to basic interpolation filters, by employ-
ing certain approximations relevant to the context of video coding,
but they do not account for adaptive prediction parameters. Note that
a somewhat related problem setup exists in networked control sys-
tems (NCS) [7, 8], wherein observations or innovations from sen-
sors are transmitted over unreliable networks and the receiver per-
forms state estimation to make controller decisions. These systems
only account for channel unreliability for state estimation at the re-
ceiver, which is equivalent to packet loss concealment in networked
compression systems. Instead we propose tackling the problem of
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Fig. 2. A predictive compression system

accounting for the network reliability at the encoder.
In this paper we substantially generalize the ROPE framework

to estimate EED at the encoder for a compression system which em-
ploys a higher order predictor with adaptive prediction parameters.
We specifically derive a recursive procedure to estimate EED by sep-
arately tracking statistics of both prediction parameters and the re-
constructed signal at the decoder, which are then effectively com-
bined to estimate the overall EED. The accuracy and efficacy of the
estimation is shown via simulation results which substantiate that
incorporating such information in making RD optimal decisions of
prediction resets at the encoder can achieve significant performance
gains.

2. END-TO-END DISTORTION

Fig. 2 illustrates a predictive compression system, which is a specific
case of the general system described in Sec. 1. Input signal samples,
x[n], 0 ≤ n < N , are processed by the encoder to generate and
transmit a bitstream through a channel, which the decoder receives
and decodes to generate the reconstructed samples. The encoder
also computes the reconstructed sequence, x̂e[n], and uses prior re-
constructed samples to generate the prediction x̃e[n]. The prediction
error, e[n] = x[n]− x̃e[n] is quantized to obtain ê[n], which is con-
veyed to the decoder. When the decoder receives ê[n], it adds it
to its predicted sample, x̃d[n], to generate its reconstructed samples,
x̂d[n]. If ê[n] is not received, the decoder performs loss concealment
by generating an approximation or a “guess” for the reconstructed
samples. Clearly, the decoder reconstructed samples, x̂d[n], may dif-
fer from those at the encoder, x̂e[n], and consequently the predicted
samples at the decoder, x̃d[n], and the encoder, x̃e[n], may also dif-
fer. Hence the added subscripts to indicate encoder versus decoder
quantities. As far as the encoder is concerned, the decoder recon-
struction x̂d[n] is a random variable, as the exact loss pattern cannot
be known while encoding, but a statistical model for channel loss
is presumably available to the encoder. The encoder’s only feasi-
ble strategy is to estimate the expected end-to-end distortion (EED).
For the squared error distortion metric, EED for the given source
sequence is,

D =

N−1∑
n=0

E{(x[n]− x̂d[n])2}

=

N−1∑
n=0

x2[n]− 2x[n]E{x̂d[n]}+ E{x̂2d[n]}. (1)

Note that the encoder knows the source sequence so the only source
of randomness is due to loss in the channel. Clearly, to estimate this
distortion, first and second moments of the decoder reconstructions
should be accurately estimated at the encoder. In [4], a recursive

algorithm was proposed to optimally estimate decoder reconstruc-
tions’ first and second moments, which were used to estimate EED
for the setting of a single tap constant coefficient temporal predic-
tor. This estimated EED was then used to optimally switch between
inter-frame and intra-frame prediction to control the error propaga-
tion through frames.

3. PROPOSED END-TO-END DISTORTION ESTIMATION

In this section we describe EED estimation for a compression sys-
tem employing a higher order predictor with adaptive prediction pa-
rameters by simultaneously tracking statistics for relevant decoder
quantities, namely, prediction parameters and the reconstructed sig-
nal. First we explain the general estimation algorithm, then we de-
scribe extension for a compression system using a cascade of short
term and long term predictor, and finally we describe how EED is
employed to optimize RD decisions at the encoder.

3.1. General EED Estimation Framework

The common approach for adapting to local statistics is to divide the
input signal into frames and employ different prediction parameters
for each frame. Let xf [n] and x̂fe [n] denote the original and encoder
reconstruction value of sample n in frame f , respectively. The pre-
dicted samples of frame f using a higher order predictor are given
by,

x̃fe [n] =

P∑
i=1

γf
e [i]x̂

f
e [n− i], (2)

where P is the prediction order and γf
e [i] is the ith prediction

coefficient used for samples in frame f . Given the predicted
samples, the quantized prediction error, êf [n], is generated as in
Sec. 2, and is transmitted along with the prediction parameters,
γγγf
e = [γf

e [1], . . . , γf
e [P ]], in a single packet over the channel.

Due to lossy nature of the channel the packet may either be received
by the decoder, or lost. For simplicity of presentation (and without
loss of generality) let us model the channel loss with a Bernoulli
model, where each packet is lost independently of other packets,
with probability p, called packet lost rate (PLR). Upon receiving the
packet, the decoder adds the quantized error, êf [n], to its predicted
sample, x̃fd [n], and generates its reconstructed sample, x̂fd [n]. The
predicted samples at the decoder are given by,

x̃fd [n] =

P∑
i=1

γf
d [i]x̂

f
d [n− i], (3)

where γf
d [i] is the ith prediction coefficient employed in frame f

at the decoder. If a packet is lost, concealment is done by assum-
ing the quantized prediction error was zero and copying the pre-
diction parameters from the previous reconstructed frame, γγγf

d =

[γf−1
d [1], . . . , γf−1

d [P ]]. Recall that because of packet loss, the
predicted samples, reconstructions, and prediction parameters em-
ployed (x̃fd [n], x̂

f
d [n], and γγγf

d , respectively) at the decoder differ
from corresponding quantities at the encoder, and must be viewed
as random variables by the encoder.

Let fR denote the event that the packet containing information
of frame f is received and let fL denote the event that it is lost. Then
the first moment of the reconstructed sample at the decoder can be
expressed as,

E{x̂fd [n]} = (1− p)E{x̂fd [n]|fR}+ pE{x̂fd [n]|fL}, (4)

2016 IEEE Statistical Signal Processing Workshop (SSP)



where

E{x̂fd [n]|fR} = E{(êf [n] +
P∑

i=1

γf
e [i]x̂

f
d [n− i])|fR}

= êf [n] +

P∑
i=1

γf
e [i]E{x̂fd [n− i]|fR} (5)

E{x̂fd [n]|fL} = E{
P∑

i=1

γf−1
d [i]x̂fd [n− i])|fL}. (6)

Note that in (6), both γf−1
d [i] and x̂fd [n− i] are random variables. If

we further assume them to be uncorrelated, we can approximate the
first moment for event fL as,

E{x̂fd [n]|fL} ≈
P∑

i=1

E{γf−1
d [i]}E{x̂fd [n− i]|fL}. (7)

Note that while one may object from a source coding perspective
that a source and its prediction parameters would normally be cor-
related, but it is important to keep in mind that the only uncertainty
of the encoder (and hence the only source of randomness) about the
reconstructed samples and the prediction parameters is due to unre-
liability of the channel. The validity of this assumption is verified in
the experimental results in Sec. 4. Based on the concealment strat-
egy adopted, the first moment for the prediction parameter vector
employed at the decoder is also estimated recursively as

E{γγγf
d} = (1− p)γγγf

e + pE{γγγf−1
d }. (8)

Substituting (5) and (7) in (4) we obtain a recursive estimate for the
first moment of reconstructed samples at the decoder. Similarly, for
the second moment,

E{(x̂fd [n])
2} = (1−p)E{(x̂fd [n])

2|fR}+pE{(x̂fd [n])
2|fL}, (9)

where

E{(x̂fd [n])
2|fR} = E{(x̂fd [n](ê

f [n] +

P∑
i=1

γf
e [i]x̂

f
d [n− i]))|fR}

= êf [n]E{x̂fd [n]|fR}+
P∑

i=1

γf
e [i]E{x̂fd [n]x̂

f
d [n− i]|fR} (10)

E{(x̂fd [n])
2|fL} = E{(x̂fd [n](

P∑
i=1

γf−1
d [i]x̂fd [n− i]))|fL}

≈
P∑

i=1

E{γf−1
d [i]}E{x̂fd [n]x̂

f
d [n− i]|fL}. (11)

The correlation terms in (10) and (11) can be calculated from the
past correlation terms as

E{x̂fd [n]x̂
f
d [n− i]|fR} = E{(x̂fd [n− i](ê

f [n] +

P∑
j=1

γf
e [j]x̂

f
d [n− j]))|fR}

= êf [n]E{x̂fd [n−i]|fR}+
P∑

j=1

γf
e [j]E{x̂fd [n−i]x̂

f
d [n−j]|fR}

(12)

◦ + +
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Fig. 3. Decoder section of a speech coder with cascade of predictors

E{x̂fd [n]x̂
f
d [n−i]|fL}=E{(x̂

f
d [n−i](

P∑
j=1

γf−1
d [j]x̂fd [n−j]))|fL}

≈
P∑

j=1

E{γf−1
d [j]}E{x̂fd [n−i]x̂

f
d [n−j]|fL}.

(13)

Overall, equations (10) to (13) are employed to recursively estimate
the second moment of reconstructed samples at the decoder. Given
the first and second moments, EED is estimated using (1).

3.2. EED Estimation for Cascaded Predictors

In many real-world predictive coders, higher order predictors are im-
plemented as a combination of multiple predictors. For example,
speech coders [9] employ a cascade of a short term prediction fil-
ter (known as the linear predictive coding (LPC) filter) and a long
term prediction (LTP) filter. Fig. 3 illustrates the decoder section
of an example speech coder. The decoder processes the received
quantized prediction error, êf [n], through the LTP synthesis filter to
reconstruct the excitation signal, r̂fd [n], as,

r̂fd [n] =

P1−1∑
i=0

βf
d [i]r̂

f
d [n− T

f
d − i] + êf [n], (14)

where βf
d [i] is the ith LTP filter coefficient, T f

d is the lag parameter,
and P1 is the number of LTP filter taps. The LPC synthesis filter
uses the reconstructed excitation signal to generate the reconstructed
samples as

x̂fd [n] =

P2∑
j=1

αf
d [j]x̂

f
d [n− j] + r̂fd [n], (15)

where αf
d [i] is the jth LPC prediction coefficient and P2 is the LPC

filter order. We can easily combine (14) and (15) to form a single
prediction filter, x̂fd [n] = êf [n] + x̃fd [n], where

x̃fd [n] =

P2∑
j=1

αf
d [j]x̂

f
d [n− j] +

P1−1∑
i=0

βf
d [i](x̂

f
d [n− T

f
d − i]−

P2∑
j=1

αf
d [j]x̂

f
d [n− T

f
d − i− j]). (16)

Clearly, (16) is similar to (3), wherein P and γf
d [i] of (3) can be

written in terms of P1, P2, βf
d [i], α

f
d [j], and T f

d of (16). Thus, as
would be expected, the estimation framework proposed in Sec. 3.1
is applicable to coders with cascaded predictors.
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3.3. Employing Estimated EED for Encoder Decisions

A common approach to combat error propagation through the pre-
diction loop is to introduce prediction resets [10] at the encoder to
halt dependency on past frames. While these resets stop the error
propagation due to packet losses, they come at the cost of increased
bit rate, so optimizing the number and location of resets plays a cru-
cial role in achieving the right balance between compression effi-
ciency and robustness to packet losses. Conventional methods use
random resets at a rate equal to the PLR to stop error propagation.
Instead, we leverage the proposed EED estimate as computed by
the encoder to directly minimize the EED for the prescribed bit rate
all within the encoder RD optimization framework. This results in
optimal selection of location and number of resets. Specifically to
encode frame f , we choose the mode (reset or no reset) to minimize
the rate-distortion cost function,

Jf = Df + λRf , (17)

where Rf is the bit rate, Df is the estimated EED, and Lagrange
multiplier λ controls the RD operating point.

4. EXPERIMENTAL RESULTS

To validate the accuracy and efficacy of our proposed method we
employed it in a coder with cascade of predictors similar to Sec. 3.2.
The 6 speech files available in the EBU SQAM database [11] were
used to conduct the experiments. We set P1 = 5 and P2 = 12,
while operating with frames of 20ms sampled at 16 kHz. Pitch lags
from 2ms (32 samples) to 20ms (320 samples) were allowed. We es-
timated the LPC and LTP parameters in an open-loop for each frame
and used them to generate the open-loop prediction error. A fixed
rate 4-bits scalar quantizer was then designed for the entire predic-
tion error sequence. Finally, we employed the prediction parameters
and the designed quantizer in a closed-loop system to generate the
quantized prediction error that is sent to the decoder along with all
the parameters every frame at a fixed rate.

In Fig. 4 we plot the actual SNR experienced at the decoder
(averaged over 200 different loss patterns) and the estimated SNR
obtained at the encoder by our proposed framework, for 200 frames
of the speech file English Male, operating at 5% PLR. It is clearly
evident that our estimate is fairly accurate in tracking the actual SNR
experienced at the decoder.

Sequence Average SNR in dB
Random Resets

Average SNR in dB
Proposed Approach

English Female 9.72 11.87
English Male 8.99 12.57

French Female 8.78 11.89
French Male 9.7 12.62

German Female 4.64 7.68
German Male 8.81 11.61

Average 8.44 11.37

Table 1. Comparison of average SNR experienced at the decoder for
random reset versus the proposed reset strategy at PLR = 5%

Sequence Average SNR in dB
Random Resets

Average SNR in dB
Proposed Approach

English Female 5.38 8.52
English Male 5.87 8.38

French Female -1.21 6.72
French Male 5.31 8.48

German Female -5.46 1.79
German Male 5.01 8.89

Average 2.48 7.13

Table 2. Comparison of average SNR experienced at the decoder for
random reset versus the proposed reset strategy at PLR = 10%

We then compared our proposed strategy for deciding resets to
that of using random resets at a rate equal to PLR. Since we em-
ploy fixed rate quantizers in our experimental setup, the cost used to
decide resets, as explained in Sec. 3.3, simplifies to only the EED
estimate. The evaluation is limited to 8 seconds of each speech file
for time efficient evaluation. In Table 1 and Table 2 we compare
SNR experienced at the decoder (averaged over 50 loss patterns) for
the two competing prediction reset strategies at 5% and 10% PLR,
respectively. For the random reset strategy, we additionally tried 10
different reset patterns, thus obtaining the final SNR as an average
over 500 simulations. Clearly, the proposed approach consistently
outperforms the random reset scheme under all testing scenarios,
with gains of up to 7.8 dB, and an average gain of 2.9 dB and 4.6
dB for 5% and 10% PLR, respectively. A crude implementation of
the proposed approach in MATLAB is 10X slower than the origi-
nal codec on an Intel Core i5-4570R 2.7 GHz machine with 8 GB
of RAM, which is largely due to operations involving large corre-
lation matrices. However, note that correlation matrices are often
sparse and structured, and we plan to exploit these properties in fu-
ture work that will focus on complexity reduction for the proposed
approach.

5. CONCLUSION

In this paper we proposed an effective technique to estimate EED
in an adaptive predictive compression system. Specifically, we pro-
posed to account for the effect of packet losses on distortion at the
decoder by separately tracking statistics of the employed prediction
parameters and the reconstructions at the decoder. We then demon-
strated incorporating the estimate obtained by the proposed approach
in an RD framework to decide the number and location of prediction
resets to achieve the right balance between compression and addition
of redundancy to combat packet losses. Significant performance im-
provements seen in experimental evaluation results demonstrate the
utility of the proposed approach.
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