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ABSTRACT

A deterministic annealing algorithm for the design of tied-
mixture HMM recognizers is proposed, which reduces the
training sensitivity to parameter initialization, automatically
smoothes the classification error cost function to allow gradient-
based optimization, and seeks better solutions than known
techniques. The new approach introduces randomness into the
classification rule during the training process, and minimizes the
expected error rate while controlling the level of randomness via
a constraint on the Shannon entropy. As the entropy constraint is
gradually relaxed, the effective cost function converges to the
classification error rate and the system becomes a hard (non-
random) recognizer. Experiments show that the proposed
method outperforms design by maximum likelihood re-
estimation and by generalized probabilistic descent.

1. INTRODUCTION
Tied-mixture Hidden Markov Modeling (TMHMM) [1][2] is
recognized as a useful complexity reduction technique for
robust speech recognition, mainly due to its ability to maintain
modeling accuracy of large-mixture probability density
functions (pdfs) at moderate complexity, by enforcing pdf
sharing. However, the large number of additional mixing
coefficients that TMHMM introduces, along with the universal
set (or codebook) of pdfs, presents a new design challenge.
While the conventional expectation-maximization (EM)
algorithms [1] seem satisfactory in speed and performance, they
tend to converge to suboptimal solutions and strongly sensitive
to parameter initialization [2]. This motivates the search for
more robust training methods to exploit the true potential of
TMHMM.

Another important concern is the training criterion. While the
natural speech recognition objective is minimum classification
error (MCE), HMM design has been traditionally approached
via maximum likelihood (ML) which, although mismatched
with MCE and hence suboptimal, circumvents the difficulties
due to the piecewise-constant MCE cost function that resists
direct attacks by gradient-based optimization methods.
Recently, there appeared several new MCE techniques, notably
the generalized probabilistic descent (GPD) approach (see
review in [3]), which smooth the classification error cost
function and jointly optimize all HMM parameters via gradient

descent. These methods target the true design cost and thereby
offer the potential for significant performance gains over ML.
However, the smoothed MCE cost surface is riddled with
shallow local minima that easily trap local descent methods, and
may substantially compromise performance.

A natural approach to tackle the above difficulties is to
introduce powerful optimization tools into the training
procedure. The deterministic annealing (DA) algorithm has been
shown to be an effective optimization tool for similar tasks [4].
Derived from fundamental principles of statistical physics and
information theory, DA was first proposed for clustering and
related problems [5][6], and later applied to pattern classifiers
[7], source coding systems [8], regression functions [9], etc.
Most recently, DA has been successfully applied in the design
of discrete observation HMM (DHMM) [10][11] and continuous
density HMM (CHMM) recognizers [12], and was shown to
substantially outperform both ML-based EM algorithm and
MCE-based GPD algorithm.

In this paper, we propose a new DA-based training algorithm to
design recognizers based on TMHMM, which can substantially
reduce the training sensitivity to parameter initialization,
automatically smooth the MCE cost function, and find better
solutions than existing techniques. To achieve these goals, the
standard DA procedure is adjusted to the design of TMHMM,
particularly to account for the mixing coefficients and universal
pdfs. Fast forward-backward algorithm is further developed to
reduce the computational complexity. Experimental results on
the E-set show that the MCE-based DA algorithm outperforms
both the ML-based EM and MCE-based GPD algorithms, and
that the sensitivity to parameter initialization is substantially
reduced by DA.

2. DETERMINISTIC ANNEALING FOR
DISCRIMINATIVE TMHMM TRAINING

A. Deterministic vs. stochastic annealing

Annealing is a process where a physical system is gradually
cooled, starting at a sufficiently high temperature, while
maintaining the system in thermal equilibrium at all
intermediate temperatures. Recent years have seen several
powerful optimization algorithms that exploit the analogy
between optimization and the physical process of annealing,
including the popular method of stochastic annealing (SA) or
simulated annealing [13]. SA simulates the random evolution of
a physical system and reaches equilibrium as the steady-state
distribution over states of a corresponding Markov chain. If the
annealing schedule is sufficiently slow, SA can be shown to
asymptotically converge in probability to the set of globally
optimal solutions.
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DA is also based on the annealing process, albeit in a much
different way. Instead of simulating the exact stochastic
evolution of the system, DA efficiently employs expectation.
Specifically, it determines the effective distribution over the
states of the system at each temperature and optimizes the
expected value of the cost function (the free energy in the
physical analogy). Thus, DA does not generate a stochastic
process that evolves via numerous “moves” (modification of
system parameters) per temperature in order to reach thermal
equilibrium as in SA. Rather, it directly optimizes the free
energy for each specific temperature, which is in fact the
thermodynamic quantity minimized stochastically by SA. DA
may hence be viewed as a deterministic relative of SA.
Although DA offers no guarantee of finding the global
optimum, it does inherit from the annealing process an ability to
effectively avoid many local minima.

B. Problem statement

Let the HMM-based speech recognizer be trained from the
labeled training set ( )( ) ( )( ) ( )( ){ }LL ctxctxctxT ,,,,,, 2211 L= ,

where ( )txi represents il  p-dimensional sequential feature

vectors extracted from a speech sample of class ic , which

belongs to the finite-size dictionary { }NcccC ,,, 21 L= . Without

loss of generality, we assume that the recognizer has N models,
{ }NjH j ,,2,1, L= , one per word in dictionary C. Each HMM

jH  is fully specified by the parameter set ( )jjjj BA Π=Λ ,, ,

where jA  specifies the state transition probabilities, jB
contains the state-conditional emission distributions, and jΠ
specifies the initial state probabilities. For concreteness we
further assume that the recognizer employs the “best path”
discriminant. The approach can be similarly derived for the case
where the discriminant is computed by likelihood averaging
over all paths in the HMM.

For sample ( )txi  and model jH , the normalized logarithm of

the joint probability (“path score”) of observation ( )txi  for a

sequence of states ( ) ( ) ( )( )ilssss ,,2,1 L≡  in the trellis of

jH  is defined as
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The discriminant is computed by maximizing the score over all
paths:
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where ( )jl HS
i

 is the set of all state sequences of length 
il  in the

trellis of jH .

The traditional “best path” classification rule is

( ) ( )ij
j
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An MCE design method optimizes the HMM parameters { }jΛ
so as to minimize the misclassification rate measured over the
training set, i.e.,
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An immediate difficulty with MCE-based training is due to the
piecewise constant nature of (1), which does not lend itself to
gradient-based optimization. The ML approach circumvents this
problem by substituting the true cost function with a sub-
optimal design objective. GPD and other MCE algorithms
smooth the MCE cost function to allow descent-based
optimization, but still suffer from the poor local optima
problem.

C. Discriminative HMM training by deterministic annealing

DA offers means to avoid many poor local optima while
implementing a theoretically motivated form of cost smoothing.
To achieve this goal, three fundamental principles are
employed: a) Introduce randomness in the recognition rule
during the training process; b) Minimize the expected error rate
of the random recognizer while controlling the level of
randomness via a constraint on the Shannon entropy; and c)
Gradually relax the entropy constraint so that the effective cost
converges to standard MCE at the limit of zero entropy (non-
random classification).

Principle I: The randomized “soft” recognizer

Randomness is introduced into the recognition rule during the
training process, and the “best-path” (“hard”) recognizer is
replaced by a “soft” recognizer. Instead of assigning training
sample ix  to a unique winning state sequence in the trellis of

model 
jH , the randomized rule associates it with every state

sequence s with probability ( )ij xHsp , , which is the Gibbs

distribution
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whereγ is a parameter that controls the fuzziness of the

distribution. When 0=γ , the distribution over paths is
uniform and the recognizer is extremely random (i.e. the
recognition rate for training set is 1/N). For a higher value of
γ, the randomized recognizer assign the paths of higher log
probabilities with higher path scores. In the extreme case of



∞→γ , the random recognizer becomes a non-random “best
path” recognizer. Note that the random recognizer is only used
during training, and the actual resulting system is of course non-
random.

Principle II: Minimization of the effective cost function

While the recognizer is random we consider the expected error
rate criterion given by
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Note that when ∞→γ , eP  becomes the standard error

rate eP  of (1). As the piecewise function eP  was also
smoothed by randomization, and direct gradient-based
optimization of (2) is possible though highly susceptible to
shallow local minimum traps. Instead, we propose to minimize

eP subject to a constraint on the level of randomness that will

enable us to introduce annealing as will be discussed below. The
randomness is measured by the (conditional) Shannon entropy
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The constrained optimization problem is equivalently expressed
as the minimization of the unconstrained Lagrangian cost
function:

{ } { }THPF e
j

−≡
Λ γ,
min , (4)

where F is the effective cost function and T is the Lagrange
multiplier which is referred to as the “temperature” to allude the
interesting analogy to statistical physics, while F is equivalent to
the Helmholtz free energy of a thermodynamic system. The
optimization of (4) is analogous to achieving thermal
equilibrium at the given T. When 0→T , the optimization

reduces to the unconstrained minimization of eP . The

gradual reduction of is important to avoid shallow local minima
on the cost function surface.

Principle III: Annealing process

The DA-based HMM training process is described in the flow
diagram of Figure 1. The system starts at high temperature T
and high randomness (low γ), and gradually decreases T in
analogy to physical annealing. At each intermediate
temperature, F is minimized via gradient-based optimization of
the HMM parameters and γ. As the temperature decreases, γ
naturally increases and reduces both the randomness of
recognizer (i.e., the Shannon entropy H). Hence, the distribution
becomes more discriminating and, ultimately, only the most
likely path is assigned a non-zero probability. The resulting
recognizer is therefore a normal, non-random “best-path”
recognizer.

In practice, it is convenient to accelerate the final elimination of
randomness via a quenching phase as shown in Figure 1: During

the main DA procedure, γ is upperbound by maxγ . When T is
sufficiently small, we optimize the HMM parameters while
increasing γgradually to a high value, and finally convert the
random recognizer into a non-random “best-path” recognizer.

D. The DA update equations

From (2), (3) and (4), we have
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The gradient descent algorithm utilizes the following partial
derivatives:
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In practice, we optimize γ by line-search. While the above
allows for easy interpretation of the update rule, it is convenient
for implementation to rewrite the derivative with respect to
TMHMM parameters as
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Figure 1. DA procedure for HMMM training
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We have developed an efficient forward-backward algorithm
similar to [11] to compute the above four sets of variables but
will not detail it here for lack of space.

3. EXPERIMENTAL RESULTS
To test the performance of the proposed DA algorithm for
TMHMM training, experiments were carried out on the E-set
speech database obtained from OGI. The recognition task is to
distinguish between nine confusable English letters {b, c, d, e, g,
p, t, v, z}. The database was generated by 150 speakers (75 male
and 75 female) and includes one utterance per speaker. Of the
150 speakers, 60 male and 60 female speakers were selected at
random for training, and the remaining 30 speakers were set
aside for the test set.

In our experiments, 12-dimension MFCC parameters were used
as the speech features. The analysis frame width is 30ms, the
frame step is 10ms, and a Hamming Window is employed. The
results are summarized in Tables 1 and 2. Table 1 compares the
performance of various TMHMM training methods at three
states per HMM. The results demonstrate consistent
performance improvement from the standard EM algorithm (ML
criterion) through GPD (MCE criterion) to the proposed DA
algorithm (MCE). Table 2 illustrates that the sensitivity to
initialization has been greatly reduced by DA compared with the
standard EM algorithm.

4. CONCLUSION
TMHMM training has long been a challenging task due to its
complex structure (relative to standard CHMM). In this paper, a
deterministic annealing (DA) algorithm was proposed for
TMHMM training which substantially reduces the training
sensitivity to parameter initialization, automatically smoothes
the MCE cost function, and finds better solutions than GPD.
Preliminary experiments on the E-set show that DA does offer
improvement over ML-EM and MCE-GPD. Future work will
expand on the potential of DA and in particular will address the
problem of Gaussian selection.

5. REFERENCES
[1] J. R. Bellegarda and D. Nahamoo, “Tied mixture

continuous parameter modeling for speech recognition”,
IEEE Trans. Acoust., Speech, Signal Processing, pp.
2033-2045, vol. 38, Dec. 1990.

[2] X. D. Huang, “Phoneme classification using
semicontinuous hidden Markov models”, IEEE Trans.
Signal Processing, vol. 40, pp. 1062-1067, May 1992

[3] S. Katagiri, B. H. Juang, and C. H. Lee, “Pattern
recognition using a family of design algorithms based
upon the generalized probabilistic decent method”, IEEE
Proceedings, vol. 86, no. 11, pp.2345-3375, 1998.

[4] K. Rose, “Deterministic Annealing for Clustering,
Compression, Classification, Regression, and Related
Optimization Problems”, IEEE Proceedings, vol. 86,
pp.2210-2239, 1998.

[5] K. Rose, E. Gurewitz, and G. C. Fox, “Vector
quantization by deterministic annealing”, IEEE Trans. on
Information Theory, vol. 38, pp.1249-1258, 1992.

[6] K. Rose, E. Gurewitz, and G. C. Fox, “Constrained
clustering as an optimization method”, IEEE Trans. on
Pattern Analysis and Machine Intelligence, vol. 15,
pp.785-794, 1993.

[7] D. Miller, A. V. Rao, K. Rose, and A. Gersho, “A global
optimization techniques for statistical classifier design”,
IEEE Trans. on Signal Processing, vol. 44, no. 12, 1996.

[8] A. V. Rao, D. Miller, K. Rose, and A. Gersho, “A
generalized VQ method for combined compression and
estimation”, Proc. ICASSP’1996, pp.2032-2035.

[9] A. V. Rao, D. Miller, K. Rose, and A. Gersho, “Mixture
of experts regression modeling by deterministic
annealing”, IEEE Trans. on Signal Processing, vol. 45,
no. 11, pp.2811-2820, 1997.

[10] A. V. Rao, K. Rose, and A. Gersho, “Design of robust
HMM speech recognizers using deterministic annealing”,
Proc. IEEE ASRU’97, pp.466-473, 1997.

[11] A. V. Rao and K. Rose, “Deterministically annealed
design of hidden Markov model speech recognizers”, to
appear in IEEE Trans. on Speech and Audio Processing.

[12] C. Gelin-Huet, K. Rose and A. V. Rao, “The deterministic
annealing approach for discriminative continuous HMM
design”, Proc. EuroSpeech’99, 1999.

[13] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization
by simulated annealing”, Science, vol. 220, pp.671-680,
1983.

Recognition
Rate ML-EM MCE-

GPD MCE-DA

Train Set 62.1% 70.2% 75.5%

Test Set 57.5 % 60.1% 63.9 %

Table 1. Performance comparison of TMHMM training
methods at 3 states per HMM

Training
method

Initialized
From

DHMM

Initialized
from K-
means

Initialized
from

CHMM

ML-EM 52.7 % 55.4% 57.5 %

MCE-DA 63.8% 63.8% 63.9%

Table 2. Test set recognition rate for different
initializations


