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Abstract—Clinical observations indicate that during critical care
at the hospitals, a patient’s sleep positioning and motion have
a significant effect on recovery rate. Unfortunately, there is no
formal medical protocol to record, quantify, and analyze motion
of patients. There are very few clinical studies that use manual
analysis of sleep poses and motion recordings to support medical
benefits of patient positioning and motion monitoring. Manual
processes do not scale, are prone to human errors, and put strain
on an already taxed healthcare workforce. This study introduces
multimodal, multiview motion analysis and summarization for
healthcare (MASH). MASH is an autonomous system, which
addresses these issues by monitoring healthcare environments and
enabling the recording and analysis of patient sleep-pose patterns.
MASH uses three RGB-D cameras to monitor patients in a medical
intensive care unit (ICU) room. The proposed algorithms estimate
pose direction at different temporal resolutions and use keyframes
to efficiently represent pose transition dynamics. MASH combines
deep features computed from the data with a modified version of
hidden Markov model (HMM) to flexibly model pose duration
and summarize patient motion. The performance is evaluated
in ideal (BC: bright and clear/occlusion-free) and natural (DO:
dark and occluded) scenarios at two motion resolutions and in
two environments: a mock-up and a medical ICU. The usage of
deep features is evaluated and their performance compared with
engineered features. Experimental results using deep features in
DO scenes increase performance from 86.7% to 93.6%, while
matching the classification performance of engineered features in
BC scenes. The performance of MASH is compared with HMM and
C3D. The overall overtime tracing and summarization error rate
across all methods increased when transitioning from the mock-up
to the the medical ICU data. The proposed keyframe estimation
helps achieve a 78% transition classification accuracy.

Index Terms—Healthcare, sleep poses, multimodal sensor
network, ICU monitoring, patient motion analysis, summarization,
hidden markov models, time-series motion interference, M.A.S.H.
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I. INTRODUCTION

WHILE receiving care in hospitals, ICU patients are con-
tinuously monitored by healthcare staff; however, there

are no clinical procedures to reliably analyze and understand
pose variations from observations (e.g., videos) or the effects
of time-based pose patterns on patient health. The recovery of
ICU patients varies largely and often inexplicably [8], even for
patients with similar initial health conditions. A small number
of clinical studies [21] suggests that patient therapies based on
body positioning and controlled motion can enhance patient re-
covery, while inadequate positioning can have negative effects
and aggravate patient health. This study attempts to address
this crucial healthcare deficiency by introducing MASH’s algo-
rithms and multimodal multiview (mm) camera network. MASH
combines keyframes extracted from mm video data with Hid-
den Semi-Markov Models (HSMM) to represent poses, analyze
motion patterns, and model pose duration. The MASH summa-
rization methods enable the following healthcare applications:
(1) methods to estimate rate and range of motion to aid the anal-
ysis and prevention of bed sores (long periods of time); (2) tools
for the analysis of erratic and distressed motion (short periods
of time) that can be used to prevent patients from, for example,
falling off the bed or accidentally removing intra-venous lines;
and (3) historical summarization of pose sequences (short and
long periods time) to unobtrusively evaluate sleep hygiene.

The MASH architecture analyzes input videos from mul-
tiviews and modalities to deal with variable scene conditions
from a purely observation approach. Motion quantization is per-
formed to remove depth’s sensor noise and threshold observable
levels of detectable motion. After noise and motion threshold-
ing, features are extracted to represent the various poses and
pseudo or transitory poses (deep and/or engineered features).
MASH uses keyframes because collecting, storing, and process-
ing video data from the six sources becomes a hefty task on its
own. This problem is more manageable using keyframes across
all views and modalities, which can be considered as the frames
that are informative and discriminant (i.e., pose and pseudo-pose
centroids). Pose patterns and pose transitions can span seconds,
minutes, or hours, so we use a modified HMM to flexibly
model state or pose duration. Finally, the summary can tell us
whether the observation was a sequence of poses seen over an
extended period of time (i.e., hours) or the same sequence of
poses a transition (i.e., seconds). With these considerations,
the workflow shown in Fig. 1 consists of six major blocks:
(1) data collection regarding sleep poses and pose transitions;
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Fig. 1. MASH framework blocks. The process starts with Block #1 and flows
clock wise: data collection, motion threshold, deep feature extraction, mm
keyframe selection, time-series modeling, and inferred summarized results.

(2) motion thresholding, which uses optic flow vectors to
remove noise from the depth cameras and subtlety distinguish
between small and large movements; (3) features extracted from
the last layer of the Inception architecture [34] to represent body
configurations as a numerical vector, (4) keyframe extraction
to identify pseudo poses that best represent a transition; (5)
time-series analysis via HSMM to identify the most likely
sequence and model pose duration; and (6) output summary.

The performance of MASH is evaluated in ideal (BC: Bright
and Clear/occlusion-free) and natural (DO: Dark and Occluded)
scenarios in a mock-up and a medical ICU using two motion
speeds (fast and slow). Experimental results indicate that using
Inception features [34] to represent poses helps MASH match
the static classification performance of engineered features in
BC scenes, and increases the classification performance in DO
scenes from 86.7% using engineered features to 93.6% by us-
ing Inception features (an additional 7%) in the mock-up ICU.
Pose history summarization shows that the average MASH trace
overlap is 83.2% in the mock-up ICU and 80.1% in the medi-
cal ICU, which approximately doubles the performance of us-
ing conventional HMM. Experimental results indicate that the
proposed multimodal multiview keyframe estimation algorithm
achieves a mean transition classification accuracy of 78% using
five keyframes (or pseudo poses). The keyframe approach avoids
using complete videos and provides robustness to variation in
transition speeds.

Medical Background: Harvard Medical School reported in
August 2016 that monitoring ICUs can save up to $15 billion by
saving $20,000 in each of the 750,000 ICU beds in the U.S. by
reducing the effect of preventable ICU-related conditions such
as poor quality of sleep and decubitus ulcers (DUs) [23]. For
instance, ICUs in the U.S. receive about five million patients per
year, each with an average stay of 9.3 days and with a mortality
rate that ranges from 10 to 30% depending on health conditions.
MASH sample applications focus on developing solutions to
help understand and address sleep analysis and incidence of
DUs. These applications are selected due to their pervasive na-
ture in medical ICUs and the opportunity to improve the quality
of care provided to patients. For example, sleep hygiene is cor-
related to shorter hospital stays, increased recovery rates, and
decreased mortality rates. The findings of [3], [13], and [42] cor-
relate sleep positions with sleep hygiene and its various effects
on patient health. DUs are preventable, soft tissue wounds that

appear on bony areas of the body and are caused by continuous
decubitus positions. There is little understanding about the set
of poses and pose duration that cause or prevent DUs. MASH
enables the inception of required clinical studies that analyze
pose duration, rotation frequency and range, and the duration
of weight/pressure off-loading, as well as serving as the non-
obtrusive measuring tool to collect and analyze pose patterns.

Technical Background: The analysis of human motion dy-
namics has captured the attention of researchers in the engi-
neering and health communities. In particular, the ailing health-
care system in the U.S. continues to degrade. This degradation
requires that engineers and health professionals join forces to
develop new efficient therapies and optimize care techniques
and workflows. The latest techniques using convolutional neu-
ral network (CNN) architectures achieve impressive classifi-
cation performance. However, CNN-based techniques require
large data sets [2], [4], [39], and [41]. In [28], the authors in-
troduced a CNN-alternative method for action representation
via sequential deep trajectory descriptors. The previously cited
works recognize actions centered on the camera plane. An ex-
ception is the work from [32], which uses stationary cameras
and allows off-center actions and is limited to scenes with good
illumination that are clear of occlusions (i.e., BC). A super-
vised method for learning local feature descriptors is introduced
in [48]. Best practices for human action and activity recogni-
tion are outlined in [44] and [25] with benchmarks described
in [16]. The spatio-temporal evolution of features for action
recognition is explored in [17] and [15]. A multimodal bilin-
ear method for person detection is explored in [40]. Although
these methods are innovative, they tackle conventional activity
and action motion dynamics observed, for example, in walk-
ing and running, making them inadequate for sleep-pose pattern
analysis. Sleep-pose patterns are different; they are subtle, non-
continuous, non-sequential, and abrupt. Although effective, the
method requires controlled scenes, which are not possible in
healthcare. A discriminative multi-instance multitask method to
recognize actions in 3D spaces is proposed in [46]. However, the
proposed method is unable to distinguish between similar ac-
tions, for which their only distinction is their duration. The ICU
scenes and bed setting disqualify techniques based on skeletal
estimation and tracking [1] and pure RGB data for human body
orientation [18]. Although promising, the work described in [19]
is limited by partial occlusions and challenging ICU bed config-
urations, which are tackled using multimodal multiview data.

Analysis of realistic human motion is a challenging problem
with intra-class and inter-class variations and similarities
that require deep appearance and kinetic analysis [31]. Also,
the summarization via camera networks enables systems to
represent and analyze environments from multipleviews via
hypergraphs [33], motion patterns represented as salient
motifs [5] and using graphs [45]. These methods, however, are
limited to smooth sequential motion in scenes with relatively
good illumination and cannot be applied to the ICU. The
work in [30] surveys multimedia methods for large-scale
data retrieval and classification using multimedia data. The
objective of the survey is to highlight an in-depth understanding
of multimedia methods for data analysis and understanding.
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This will be relevant as more data is collected by MASH. A
true multimedia method to summarize events in videos via
audio, visual, and textual saliency is introduced in [6], and
a multiview method for surveillance video summarization
via sparse optimization are presented in [24]. Although
interesting, these methods analyze motion dynamics with less
subtlety than the motion of patients in the ICU. Also, these
studies analyze scenes with better illumination and are not
representative of the ICU environment. In addition, multimedia
methods may expect speech or text information as input, which
cannot be recorded in the ICU (or hospital space). These
infrastructural and privacy limitations thwart the implemen-
tation and deployment of the existing methods in healthcare
applications. The studies from [11] and [43] use multiview sys-
tems and methods for smart environments. Unfortunately, these
methods require modifications to existing infrastructure. These
studies are limited to ideal scenes because they cannot overcome
illumination variations and occlusions. They do not account for
subtle motion, which can be non-uniform and non-sequential;
therefore, these cannot be deployed in a medical ICU.

Huang et al. [12] introduced an RGB-pressure system for
sleep pose classification. Their technique uses geometric fea-
tures to represent poses extracted from the pressure array and
the static RGB image. However, the system requires com-
plex calibration and a top clear view of the patient’s body
configuration. Pose classification is also tackled in [38] using
RGB, depth, and pressure sensors in simulated healthcare en-
vironments. The authors combine RGB, depth, and pressure
modalities with room sensors to weight modality reliability.
The study in [9] uses bed aligned maps (BAMs) composed
of pressure arrays and a single depth camera. Although the
BAMs method outperforms previous static sleep pose classi-
fication techniques, it does not consider motion. Torres et al.
[36] use convex coupled-constrained least-squares optimization
to remove the cumbersome pressure array and create a purely
observational system. This latest technique increased the classi-
fication accuracy by integrating multimodal sources from multi-
ple views and creating a truly multiview multimodal sleep pose
classification system. Unfortunately, no previous method incor-
porates time to analyze the sequence of poses, pose transition,
or pose motion dynamics. The work in [22] tackles a rehabili-
tation application via pose detection and tracking; however, its
applications are limited to ideal scenarios.

Previous Work: In [37] we introduced the time-series repre-
sentation of sleep-pose patterns using HHMs and deep features
to represent sleep poses. Although this improves the static pose
classification, the methods are limited by lack of flexibility in
modeling state duration and the inability to identify key poses
across multiple modalities and views. MASH addresses these
limitations by introducing a flexible framework to model state
duration using time segments and HMM-modified inference.
In addition, MASH introduces a keyframe algorithm to iden-
tify discriminant and informative frames (i.e., pseudo-poses),
which replaces the conventional K-means method used in [37],
and improves the overall summarization performance.

Extensive literature search indicates that MASH and its con-
tributions may be the first of its kind. It analyzes patients’

sleep-pose patterns and motion dynamics in a simulated and
a medical ICU. Also, it observes the environment from multiple
modalities and multiple views to account for challenging natu-
ral scene conditions. Two distinctive aspects of MASH include
incorporation of variable time information and ability to deal
with subtle motion patterns using principled statistics.

Proposed Approach: MASH is a new multimodal multiview
framework to monitor patients in healthcare environments inde-
pendent of motion rate and range. Its elements include a mul-
timodal multiview (mm) data collection camera network, a mm
keyframe extraction algorithm, and a mm time-series analysis
algorithm to model variable pose duration and distinguish be-
tween sleep poses and transitory (or pseudo) poses. The views
and modalities are shown in Fig. 1 Block #1 with sample motion
summaries shown in Block #6. The two resolutions are based on
two of the most common ICU conditions: sleep hygiene and DU
analysis. Pose history summarization is the coarser resolution.
It provides a pictorial representation of poses over time. The ap-
plications of the pose history include prevention and analysis of
DUs and analysis of sleep-pose effects on quality of sleep. The
pose transition summarization is the finer resolution. MASH
looks at the pseudo-poses that occur while a patient transitions
between two poses. Applications of pose transition summariza-
tion include analyzing and quantifying physical therapy and
distressed sleep motion quantification and analysis.

Contributions: The technical contributions of MASH are:
1) An adaptive framework capable of monitoring patient mo-

tion at various resolutions.
2) A non-disruptive and non-obtrusive monitoring system

robust to natural healthcare scenarios and conditions such
as variable illumination and partial occlusions.

3) An algorithm that effectively compresses sleep pose tran-
sitions using a subset of the most informative and most
discriminative keyframes.

4) A fusion technique to incorporate observations from mul-
tiple modalities and views (complementary data) into
emission probabilities to estimate intermediate poses and
pose transitions over time.

Organization of the Manuscript: The MASH system com-
ponents are described in Section II, which includes modalities,
views, and temporal characteristics. Section III describes the
protocols for data collection and feature extraction and selec-
tion. The description of the problem including the temporal
analysis, inference, and keyframe extraction procedures are dis-
cussed in Section IV. Thorough experimental results regarding
the historical summarization of poses (coarser motion resolu-
tion) and the rate and range of motion during pose transitions
(finer motion resolution) are shown in Section V. Conclusion
and future work are discussed in Section VI. Supplemental ma-
terials including: larger figures, datasets, and deployment details
can be found online at vision.ece.ucsb.edu.

II. MASH SYSTEM

The MASH system is composed of three nodes. They are
battery powered, enclosed by aluminum cases, controlled by
Raspberry Pi3 [35] ARM-computers running Ubuntu 16.04 (to
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Fig. 2. Elements in one MASH node: Raspberry Pi3 B+, Carmine RGB-Depth
sensor, 24000 mAh battery, and aluminum enclosure used to deploy MASH in
the mock-up and the medical ICU rooms.

Fig. 3. Number of minutes for poses recorded in the medical ICU.

Fig. 4. MASH node locations and views of the patient in the medical ICU.

Fig. 5. Pose transition count recorded by MASH from the medical ICU. The
cell colors indicate the transition is not applicable (labeled N/A), the transition
has no rotation (gray), left rotation (orange), or right rotation (green).

record video using a Carmine RGB-D sensor), and synchro-
nized using TCP/IP communication, which are shown in Fig. 2.

Multiple Modalities (Multimodal): Multimodal studies use com-
plementary modalities to classify static sleep poses in natural
ICU scenes with large variations in illumination and occlusions.
MASH leverages the findings from [36] and [27] as evidence of
the benefits of multimodal systems. The RGB and Depth views
are shown in Fig. 1 Block #1.

a) RGB (R): Standard video data provides information to rep-
resent and classify human sleep poses in scenes with relatively
ideal conditions. However, most people sleep in imperfectly
illuminated scenarios, using sheets, blankets, and pillows that
block and disturb sensor measurements. The system collects
RGB frames of dimensions 640 × 480 pixels. Pose appearance

Fig. 6. Pose transitions require patients to reconfigure their body. Transition-
ing from the faller facing up (falU) position to the fetal laying on the left (fetL)
position. The transition is achieved by either a long rotation (180◦; top row) or
by a short rotation (0 − 180◦; bottom row).

features representing human body configurations are extracted
from these videos in BC and DO scenes.

b) Depth (D): Infrared depth cameras are resilient to illumi-
nation changes. The MASH sensor network uses Primesense’s
Carmine devices to collect depth data. The devices acquire im-
ages of dimensions 640 × 480 and use 16 bits to represent pixel
intensity values, which correspond to the distance from the sen-
sor to a point in the scene. Their operating distance range is 0.8 m
to 3.5 m; and their spatial resolution for scenes 2.0 m away is
3.5 mm for the horizontal (x) and vertical (y) axes, and 30 mm
along the depth (z) axis. The system uses the depth images to
represent the 3-dimensional shape of the poses. However, depth
information alone is not sufficient since it requires depth con-
trast, which is negatively affected by the deformation properties
of mattresses, pillows, and blankets in the ICU. The work in
[47] surveys methods using depth cameras for semi-controlled
scenarios.

Multiple Views (Multiview): The studies from [36] and [27]
show that analyzing actions from multiple views and multiple
orientations greatly improves detection. These studies indicate
that the analysis of multiple views yield algorithms, which are
independent of view and orientation. The positions of the cam-
eras in the medical ICU are shown in Fig. 4. (see Fig. ?? in
Appendix ?? for the mock-up ICU views and node locations).

Time Analysis: ICU patients move subtly and slowly, very
different from active motions like jumping or walking, which are
easier to detect. MASH effectively monitors subtle and abrupt
patient motion by breaking the motion cues into segments to
flexibly model pose and pseudo-pose duration. The variable
pose duration is modeled via HSMM, which uses segments and
is derived from conventional HMM.

Motion Quantization: The optic flow estimation is computed
using the OpenCV [14] implementations of Lucas-Kanade [20]
and Farneback [7]. Implementation and experimental results in-
dicate that Lucas-Kanade led to faster results, while Farneback’s
led to higher accuracy in the detection of the most subtle pose
transitions. Such pose transition is observed when transitioning
from the left-yearner to the left-log positions without rotating.
The two poses and their transition are shown on the bottom row
of Fig. 6 in green. From left to right, the second and third pose
are yearner-left and log-left.

Inception CNN Feature Extraction: Deep feature extraction
of using Google’s Inception architecture required sizing the
frames the appropriate image dimensions of 224 × 224 pixels.
The offline analysis and approach uses Inception features due to
the infrastructure restrictions, which prohibit the use large com-
putation equipment. The deployed RPi3-based system cannot
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compute Inception features. Instead, the deployed system uses
the online feature extraction method from [36].

III. MASH DATASET

The MASH dataset is collected from two environments: the
mock-up ICU with views shown in Fig. 1 Block #1 and the med-
ical ICU with views shown in Fig. 4. The fully annotated dataset
will be available online to researchers. The real patient data is
not controlled and only annotated after the fact. Fig. 3 shows the
observed counts of poses in number of minutes. Fig. 5 shows the
counts of pose transitions observed in the medical ICU room.
The cell colors indicate the transition is not applicable (marked
N/A), the transition includes no rotation (gray), includes left
(orange), or includes right (green) rotation.

The mock-up ICU: This room allows researchers to collect
static and dynamic data, design and test algorithms, and evaluate
and refine the MASH system and algorithms.

1) Poses Static Data: The mock-up sequence is set at random.
All actors in the mock-up ICU are asked to assume and hold
each of the poses while videos are recorded. The combination
of two separate recording sessions of six actors (three female
and three male) yield a total of 24 sessions: 12 for BC and 12
for DO scene conditions. Each pose is recorded for one minute,
which makes each session 10 minutes long.

2) Pose Transitions Data: The actors start in the initial pose
and transition towards a final pose by rotating left or right. This
processes is repeated for all initial poses and until all possible
combinations between initial and final poses are covered. The
combination of ten poses, with two possible transition rotations
each generates a set of 20 sequences for each initial pose. Each
recording session includes ten initial poses and ten final poses;
therefore, each transition recording session generates 200 se-
quence pairs. A sample transition sequence with left and right
rotation directions is shown in Fig. 6. The initial and final poses
are Faller Up (falU) and Fetal Left (fetL), respectively. The
top sequence (orange) shows the left rotation and the bottom
sequence shows the right (green) rotation. A small (≤180◦) ro-
tation or a large (>180◦) rotation are the possible transitions
between the poses.

The Medical ICU: The battery operated MASH network is
currently deployed in a local community hospital where it is
used to collect ICU data. The ICU patient dataset is thoroughly
anonymized to protect the privacy of patients and medical staff.
The dataset includes the video recordings of five consenting
patients from periods of time that range from one to five days.

MASH Feature Extraction and Validation: The methods from
[10] are used to calibrate the cameras prior to background sub-
traction and feature extraction. The background extraction stage
detects the bed using the depth modality (i.e., largest square).
The four corners of the depth-bed serve to estimate the perimeter
and surface plane elements, which are then used to crop the cam-
era views and remove the background as in [38]. Camera-based
sleep pose classification studies commonly use geometric mo-
ments (gMOMs) and histograms of oriented gradients (HOG) to
represent poses. Feature extraction of gMOM and HOG features

is based on the parameters from [38]. Pose classification results
(see Section V) suggest that using Inception [34] outperforms
gMOMs, HOG, and VGG [29] features in pose representation
and classification.

IV. MASH PROBLEM

In order to effectively analyze patient motion, the MASH sys-
tem and algorithms need to properly handle both motion rates
(speed) and motion range (rotation angle). The initial assump-
tion for all video frames is that they belong to pose transitions
(pseudo-poses), but if the motion rate is identified as slow, these
frames can be used to identify true poses, which are needed to
identify pose histories (i.e., the sequence of poses). The pose
transition involves identifying the set of pseudo poses represent-
ing a transition between two poses, and it quantifies the direction
of rotation. The first challenge arises because conventional algo-
rithms are unable to model pose duration effectively. The second
challenges involves detecting the direction of rotation when tran-
sitioning between poses. The last challenge involves represent-
ing pseudo poses, for which MASH uses keyframe estimation.
The M multimodal cameras are stationed at different locations
to obtaining V views of the patients as shown in Fig. 4 and es-
timate the pose transition dynamics, such as the ones in Fig. 6.

The features extracted from video frames F = {ft}, for
1 ≤ t ≤ T to construct feature vectors X = X1:T are used to
represent non-directly observable poses (Y = Y1:T ). The first
objective of MASH is to find the sequence of poses (Y = Y1:T )
that probabilistically can best represent the observations, as
in: Pr

(
Y,X

)
= Pr

(
Y1:T ,X1:T

)
. Temporal patterns caused by

sleep-pose transitions are simulated and analyzed using Hid-
den Semi-Markov Modeling (HSMMs) technique, which is de-
scribed in Section IV-B. The interactions between the modalities
for accurate pose representation are encoded into the emission
probabilities. Scene conditions are encoded into the set of states
(the analysis of two scenes doubles the number of poses). Con-
ventional Markov assumptions support MASH and ideally fit
most of its analysis. However, HMMS are limited in their abil-
ity to distinguish between poses and pseudo-poses based on
pose duration. This is because, by design, HMMs model the
probability of staying in a given pose as a geometric distribu-
tion Pri(d) = (aii)

d−1(1 − aii), where d is the duration in pose
i, and aii is the self-transition probability of pose i. More details
are discussed in Sections IV-A and IV-B. Table I describes the
variables used in MASH.

A. Hidden Markov Models (HMMs)

HMM is a generative modeling approach that represents pose
history and transitions as states. The hidden variable or state at
time step k (i.e., t = k) is yk (statek or posek ) and the observable
or measurable variables (x(v )

k,m , the vector of image features cor-
responding to the k-th frame, using modality m, and view v) at
time t = k: xk such that xk = x

(v )
k,m = {Rk ,Dk , . . .Mk}). The

Markovian assumptions indicate that at t, the hidden variable
yt , depends only on the previous hidden variable yt−1 , and at
t the observable variable xt depends on the hidden variable yt .
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TABLE I
MASH VARIABLE SYMBOLS AND THEIR DESCRIPTIONS

These two assumptions are used to compute Pr(Y,X) given by:

Pr
(
Y1:T ,X1:T

)
= Pr(y1)

T∏

t=1

Pr
(
xt |yt

) T∏

t=2

Pr
(
yt |yt−1

)
,

(1)
where Pr(y1) is the initial state probability distribution (Π).
It represents the probability of a sequence starting at (t = 1)
posei (statei). Pr

(
xt |yt

)
is the emission probability distribution

(B) and represents the probability that at time t, yi (statei)
can generate the observable multimodal multiview vector xt .
Finally, Pr

(
yt |yt−1

)
is the transition probability distribution

(A) and represents the probability of going from posei to poseo
(state i to o). The HMM parameters are A = {aij}, B = {μin},
and Π = {πi}, which are standard to HMM.

Modeling Limitations of HMM: One critical limitation of
HMM is its rigidity to model state duration. For instance, given
an HMM in a state i (pose or transition), the probability that
it stays there for d time slices is: Pri(d) = (aii)

d−1(1 − aii),
where Pri(d) is the discrete probability density function (PDF)

of duration d in pose i, and aii is the self-transition probability
of pose i, given by a geometric distribution [26]. The inability
to flexibly model pose and transition duration is observed when
similar body positions can only be discerned by their distinctive
duration (pose vs transitory pose). This limitation is tackled
using HSMM and is described in Section IV-B.

B. Hidden Semi-Markov Models (HSMMs)

HSMM serves to flexibly model state duration. It uses seg-
ments instead of time slices to sample observations. In HSMM,
hidden variables are segments, which have useful properties.
Fig. 1 Block #5 shows the HSMM trellis and indicates its
main components. For instance, the sequence of states y1:T is
represented by the segments (S). A segment is a sequence of
unique, sequentially repeated poses (symbols), which serves to
identify and track an observation’s first instance and the obser-
vation’s duration (based on the number of observed samples).
From the original sequence, the elements of the j-th segment
(Sj ) are the indices at which the observation (bj ) is first de-
tected; the number of sequential observations of the same sym-
bol (dj ); and the state or pose symbol (yj ). For instance, the
sequence y1:9 = {4, 4, 2, 2, 2, 3, 2, 1} is represented by the set
of segments S1:U with elements S1:U = {S1 , S2 , S3 , S4 , S5} =
{(1, 2, 4), (3, 3, 2), (6, 1, 3), (7, 1, 2), (8, 1, 1)}, where U is the
total number of segments (i.e., state changes). The elements
of the segment Sj=1 = (b = 1, d = 2, y = 4) indicate that the
segment started at the first observation, lasted for a dura-
tion of two time samples, and was observed to be the fourth
state.

HSMM components: In conventional HMM, the hidden vari-
ables are y, but in HSMM, the hidden variables are now the
segments S1:U , while the observable features are the same in
both methods (X1:T ). The joint probability of the segmentsS1:U
and the observable variable X1:T is:

Pr
(
S1:U,X1:T

)
= Pr

(
Y1:U, b1:U, d1:U,X1:T

)

Pr
(
S1:U,X1:T

)
= Pr(y1) Pr(b1) Pr(d1 |y1)

b1 +d1 +1∏

t=b1

Pr(xt |y1)

×
U∏

u=2

Pr(yu |yu−1) Pr
(
bu |bu−1 , du−1

)

× Pr
(
du |yu

) b1 +d1 +1∏

t=bu

Pr(xt |yu ). (2)

Recall that U is the sequence of segments such that S1:U =
{S1 , S2 , ..., SU } for Su =

(
bu , du , yu

)
, bu as the start position

(a bookkeeping variable to track the starting point of a segment),
du is the duration, and yu is the hidden state (∈ {1, ..., Q}). The
range of time slices starting at bu and ending at bu + du have
state label yu . All segments have a positive duration, time-span
1 : T without overlap, and are constrained by b1 = 1,

∑U
u=1 =

T and bu+1 = bu + du .
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The transition probability Pr(yu |yu−1), is the probability of
going from one segment to the next via:

A : Pr
(
yu = j|yu−1 = i

) ≡ aij (3)

The first segment (bu ) starts at 1 (u = 1) and consecutive
points are calculated from the previous point via:

Pr
(
bu = m|bu−1 = n, du−1 = l

)
= δ

(
m− n− l

)
(4)

where δ(i− j) is the Kroenecker function with 1 for i = j; 0
else (i.e., m = n+ l). The duration probability is now given
by Pr(du = l|yu = i) = Pri(l) with Pri(l) as a free parameter.
This allows MASH to sample a distribution of the form Pri(l) =
N (μ, σ) in the implementation.

A normal distribution allows computing the duration proba-
bility of the i-th state and distinguishing between slow and fast
pose duration/transitions. The estimation of MASH parameters,
Viterbi, and inference are described as follows.

MASH Parameter Estimation: HSMM estimation of param-
eters is based on maximum likelihood (MLE). The training
sequence of keyframes is fully annotated, including the start
and end index frames for each segment X1:T , Y1:T . To find
the parameters that maximize Pr

(
Y1:T ,X1:T |θ

)
, the likeli-

hood parameters of each of the factors in the joint probability
must be maximized. In particular, the observation probability,
Pr

(
xn |y = i

)
, is a Bernoulli distribution whose maximum like-

lihood is computed as follows:

μn,i =
∑T

n=1 x
i
nδ

(
yn , i

)

∑T
n=1 δ

(
yn , i

) , (5)

where T is the number of time-series data points, δ(i, j) is
the Kroenecker delta function, and Pr

(
yt = j|yt−1 = i

)
is the

multinomial distribution of the form:

aij =
∑N

n=2 δ
(
yn , j

)
δ
(
yn−1 , i

)

∑N
n=2 δ

(
yn−1 , j

) (6)

Viterbi for MASH: The segment notation is used to repre-
sent state sequences in HSMM modeling. The objective be-
hind the inference is to find the state sequence that maximizes
P

(
S1:U ,X1:T |θ

)
, for a new sequence of observations with un-

known duration. The sequence corresponding to the duration
with the highest probability is determined at each time step by
iterating over all possible duration values from 1 to a predeter-
mined duration D. This data is stored in:

τt,d,i = max
s1 ,...,sk −1

Pr
(
X1:t , s1:k =

(
t− d+ 1, d, i

)|θ
)
, (7)

which represents the highest probability of a sequence of K
segments, where the final segment starts at t− d+ 1 and has
duration d and label i.

Note: In conventional HMMs, to compute the maximum prob-
ability of ending up in state sk , it is sufficient to only keep track
of the maximum probability of ending in state sk−1 .

The label for a pose or state of the previous segment is stored
in ζt(d, i). The max probability duration (δ) is:

δt(i) = max
s1 ,...,sk −1

Pr
(
x1:t , s1:k =

(
t− d∗ + 1, d∗, i

)|θ
)
, (8)

Fig. 7. Keyframe extraction for pose transition representation. The keyframe
selection is based on Algorithm 1. This figure shows MASH’s keyframe extrac-
tion process from three views and two modalities. The first two keyframes are
extracted from the first camera’s RGB modality (Views 1 and 2). Subsequent
keyframes are selected from the View 2’s depth, and from View V’s RGB.

where d∗ is the duration with the highest probability at time t
for state i. The best duration is stored in φt(i) and the label of
the previous segment is stored in ψt(i).

Inference for MASH: Four steps for finding the best sequence:
1) Initialization: The label probability of the first segment is

given by the initial state distribution π and computed via
τt,d = πi Pri(d)

∏T
t=1 Pr

(
xt |yt

)
and ζd(d, i) = 0.

2) Recursion: Iterate over all possible duration values in
τt,d =max1≤i≤Q

[
δt−d(i)aij

]
Prj (d)

∏t
m=m 1

Pr
(

xm |ym

= j
)
, with m1 = t − d + 1 and ζd(d, i) =

arg max1≤i≤Q
[
δt−d(i)aij

]
.

The duration with max probability is δt(i) =
max1≤d≤D

[
δt−d(i)aij

]
, which represents the best seg-

ment. The best duration for state i at time t is
given by φt(i) = arg max1≤d≤Dτd,t(i). Finally, ψt(i) =
ζt

(
φt(i), i

)
represents the label of the best duration at time

t for state i.
3) Termination: Estimate the state with the highest proba-

bility in the last timeslice from Pr∗ = max1≤i≤Q [δT (i)],
where y∗T = arg max[δT (i)], t = T , and u = 0.

4) Backtracking: From the termination, look up the duration
and previous states stored in variables φ and ψ given
by d∗t = φt

(
y∗t

)
and s∗u =

(
t− d∗t + 1, d∗t , y

∗
t

)
, with t =

t− d∗t , u = u− 1, and y∗t = φt+d(y∗t+d).
Note: negative indexing is used for the segments because the

number of segments is not known in advance. This is corrected
after inference by adding |S∗| to all indices.

Keyframe (KF ) Selection: Datasets collected from pose tran-
sition are very large and often repetitive, since the motion is
relatively slow and subtle. The pre-processing stage incorpo-
rates a keyframe estimation step that integrates multimodal
and multiview data. The algorithm used to select a set (KF )
of K-transitory frames is shown in Fig. 7 and detailed in
Algorithm 1. The size of the keyframe set is determined ex-
perimentally (K = 5) on the feature space using Inception
vectors.

Let X = {x(v )
m,n}f be the set of training features extracted

fromV views andM modalities overN frames and letPi andPo
represent the initial and final poses. The transition frames are in-
dexed by n, 1 ≤ n ≤ |N |; views are indexed by v, 1 ≤ v ≤ |V |
and modalities are indexed by m, 1 ≤ m ≤ |M|. Algorithm 1
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Fig. 8. Sensor contribution to mean classification of sleep poses. MASH
performance is evaluated in BC (yellow) and DO (blue) scenes. RGB and Depth
are R and D, while {view #} is the camera view.

uses this information to identify keyframes. Experimental eval-
uation of |KF | is shown in Fig. 9.

V. MASH RESULTS AND ANALYSIS

MASH is evaluated using a five-fold cross-validation ap-
proach. The results indicate that deep features increase MASH’s
classification accuracy over engineered features by 7% in DO
scenes (from 86.7% to 93.6%), while matching the performance
of engineered features in BC scenes. The overall time tracing
and summarization error rate between HMM and the proposed
MASH approach increased from 46.4% to 83.2% in the mock-
up ICU and from 35.8% to 80.1% in the medical ICU. In addi-
tion, the proposed keyframe transition representation achieves
a classification of 78%.

Fig. 9. Motion summarization performance for pose transition classification
as a function of the number of keyframes used to represent transitions and
rotations between poses. The best set uses th = 0.80.

Fig. 10. Sample pose history summarization log of patient motion in medical
ICUs over a 4 hr span.

Static Pose Analysis - Feature Validation: Static sleep-pose
classification analysis is used to compare the MASH method
to previous studies. Couple-Constrained Least-Squares (cc-
LS)[36] and MASH are tested on the dataset from [36]. Com-
bining the cc-LS method with deep features extracted from two
common network architectures improved classification perfor-
mance over the HOG and gMOM features in DO scenes by an
average of eight percent with Inception and four percent with
VGG. Deep features matched the performance of cc-LS (with
HOG and gMOM) for a BC scenario. Results for both scenes
are shown in Table ??. Similarly, the contribution of each of the
multimodal and multiview sources is analyzed and evaluated.
The plot in Fig. 8 shows the contribution of each MASH sensor
modality and view to the mean classification accuracy of static
poses using cc-LS from [36].

Keyframe Performance: The effect of |KF | (= 5) and
keyframe dissimilarity threshold th (≥ .8) on pose transition
classification accuracy is shown in Fig. 9. The traces indicate
the portion of transitions correctly identified by MASH.

Summarization Performance: Pose history summarization
is important to decubitus ulceration prevention and analysis.
An example of the objective behind history summarization is
shown in Fig. 10, where the sequence of poses is identified
as A or B. History summarization is the coarser time res-
olution. The mock-up ICU enables staging the motion and
scene condition variations necessary to carry out this exper-
iment. In particular, it avoids disturbing real patients in the
medical ICU. Table II contains the numerical symbols of
the various poses and the names used in the summarization
traces.

Pose History Summarization in the ICU. Summarization his-
tory results are shown in Fig. 11 for the mock-up ICU room
in (a) and for the medical ICU room in (b). The accuracy is
computed as the percent overlap between the trace representing
the true poses and the traces representing MASH and HMM in
orange and gray, respectively. The pose history summarization
experiments are staged using a sampling rate of one second and
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TABLE II
POSE SYMBOLS AND DESCRIPTIONS USED FOR ICU POSE HISTORY

SUMMARIZATION IN THE MOCK-UP AND THE REAL ENVIRONMENT

Fig. 11. History summarization traces of HMM, C3D, and MASH in (a) the
mock-up ICU under BC conditions on a 10-minute video and (b) in medical
ICU under random scene conditions on a two-hour video with a reduced set of
poses due to patient immobility. The medical summary is based on a two-hour
medical round standard. The green solid traces represent the ground-truth.

TABLE III
POSE HISTORY SUMMARIZATION PERFORMANCE (PERCENT ACCURACY) OF

THE MASH FRAMEWORK IN BRIGHT AND CLEAR (BC) AND DARK AND

OCCLUDED (DO) SCENES IN THE MOCK-UP ICU

The sequences are composed of 10 poses with
duration that ranges from 10 seconds to 1
minute. The sampling rate is one second.

an pose duration of 10 seconds, with a minimum average detec-
tion of 80 percent. A pose is assigned a label if it is consistently
detected (i.e., 80% of the time), including the label “other”.
Poses that are not consistently detected are ignored. The sys-
tem is tested in the mock-up setting using a randomly selected
sequence of ten poses starting with a randomly selected scene
condition. The duration of the poses is also selected at random
with one scene transition (from BC to DO or from DO to BC).
The history summarization performance is shown in Table III.

Fig. 12. MASH pose transition detection and classification mean accuracy in
the mock-up ICU under BC conditions. The detection scores are shown for the
singleview (a) and multiview (b) system configurations with the legend in (c).

Fig. 13. MASH pose transition detection and classification mean accuracy in
the mock-up ICU under DO conditions. The detection scores are shown for the
singleview (a) and multiview (b) system configurations.

Pose Transition Dynamics. Motion Direction: The detection
and quantization of transitions and directions of rotations is
important to physical therapy and recovery rate analysis.

Transition Summarization in the Mock-Up ICU: The per-
formance of MASH summarizing fine motion to describe
transitions between poses is shown in Figs. 12 and 13 for (a)
singleview and (b) multiview system configurations, while (c)
shows the scale and font legend.

Peak performance is attributed to the combination of multiple
views and modalities. The contributions of each sensor and view
are shown in Fig. 14.

Transition Summarization in the Medical ICU: Note that it
is logistically impossible to control ICU work flows and to ac-
count for unpredictable patient motion in a medical ICU. ICU
patients do not have the same rotation range as the patients/actors
in the mock-up ICU. This mobility constraint reduces the
set of poses and pose transitions (unavailable transitions are
marked N/A). The timeline in Fig. 10 shows the overall clinical
objective behind the pose history summarization. Once in pro-
duction, clinicians will be able to label the pose history sum-
maries correlate pose patterns with patient health status (i.e.,
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Fig. 14. Sensor contribution to the mean precision classification of pose tran-
sitions. The MASH sensors and views are tested in BC (blue) and DO (yellow)
scenes. The RGB and Depth modalities are represented by R and D, respectively.
The views are marked {view number} shown in 4.

Fig. 15. Pose transition detection and classification in the medical ICU. Mean
accuracy scores are shown for the singleview (a) and multiview (b) configura-
tions. The set of poses is reduced due to patient’s constrained mobility. Scenes
are not controlled since the priority is patient care.

replacing the labels sequence A and B with actual medically
validated labels).

Views of the medical ICU room are shown in Fig. 4 and the
traced detections are shown in Fig. 11(b). The green trace rep-
resents the true transition labels and the red trace indicates the
predicted labels. Table II shows the pose descriptions used in
the summarization plots. MASH’s summarization results for fast
motion of four patients are shown in Fig. 15(a) using a single-
view and (b) using a multiview configuration. Note that overall,
the performance of the MASH solution using multimodal sin-
gleview in (a) is matched or outperformed by the multmimodal
multiview solution in (b).

Comparison with Popular Methods: The performance of
MASH is compared with C3D [39] and the summarization and
detection performance is shown in Fig. 11. The sequence over-
laps achieved by each method in the mock-up ICU and the
medical ICU are: 46.4% and 35.8% for conventional HMM,
70.5% and 63.3% for C3D, and 83.2% and 80.1% for MASH,
respectively. Using a combined average, MASH outperforms
HMM by 20% and C3D by 15% overlap.

Online and Offline Processing Speeds: The online perfor-
mance of MASH includes collecting data at 12 fps using the

RPi3 devices. Real-ICU data collection is very critical and the
main objective of the deployed system. Each device controls
two modalities and synchronizes the data collection over the
three views. RPi3s are incapable of extracting Inception fea-
tures; therefore, feature extraction is defaulted to gMOM and
HOG vectors as described in [36]. The performance is then ex-
trapolated from the data collection to optic-flow computation
and feature extraction. The average running speed is approxi-
mately 6 fps: 12 fps for data collection (with pre-buffering), a
drop of 2–3 frames for optic-flow and a similar drop for feature
extraction, with a under one frame for inference. The offline per-
formance is extrapolated using desktop computers with GPUs to
process the data frames and extract capable of extracting Incep-
tion features. The data collection in the mock-up ICU achieves
30 fps (with pre-buffering). Offline run-time performance is ap-
proximately 23 fps: 30 fps video with a drop of 3 frames for
optic-flow computation and 3 frames for Inception features and
2 fps for inference resulting in an average performance 22 fps,
which is just under four times faster than the simulated online
approach using RPi3s. The results in Fig. 11 are obtained using
the offline approach.

VI. CONCLUSION AND FUTURE WORK

Current computational abilities can help address the chal-
lenges of today’s healthcare system. The application have the
potential to improve patient care, develop new techniques, and
objective evaluate and validate medical treatments. The MASH
framework is such an example. It can analyze patient poses
in healthcare environments. Thorough evaluation highlights the
feasibility of the detection and quantification of patient poses
and motion dynamics for healthcare applications. Themm sen-
sor network is robust to variations in illumination, view, ori-
entation, and partial occlusions. MASH is non-obtrusive and
non-intrusive, but not without a cost, as the patient-motion mon-
itoring performance of MASH in dark and occluded scenes is
far from perfect; however, most medical applications that ana-
lyze motion, such as physical therapy sessions, are carried out
under less severe conditions. Although the deployed version
of the system suffers slightly from under-powered devices, the
findings reported in this paper open up the door to new studies
and optimization opportunities.

Future studies will focus on system optimization. Also, future
studies will investigate the recognition and analysis of activities
and events in the ICU, such as hand sanitation. The continuous
growth of the MASH dataset will soon enable deep learning
analysis. An important future study will incorporate additional
modalities, such as thermography, to validate findings and close
the learning loop. Finally, effective medical applications require
generating semantically meaningful logs. MASH will explore
natural language understanding to create such logs and narrate
ICU activities and events.

ACKNOWLEDGEMENTS

The views and conclusions contained in this document are
those of the authors and should not be interpreted as represent-
ing the official policies, either expressed or implied, of the Army

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on July 06,2021 at 22:54:29 UTC from IEEE Xplore.  Restrictions apply. 



TORRES et al.: MULTIVIEW MULTIMODAL SYSTEM FOR MONITORING PATIENT SLEEP 3067

Research Laboratory or the U.S. Government. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation
here on.

The authors thank Dr. R. Beswick, P. Gallucci, M. Mullenary,
and Dr. L. Price from Santa Barbara Cottage Hospital for their
support. Special thanks to Prof. V. Fragoso and A. J. Bency for
their feedback.

REFERENCES

[1] B. B. Amor, J. Su, and A. Srivastava, “Action recognition using rate-
invariant analysis of skeletal shape trajectories,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 38, no. 1, pp. 1–13, Jan. 2016.

[2] M. Baccouche, F. Mamalet, C. Wolf, C. Garcia, and A. Baskurt, “Sequen-
tial deep learning for human action recognition,” in Proc. 2nd Int. Conf.
Human Behavior Understanding, 2011, pp. 29–30.

[3] S. Bihari et al., “Factors affecting sleep quality of patients in intensive
care unit,” J, Clinical Sleep Med., vol. 8, no. 3, pp. 301–317, 2012.
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