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Deterministically Annealed Design of Hidden
Markov Model Speech Recognizers

Ajit V. Rao and Kenneth RoséMember, IEEE

Abstract—Many conventional speech recognition systems are work of several researchers, notably Jelinek [17], Baker [3], Fer-
based on the use of hidden Markov models (HMM) within the guson [13] and Rabiner [29], [30]. Since then, the HMM-based

context of discriminant-based pattern classification. While the - ¢|55gifier has steadily replaced template matching as the main
speech recognition objective is a low rate of misclassification, . .
paradigm for speech recognition.

HMM design has been traditionally approached via maximum . . L
likelihood (ML) modeling which is, in general, mismatched [N HMM-based speech recognition, the input speech is di-
with the minimum error objective and hence suboptimal. Direct vided into segments, each of which is classified to an element

minimization of the error rate is difficult because of the complex  of a finite lengthdictionaryof speech unitsSpeech units may be
nature of the cost surface, and has only been addressed recently by\yords (in isolated word recognition) or subword phones (in con-
discriminative design methods such as generalized probabilistic tinuous speech recognition). Classification is performed on each

descent (GPD). While existing discriminative methods offer - 2.
significant benefits, they commonly rely on local optimization via S€gment via competition between HMMs that represent speech

gradient descent whose performance suffers from the prevalence units in the dictionary. In isolated word recognition, the seg-

of shallow local minima. As an alternative, we propose the deter- ments correspond to words, and the task of dividing the input
ministic annealing (DA) design method that directly minimizes speech into segments is usually performed prior to, and inde-
the error rate while avoiding many poor local minima of the cost.  hanqgent of, the classification task. In continuous speech recog-

DA is derived from fundamental principles of statistical physics .. .
and information theory. In DA, the HMM classifier's decision is hition, segments correspond to subword units and the tasks of

randomized and its expected error rate is minimized subject to a S€gmentation and classification are performed jointly.

constraint on the level of randomness which is measured by the  For superior performance, an HMM speech recognizer must
Shannon entropy. The entropy constraint is gradually relaxed, be trained on a large speech database. Since recognition is
leading in the limit of zero entropy to the design of regular performed by competition between HMMs, ideally, the training

nonrandom HMM classifiers. An efficient forward—backward al- . . .
gorithm is proposed for the DA method. Experiments on synthetic prpgedure ﬁhoulq_o!ntly optimize all ﬁ.orr:]petlgg .HN(;MS toh
data and on a simplified recognizer for isolated English letters Minimize the training error rate, which is defined as the

demonstrate that the DA design method can improve recognition fraction of the training set that is misclassified. In isolated
error rates over both ML and GPD methods. word recognition, the error rate corresponds to the fraction

Index Terms—beterministic annealing, discriminative training, of traln.IrIIg words that are misclassified. In continuous Sp,eeCh
hidden Markov model, isolated word recognition, minimum clas- fecognition, the error rate may be measured as the fraction of
sification error. training sentences that contain any recognition errors.

One important design difficulty is the complex nature of the
error rate cost surface. This surface, which represents the clas-
sifier error as a function of the HMM parameters, is piecewise

N THE late 1960s, Baum and his colleagues presented a senstant and riddled with shallow local minima. In principle, a
ries of papers (including [4], [5]) investigating the mathedesign procedure seeks the system parameters that globally min-
matical structure and practical usefulness of Hidden Markdwize this cost surface, but standard optimization methods such
models (HMMs). In the years that followed, it became geneas gradient descent will normally fail to produce the optimal so-
ally known that HMMs can be usefully employed for speechution. The prevailing approach to speech recognizer design cir-
recognition. This important realization is due to the pioneerirggmvents this difficulty by discarding the minimum classifica-
tion error (MCE) objective, and adopting instead the potentially
mismatched maximum likelihood (ML) objective. The choice of
ML leads to a smoother cost surface and also facilitates indepen-
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reasons for discarding it in favor aiscriminative design
methods[31, Sec 5.6] that jointly optimize all the HMMs d,(x)
in a classifier. One promising discriminative design method
Generalized Probabilistic Descent (GPD), was proposed ar
extended by Juang, Katagiri and others in a series of pape
that are reviewed in [21]. Not surprisingly, GPD and other

discriminative approaches are applicable to general (nc dy(x)
necessarily speech) structured pattern classifiers. The cent, C(x)
idea in GPD is to approximate the piecewise constant co: ri;?x N

surface by a smooth and differentiable function. Once the co:
is smoothed, gradient methods may be used to optimize tt
classifier’'s parameter set and find a local minimum on the
(smoothed) surface. Discriminative methods have been appli¢
to the design of speech recognizers based on both temple
matching [7], [24] and HMMs [9], [18].

In the context of HMMs, it was shown in [9] and [18] that d(x)
GPD provides a significant improvement in recognition accu
racy over ML design. Our starting point, however, is with the
observation that while cost surface smoothing allows the usig. 1. An HMM-based speech recognition system viewed as a maximum
of gradient descent optimization, the smoothed cost surfaceliggriminant classifier.
nevertheless highly complex with numerous shallow local min-
imum traps. Consequently, GPD may often converge to a pafat DA offers consistent accuracy improvements over the
local minimum and yield suboptimal recognition performancgompeting methods.

The eXperimental results in this paper validate this Observation.'rhe paper is Organized as follows: In the next Section, we re-

From the preceding arguments, it is clear that direct minjiew HMM-based isolated word recognizers, present its central
mization of the classifier error rate requires the use of a noglesign issues and motivate the need for a powerful optimization
convex optimization method that can avoid shallow local miRechnique. In Section IIl, we briefly review DA and derive an
imum traps on the cost surface. In this paper, we present a p@plicit DA algorithm for the HMM design problem, including
erful optimization method that builds on the technique of dghe forward—backward implementation. The section ends with
terministic annealing (DA). DA is derived from fundamentatomments on extensions of the basic DA formulation to con-
principles in statistical physics and information theory. It haghuous speech recognizers and continuous observation HMMs.
already been successfully employed to solve a number of diffection IV summarizes the experimental results, and Section V
cult optimization problems in source coding and pattern recogffers comments on the computational complexity of the DA
nition (for a tutorial see [37]). The DA formulation for clusteringmethod. In the Appendix, we establish and briefly discuss con-

and related problems was first proposed in [38]—{40]. Later, DAections between DA and other discriminative design methods.
was extended to allow the inclusion and imposition of structural

constrainfts [25]. Thi; extension has considerably broadened the || HMM-B ASED |SOLATED WORD RECOGNITION
scope of its applications. Recently, DA methods have been de- o ) ]
veloped to design pattern classifiers [25], regression functions! N€ input speech is divided into fixed-length frames and a
[36], [34] and a new class of source coding systems [35]. D;hort-te_rm feature vector (such as a vector of_ ce_pstra_ll_cogffl-
has previously been proposed for HMM design, albeit with MElentg) is (_extracted pe_r_frame. Next,_an end-point |dent|_f|cat|0n
as the design objective [26]. algorithm is used to d|\_/|de consecutive speech fra.messegt_a .

The design of discriminative HMM-based speech recognizdRENtS Each segment is then mapped to a word in the dictio-
requires an important and nontrivial extension of the DA a2y by an HMM-based pattern recognizer. Grammatical con-
proach. Our method is general and can be applied to desi?gunts an(_d/_orlanguage models may further be used to improve
both isolated word and continuous speech recognizers that H& recognition accuracy. _
discrete, continuous observation, or tied-mixture HMMs. This 1he pattern classification step is performed by a set of
paper's focus is on the introduction of the basic derivation &VIMs, one per word in the dictionary. The classification
DA for speech recognition, and preliminary demonstration of fFocedure consists, in fact, of competition between the HMMs
usefulness and potential. We therefore restrict the formulatifi9- 1)- Each HMM.H;;, computes &lass discriminant/; (x)
and experiments here to the simpler case of isolated word rec8ly€n. the feature vector representing a speech segment. The
nition with discrete observation HMM systems. The formula2€9ment is ultimately labeled with the index of the “winner”
tion is supplemented with the derivation of a low complexity’Nich is the dictionary entry corresponding to the HMM with
forward—backward (FB) implementation, which may be viewe{@e highest class discriminant.
as a generalization of the Baum—Welch re-estimation algorithm. » )

The results section reports on HMM design experimenfs HMM Classifier Design
in time-series classification and in isolated word recognition. Obtaining good recognition performance depends to a large
The results compare DA with ML and GPD, and demonstratiegree on careful training of the classifier's HMM parameters,
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which determine the class discriminants. During training, thtee suboptimality of ML and proposes a maximum mutual in-
system accuracy is measured by the classification error rate, ifermation (MMI) criterion as an alternative. In MMI design, the
the fraction of training words incorrectly recognized by the cla$dMM parameters are optimized such that the resulting statis-
sifier. We assume that the training data has been divided irfitcal model maintains the highest possible mutual information
segments that correspond to isolated words and labeled witttween the feature vectors and the classes when measured over
the correct dictionary entries. The classifier design problem tge training set. Another proposal is the method of corrective
therefore, to adjust the HMM parameters to minimize the errtnaining [2] which is related to, and improves on, MMI. Cor-
rate measured over the labeled training data. We emphasiggfive training applies heuristic measures to train the HMM
however, the generality of the basic approach which is not fearameters to generate high likelihood scores for the correct
stricted to the above simplifying assumptions. classesand simultaneously generate low likelihood scores for
Even this simple classifier design problem is extremely dithe incorrect classes. Experiments indicate that improvements
ficult to solve because of the piecewise constant nature of er standard ML are obtained by MMI and, to a larger degree,
cost surface which prevents the use of gradient-based optimi@¥-corrective training. We note that both corrective training and
tion. As mentioned in the introduction, the common approadiM! attempt to reduce error rates indirectly by increasing class
to circumvent this difficulty is to discard the MCE criterion ancé€parability. Neither method attempts a direct minimization of
adopt, instead, the potentially mismatched ML criterion. THE€ €rror rate cost function. o S
training data is divided into subsets of identically labeled dataAnother interesting approach to solve the joint optimization
(segments that correspond to the same dictionary entry) andPspPlem is the recursive estimation and maximization of a-pos-

HMM is designed for each subset via maximum likelihood ed€riori probabilities (REMAP) algorithm [6]. Although REMAP
timation of the HMM parameters. was proposed in the context of the design of hybrid neural-net-

work/HMM recognition systems, it can in principle be applied
) o - to the design of standard HMM recognizers. REMAPs design

B. HMM Design for Minimum Classification Error objective is to maximize the a posteriori probabilities of the cor-
The starting point for this work is the realization that max€Ct class, given the feature vector. REMAP is claimed to have
imum likelihood is potentially mismatched to the desired of2€tter optimality properties than ML and can be applied to de-
jective of HMM design. Speech recognition is fundamentally 9" any_staustlcal clgs.smer. Howev_er,_ it relies hegvny on the
pattern classification problem whose ultimate objective is ngeSUMPtion of the validity of the statistical model (in this case,

to accurately model utterances of particular words but, rathEte MM model).

to distinguish between them while making as few errors as pos- "0 the perspective of the approach we take in this paper, a

sible. The classifier's performance is, therefore, measured mgg{ticularly promising alte_rnative is th(.a.difscriminative learning
appropriately by its error rate and, if possible, this cost sho ethod based on generalized probabilistic descent (GPD) [19].

be directly minimized during design via a joint optimization o D IS mgtlvated by the undgrstandlng that_a major difficulty
all HMMs. In minimizing the error rate arises from the piecewise-constant

It is important to note that a classifier system that is desi nn§ture of the cost surface, which implies that derivatives with
P . . . Y . gn spect to the design variables vanish almost everywhere. More
by an ML technique is a close relative of the Bayesian classmg

N ) ; .~ specifically, since the training set is of finite length, an infinites-
which is optimalin th_e Sense of MCE. H_owever suc_h Opt_'m"?‘“t' al change inthe value of the design parameters will not change
depends on the availability of the precise probability distrib R

i don the (i babl tion that the HMM e classification of any training utterance and hence will not
lons, and on .e_(lmpro able) assump ion that the Profase any changeinthe errorrate cost. Clearly, itis not possible to
abilistic model is in complete agreement with the speech sour

X , , fifrectly apply gradient based optimization. To overcome this dif-
Even if the model structure were correct, in reality, one only hgs, i "G pp replaces the piecewise-constant cost with a smooth
access to reasonably short training sets that do not allow relisq gifterentiable approximation to it. The smoothed cost may
able estimation of the probability distribution parameters. CoRes minimized by a gradient descent method. The resultis a local
sequently, the performance of ML may differ significantly fromy;nimum which, hopefully, approximates well the performance
that of MCE methods. This fact has been observed by severalgge globally optimal solution. The advantage of GPD is that
searchers and we briefly review below some of the contributiopgoes not make any assumptions on the validity of the statis-
that are particularly relevant to this work. The results sectiqa| model (HMM) but, instead, directly adjusts the classifier pa-
herein will also provide ample evidence to support this 0bsggmeters to minimize the true cost. Experiments in [9] and [18]
vation. show that discriminative design provides significant improve-
As an aside, it should perhaps be noted that the mismatch kfents over ML design for HMM-based classifier systems.
tween the true objective and the commonly used design criteriorHowever, an important and fundamental drawback of GPD
has been pointed out for the related problems of general pattgyrthat, even after smoothing, there are numerous shallow
classifier design and regression function design. This realizatiigigal minima that riddle the cost surface. Consequently, gra-
has led to new approaches [19], [36], [25], [34] that directly ogtient-based algorithms that seek a local minimum on the cost
timize the true objective and demonstrate significant improveurface may easily be trapped in shallow local optima, and may
ments in performance. produce a substantially suboptimal classifier. It is, therefore,
In the specific context of HMM-based classifier design, theur premise here that a powerful optimization technique will
inadequacy of the ML approach has attracted much attentipmovide the means for realizing the full potential benefits of a
One important example is the work in [1] which demonstratefirect minimization of the classification error.
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In summary, discriminative methods such as GPD are an imhich is the normalized log of the joint probability of observa-
portant step toward optimality as they target the right cost oten x; and the state sequenaegiven the parameters af;.
jective-minimum classification error. There are, however, suliVe use the conventional notatiaR]-, -] denotes an element of
stantial additional gains to be recouped by using a powerful apatrix Q; andg[-] denotes an element of the vectoWe note
timization algorithm that offers the capability to avoid shallovihat although normalization of the likelihood (by the length of
local minima. the observation) does not change the problem definition and is

not commonly used, we find it useful for the DA algorithm de-
lIl. DETERMINISTIC ANNEALING scription.
Next, we maximize the path score over all paths in the trellis

A. Problem Formulation of H; and determine the score of modé}:

An HMM classifier is to be designed giveriabeled training

set dj(xz) = segll:rlé{{j) l(xiv S, HJ) (3)
T = {(x1, c1), (X2, ¢2), - -+, (Xn, en)} (1) whereS;(H;) is the set of all state sequences of lengiinthe

o _ trellis of H;. The quantityd,(x;) approximates the likelihood
wheretraining patternx; is known to be an utterance of speeclyf model H; given the observatior; . Interpretingd; (-) as the

unit ¢;, which is an entry in the given dictionary of speech unijiscriminant for clasg, we adopt the traditional discriminant-
labelsC = {1, 2, ---, J}. The patterrx; is in fact a sequence pased classification rule (Fig. 1):

of observation feature vectors extracted from a segmeit of
speech frames; = (x;(1), x;(2), ---, x;(i;)).
The exact nature of the observation feature vexf@r) is ap-
plication dependent. In many practical implementation$t)
S

consists of cepstral coefficients or linear prediction coefficien . . N " .
P P core is declared “winner” and the classifier assigns pattern

and their derivatives. Since these features take value in a C%‘ihe corresponding class, or word in the dictionary. A known
tinuous spacex;(t) € R"), such classification is normally per- advantage of the “best path” discriminant classifier is that the

formed by continuous observation HMMs. In a number of appl%earch for the winning path can be reduced to a sequential op-

cations, however, the high computational complexity involve ization problem that can be solved via an efficient dynamic
in modeling continuous observations is not acceptable, and e P y

classification is implemented with discrete observation HMMg_ro%rarSm&gbalgodntTm. ifier should. in orinciole. b timized
Here, the feature vector is extracted from the speech frame na— € -based classifier should, In principie, be optimize

then vector-quantized to an entry in a pre-designed codebook gfadj_ustlng t_h_e H.MM parametefs\; } to minimize t_he empir-
K prototype vectorsThe sequence df quantization indexes ical misclassification rate measured over the training set:

O(x;) = argmax d,;(x;). 4
j

The classification procedure can be viewed as a competition be-
}Sween paths. The HMM containing the path with the highest

obtained by this process is the discrete observation vector or _ 1 X
training patternx;. The derivation in this paper assumes the dis- min Fe=1-+% > 8Cxi), ) p - (6)
crete observation case;(t) € KX = {1, 2, ---, K'}. However, ’ =1

the method is general and extendible to the case of continudigye? is the Kronecker delta function:
observations [15]. 1, fu=w
The HMM recognition system for discrete observations 6u, v) = {0 otherwise.
consists of a set of HMMs{H;, j = 1,2, ---, J}, which
correspond to the/ words in the dictionary. The modet;
has S; states and is fully specified by the parameter s
A; = (4;, By, 11;) where, following the standard notatio;
is the (S; x S;) state transition probability matrix3; is the
(S; x K) emission probability matrix andl; is the §; x 1)
initial state probability vector. B. Randomized Classification Rule

We consider HMM classifier systems that use the commonW d he DA f lati h fund | orinciol
“best path” discriminant approach. Note, however, that this as- e adopt the ormulation whose fundamental principles

sumption is not required, and the design method can be modiffd§: @ Introduce randomness in the classification rule during the

to the case where the discriminant is obtained by appropriate 4¢S19n process; b) Minimize the expected misclassification rate
eraging of the likelihood over all paths in the HMM. of the random classifier while controlling the level of random-

The best path classifier works as follows: Given a training€SS Via & constraint on the Shannon entropy; and c) Gradually
patternx;, for each HMM,H ;, and for each sequence (|engtﬁelax the entropy constraint so that the effective cost converges
;) of statess = (s(1), s(2) h s(1;)) in the trellis ofH,;, we to the misclassification cost at the limit of zero entropy (non-

determine the quantity (“path score”) random classification).
L1 Thus, we replace the original (nonrandom) best path clas-

I(xi, s, H;) =7 {logﬂj[s(l)] I Z log A;[s(t), s(t + 1)] sification rule with a randomized classification rule. While
* t=1

7

The introduction section of this paper provides a detailed
discussion of the difficulties in solving the above optimization
ﬁ’oblem. These difficulties are due to the piecewise constant na-
ture of the cost function?’., and the abundance of shallow local
minima.

the nonrandom rule assigns a pattetnto a unique win-
ning state sequence, the randomized rule associates each

i ’ ) .
+Z log B;[s(t), x;(£)] ¢ . (2) Pattern,x;, with every state 'sequencs, in the trellis of
— every model,H;, with probability P[s, j|x;]. Naturally, these
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conditional probabilities are normalized functions such that = 0, the distribution over paths is uniform. For finite, posi-
Zj Zsesli(Hj) Pls, jlxi] = 1. tive values ofy, the Gibbs distribution indicates that we assign
The probabilitiesP[s, j|x;], are in fact, the representation othigher probabilities of winning to state sequences with higher
the randomized classification ruland should not be confusedlikelihood scores. In the limiting case of — oo, the random
with the probabilities characterizing the HMM model itselfclassification rule reverts to the nonrandom “best path” classi-
P[s, j|x;]is the probability that the classifier will selecas the fier, which assigns a nonzero probability of winning only to the
winning path and, consequentiallf; as the winning HMM. path with the highest likelihood score as in (7).
We propose to derive the classification probabilities from basic We re-emphasize that the random classifier paradigm is
principles. We first note that the nonrandom classifier takes @slopted only during design. Ultimately, the DA algorithm will
patternx; and finds the state sequengawith the highest score produce a regular, nonrandom HMM classifier which is based
among all state sequences in all HMMs, in order to determin@ the best-path discriminant.
the class. We may trivially formulate this operation via the

criterion function C. The Effective Cost Function and the Statistical Physics
Analogy
D, = ! (x;, s;, H(s; 6
TN Z (xi, i, H(sq)) ©) So far we have derived a framework for randomizing the clas-

. . sifier, which captures the “best path” classification rule in the
wheres; € JS;, (H;) and H(s;) is the HMM to whichs; |imiting (zero entropy) case. We now apply this framework to

] - - - e
belongs. Clearly, this function is maximized by applying to ead@ftually minimize the error rate of the classifier. The average

x; the best-path classification rule: misclassification rate of the random classifier is given by:
N
s; =arg max Il(x;, s, H(s)). @) B 1
selJ s, () (Pe) =1-+ z_; Plei|xi] (11)
We next define the optimal random classifier as the distribusich is a straightforward randomization of (5). The quantity
tion that maximizes: Ple;|x;] is the probability that the correct classwill be se-
1 ] lected as winner, and can be computed by summation over paths:
<De> = N Z Z Z P[57 J|XZ]Z(X17 s, HJ) (8)
i seSy,(H)) Pleilxil= > Pls, cilxi]. (12)
which is the immediate probabilistic generalizatiorfin (6). €S, (He;)

Note that if we simply maximizeD.) over all distributions, 1,5 the design problem for the random classifier can be stated
Pls, j|x;], we will still obtain the rule of (7) that assigns, with,5 fo|10ws: Find the optimal values of the model parameters
probability 1, patterrx; to the path with the highest likelihood {A;} and-, which determinePls, c;|x;] S as to minimize the
score. While the best-path rule will ultimately be used once trf‘r‘?léclassification probability (11’)

design process is complete, it is important to realize that, du“”gNote that direct minimization of (11) would lead to a non-
design, it is advantageous to maintain randomness in the classiqom ¢ — o) distribution. This may be deduced by an-

fier decision as it makes the design more robust to shallow lo%‘}'/zing the gradient of the error rate with respect to the scale
minima. Toward this end, we propose instead to maxirhi2g parametery:

subject to a constraint on the level of randomness in the classi-

fication rule, which we measure by the (conditional) Shannog<P€> 1 X
entropy, a,y' =% > Plalx{Eli(xi, s, He,)]
=1
1
=YY Y Phokllos Pl gkl ©) ~ Ell(xi, s, Hels € Sy (He)l),
B J s€S.(Hj) (13)

More specifically, we maximize the Lagrangian where E[-] denotes expectation with respect to the Gibbs

’Y(De>+H+Z )‘iz Pls, j|xi], distributior_1 of (10). We ?ssume_ that the HMM parame’Fer
p s set {A;} is “reasonable,” that is, the expected path dis-

. . ... . criminant for paths in the trellis of the “correct” HMM,
where the last term is used to impose that the distribution is NOMi(x;, s, H.)ls € S.(H. )] is on the average (over the

malized to 1. By straightforward differentiation and constraif,ining set) greater than the expected path discriminant over all
imposition we obtain that the optimal probability distribution '?)aths in all HMMs, E[l(x:, s, H.,)]. Hence, (13) is negative

the Gibbs distribution, and drivesy to infinity to produce a nonrandom distribution. Of

. e vixi,s,Hy) course, such a nonrandom, best-path classifier is the ultimate
P[s, jlxi] = Z Z 1,8 Hy) (10) goal of the design procedure. However, as mentioned earlier,
we wish to enforce this “nonrandomness” gradually during the

i’ s'cS;. (H. . . . ..
I slesy (Hy) optimization, to avoid shallow local minimum traps.

The level of Shannon entropy corresponding to this Gibbs dis-We, therefore, pose the problem of minimizigg.) while
tribution is determined by the positiseale parametety. For maintaining a level of randomness in the classifier through a
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constraint on the entropy! = H,. This constrained optimiza- at each temperature is accomplished by a series of gradient de-
tion problem is, equivalently, the minimization of the unconscent steps based on the gradients:

strained Lagrangian cost function, a_F 9y Z Z Bl(x;, s, H,)
min {F=(P.)—-TH} (14) on; - N i sCS, (Hj) O,
(A} . P[57 J|XZ]{f(x17 s, HJ) - <f(xi7 s, HJ)>} (15)

whereT is the Lagrange multiplier which is referred to as thand

C » i i istical 0F 1

temper'ature to aIIudeT to an interesting analog)_/ to statistical & _ 1 Z Z Z I(x;, s, H)
physics: The Lagrangian minimization of (14) is analogous dy N ;

to the classical definition of thermal equilibrium in statistical )
physics. The quantityF, is the Helmholtz free energy of a Pls, jlxi{f(xi, s, Hy) = (f(xi, s, Hj))}. (16)
thermodynamic system (strictly speaking it is the Helmholtz Here, f(x;, s, H;) = T~vi(x;. s, H;) — 6(j, ¢;) where
thermodynamic potential) with average enefd@), entropy &(-, -) is the Kronecker delta function. The operatioh(-))
H, and temperaturé’. A fundamental principle of statistical represents the expectation of functibfi) taken over all state
mechanics states that the free energy is minimized whsequences in the trellises of all HMMs. Hence,

the thermodynamic system reaches thermal equilibrium at ‘ N e ‘ '
given temperaturd’. From the viewpoint of our optimization (fxiy s, Hy)) = Z Z Pls, jlxi]f(xi, s, Hj).

J s€Si, (Hy)

J s€S.(Hj)

problem, we are ultimately interested in thermal equilibrium at 17)
T = 0 which corresponds to direct minimization @P.), our
ultimate objective. E. Forward—Backward Algorithm
An important aspect of the proposed method is the discovery
D. Annealing of an efficient forward—backward (FB) algorithm to determine

The statistical physics analogy suggests that, in order to mm—e gradients in (15) and (16). Note that the summation in both

- o - . . radient expressions is taken over all state sequences in the
imize (P.), it is beneficial to implement an annealing process, . :

i ) R rellis of the HMMSs. Since the number of state sequences grows
that is, gradually lower the temperature while maintaining the

system at thermal equilibrium. This process, of course, gradeu{ponentlally with the number of states in the HMM, itis im-

ally reduces the entropy, or randomness, of the system. We s?a{ﬁd!cal _to com_put_e_each gradient by simply summing up the
-contributions of individual state sequences.

at a high level off’, where the sole objective is entropy maxi- The basis of the FB algorithm is a simple mathematical ma-
mization, which is achievable by the uniform distribution. We. : . ) e
then aradually reduc while tracking the minimum of”. At hipulation, which reveals that the gradients can be efficiently
9 y reduc 9 : " " evaluated via a forward—backward calculation that drastically
T = 0, the optimization off” seeks the desired solution which . . i
is the minimum of{ P.) with respect oA} and-. For prac- reduces the number of computations. The resulting computa
) o g P gy P . tional and memory complexity is proportional to the square of
tical reasons, itis efficient to end the annealing procedure W'”Eﬁae number of states in the HMM. Thus. the complexity scales
“quenching” step—wheff falls below a threshold we increase . ’ plexity

in gradual steps to a very high value. Wheis sufficientl similarly to that of maximum likelihood.
7ing iy y g j . y The FB algorithm for computing the gradient parameters is
high, the classifier reduces to the nonrandom “best-path” clas- . . i -
sifier implemented in the following manner: For each training pat-

The algorith b zed as follows: tern,x;, and each clasg, we perform an initialization, a for-
€ algonthm can ? Tc,l_Jmmanze as O_ ows. ward pass, and a backward pass as shown in Table I. In the for-
1) Set parameters: initial temperatdfg final temperature, ward pass, the forward variables; (¢, m) andw,;(t, m) are

T’y, minimum entropyH ,,i», annealing schedule functioncomputed for all the states; = 1, 2, ---, S; in a sequential
a(+) and quenching schedule functiay;). manner fort = 1, 2, ---, I;. In the backward pass, the back-
2) Setl’ = T;, ¥ = Yinit- ward variabless;; (¢, m) andv;;(t, m) are computed for these
3) miny,y, {F = (F.) — TH} (We use gradient descentstates in a reverse-time sequential mannes I, ---, 2, 1.
in our simulations) Next, the “transition variables;; (¢, m, n) and&;;(t, m, n)
4) Lower temperaturel’ — «(T). are computed for each transition from stateto staten for
5) If " > 1% goto step 3; else goto step 6; t=1,2,---,1.
6) Quenching: Increasey according toy « q(v), For the purpose of interpreting the forward and backward
mingy y (%) variables, it is useful to first define two quantities that we refer
7) If H > H,i, goto step 6; else end design. to as “partial discriminants”:

In our experiments, we used the following simple exponen-

) (5. .
tial annealing and quenching schedule$?) = 0.97, and o (xi, s, Hj)

. . t—1
g(y) = 1.2v. An analytical treatment of the question of an- _ 1 - (s p
nealing schedules has not been attempted as yet. T log I1;{s(1)] + tz;l log A;[s(), s(t' + 1)]

The annealing process yields a sequence of solutions at de-

t
creasing levels of entropy and’.} leading to a “best-path” + Z logBj[s(t'), % ()] %, (18)
classifier in the limit. The optimization of the Lagrangiah, 1
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and

x; until the end of the observation.

lgt)(xiv S, HJ)

TABLE |

COMPUTATION OF FORWARD, BACKWARD AND TRANSITION VARIABLES IN THE DETERMINISTIC ANNEALING ALGORITHM

Scale parameter: v; = v/l;
Forward variables: 74;(1,m) = (I;[m]Bj[m, x;(1)])™
ui(1,m) = ri;(1, m) log(IL;{m] Bj[m, x:(1)])
Backward variables: s;;(L;, m) = B;[m, x;(I;)]"
vij(l, m) = 515(i, m) log Bj[m, x:()]
(=1.N, j=1.J, m=1.5)

Forward pass

Repeatfor t = 2,3, ..I;.{
Repeatfor m=1,2,..5;.{
an = Aj[n,m]B;[m,x;(t)] n=1,2,..5;

5
rii(t,m) = 21 rii(t — 1, n)an
n=

S'
ui(t,m) = 30 0™ (ug( — 1,n) +745(t — 1,7) log o)

n=1

Backward pass

Repeatfor t =1; - 1,.2,1
Repeatfor m =1,2,..5;.{ ‘
Bn = Ajlm, n}B;im,x;(8)] n=1,2,.5;
S.
sty m) = 3 syt +1,m) ™.
n=

S<
Ugj (t, m) = 1211 G ('Ui]‘(t + 1,'ﬂ) + si5 (t +1, n) logﬂn).

Computation of transition variables

wij(t, m,n) = Ag[m, n]%ry;(t, m)si;(t + 1,n),
€j(t,m,n) = A (8 m) syt + 1,m) + 73 (8, m)vys (2 + 1, n)) + wyg (¢, m, n) log Ajm, ]
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of H; which pass through state at timet, i.e.l{((t, j, m) =

{S: ERS Sli(Hj)a S(t) = m}

;-1
A The backward variable corresponding-¢(¢ is
=1 {Z log A;[s(#'), s(t' + 1)] ponding te(t, m)

t'=t

SEU(t, 4, m)

i
+> log B[s(t'), xi(t')]

t'=t

Sij(t, m) = Z
} . (19)

efylét)(x;, s, Hj).

(21)

Bothr;; () ands;;( ) have simple interpretations in terms of
The partial discriminam?) (x;, s, H;) represents the contri- path probabilities: The quantity; (¢, m) represents then-nor-
bution of the firstt frames to the discriminant of state sequenamalizedpartial probability given the first frames of observa-
s in H; for observatiorx;. Similarly, the second partial discrim- tion x;, that the winning state sequence fgwill pass through
inant!” (x;, s, H;) represents the contribution from framia ~ Statem in H; at timet. By “un-normalized,” we mean that the

variable represents the numerator of a Gibbs distribution, and

To explain the FB variables, it is convenient to begin witthat the denominator (the normalization constant) can be com-
descriptions of;;( ), s:;( ), andw;; (). Following this, we pro- puted to ensure that the appropriate probabilities add up to unity

ceed to describe the remaining variables, namgly,), vi; (),
andé;; (). Mathematically,

at each time instartand for each training vectax,. A similar
interpretation can be offered fof; (¢, m)—this quantity is the

un-normalized partial probability given the ldst- ¢+ 1 frames

€Ut g m) statern in H; at timet.

gt my= 3 7 (ki m, H) (20) inx;, that the winning state sequence for will pass through

The quantities;;( ) ands;;() have the important property
The summation in the above equation is performed over all pathst they can be computed iteratively; () using forward it-
inthe set/(t, j, m)which represents all sequences in the trelligrations ands;;( ) using backward iterations. (These iterative
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equations are given in Table I). Fromy( ) ands;;( ), we com-
pute transition variablesy;; (¢, m, n), which are defined as:

The gradient parameters are given by:

;i —1
wiltmmy= 3, @il (22) N D wist )
sEV(t, j,m,n) ol . =1
The above summation is evaluated over paths in the $bijlm,n] NA;[m,n] 1:§Y;

V(¢, 4, m, n), which represents all state sequence jiwhich
traverse through state at timet and state: at timet + 1, i.e.
V¢, j,m,n) = {s: s € §,(H;),s(t) =m,s(t+1) =n}
The quantityw;;(t, m, n) represents the un-normalized proba-
bility that the winning state sequence for observatippasses
through statern. att and state: at¢ + 1 (both states ifd;).

We now definew;;( ) andw;;( ):

U,ij(t, m) = Z

t (t) xi,s, H;
Wi, B oos ) @3)

;-1

Ty —//— Dy ¢, (29)

S
N Z Zwij(t,m,n)

sE€U(t, j,m)
and

Uij(t, m) = Z

seU(t,j,m)

10 (xi, s, Hy)e s Cos 1) ()

The quantityw;; (t, m) may be interpreted as the “un-normal-
ized” conditional expectation dﬁt) (x:, s, H;) given the first

t frames inx; and given that the the winning state sequence
for training vectorx;, will pass through state: in H; at time and
t. Similarly, v;; (¢, m), may be interpreted as the (“un-normal-

ized”) conditional expectation dﬁt)(xi, s, H;) given the last oF

_ ¥ Z tix; (t)=k n=1
8Bj[m,k] _NBJ[m,k] Py lez

S;
Z Z SU(t,m,n)

tix; (t)=k n=1

S
Z Z w;;(t,m,n)

t=13x; (t)=h n=1

Ty

-D;; »,(30)

S;
N Zwm’(l,m,ﬂ)

[; —t+ 1 observations irx; and given that the the winning state

sequence for training vectax;, will pass through state: in
HMM H; at timet.
Finally, we define

Sij(t, m, 7’L) = Z

sCV(t, j, m, n)

I(x;, s, Hj)ea’l(x“s’Hj). (25)

The quantityé;; (¢, m, n) represents the conditional expecta-

_ Y n=1

S;
Z 51](17 m, 7’L)
Ty Dy 31)

Zwij(l,m,n)
n=1

tion of the discriminant (albeit un-normalized) given that the

winning state sequence f&r will pass through state: at time

t and state: at timet + 1 (both states irf;).

We note that the scale parametgrcan also be optimized via
a gradient descent, with the gradient computed through the FB

The variables,;; andv;; are computed in an iterative mannealgorithm. However, in our experiments, we found it simpler to
in the FB algorithm. The;;( ) variables are computed fromuse a line search scheme [28] fopptimization.

wij (), vij (), rij() andsi; ().

Generally, the value of increases as the temperature is re-

Interestingly,r;; (¢, m) ands;;(t, m) reduce to the standardduced, At high temperatures, the emphasis is on maximizing the
FB variables in Baum—Welch re-estimation for the degenerasatropy. The optimization of accomplishes this objective by

special case of = 1 (ignoring the normalization b).

settling at a small value. As the temperature is increased, the line

To obtain the gradient parameters from the FB variables, tbearch prefers larger valuesofThe chosen value represents a

following quantities are defined:
J S; S

> &1, m, n), (26)

J S
Q, = Z Z Z w;; (1, m, n), (27)

and
Si Si
_ Z Zwm(l, m, n)
=g m=1n=1
Di; = T’vﬁi + | 6(ei, J) — QZ - (28)

trade-off between the necessity to keep entropy high (small
and the objective of reducing classifier errors (latgeWhen
annealing ends at zero temperaturéncreases to a high value
in order to minimize( P.}. The final quenching step drivesto
infinity leading to the nonrandom classification rule.

F. Gradient Descent for Free Energy Minimization

To fully exploit the optimization capabilities of the DA ap-
proach, it is important to perform the free energy minimization
steps with an effective and efficient implementation of gradient
descent. Several variations on the general idea of gradient de-
scent are possible (see [16] for a discussion on this topic). In our
experiments, we obtained good results by using descent steps
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that were implemented in the log probability domain. The equthat the task of dividing the observation into segments must be

tion for each iteration of this method is given by performedin conjunction with rather tharindependent ¢fthe
task of classifying the segments.
. —gs(OF/8log A;[m, n L. . X . ) L.
Ajlm, n] = ga(j, m)A;j[m, nle™9:@F/los Al D (32) 0 rinciple, recognition is performed by first implicitly gen-

B;m, K] — go(j, m)B,[m, k]e—gs(aF/alogBj[rn, k]) (33) erating models for each allowed segment string by concate-
nating HMM models of subword units that the string is com-
IL;[m] — g, (§)I1;[m]e 9 (OF/0leli[m]) (34) posed of. Next, the output string model with the highest likeli-
. ) hood (“path score”) is determined through a search procedure.
_In the above equationg, is a scale parameter for the gragjnce the objective is to correctly identify the entire string of
dient, andy,(j. m), gs(j; m), andg,(j), are normalizing con- 45 that composes an observation, the design objective is
stants, which ensure that the relevant probabilities add upd@eq as the minimization of the string error rate (the fraction
unity after the gradient descent. The gradient with respect §oaining strings that are assigned to the wrong string models).
any parameter); in the log domain is given by We envisage the following extension of the original DA for-
OF OF mulation to solve this problem: Given each observation, recog-
dlog A = Jm (35) nition is viewed as a competition between allowed word strings.
Each clasg in the DA formulation is interpreted as a “word
string” instead of a word (the usual isolated word interpretation).
G. Extensions of the DA Derivation The DA optimization is derived in the usual way, with misclas-
This subsection briefly summarizes possible extensiorgification error as the design objective.
some of which have already been addressed to a limited degred)ne concern in the above formulation is the large number of
and others which still await investigation. allowed word strings (classes) that will result with the use of
1) Continuous Observation HMMsThe basic DA approach even a few subword models. However, the complexity of the
that we have presented in this paper can be extended to degitfblem can be drastically reduced by using fully connected
more complex HMM recognizers. The extension of DA to destring models (all subword model sequences are allowed) and
sign classifiers based on continuous density HMMs or sengixtending the FB algorithm.
continuous (tied-mixture) HMMs is possible. The latter case re-
guires some nontrivial but largely understood extensions of the IV. EXPERIMENTAL RESULTS
basic approach.
The underlying principle of the DA approach is the same as

in the discrete observation case. However, the main diﬁerer%%mpa”ng the proposed DA method for HMM design with

In this section, we report the results of our experiments

is that while we optimize the state dependent discrete emiss p conventional design approaches—standard maximum

. . o
probabilities (represented by thg matrix) in discrete obser- Ikelihood (ML) and Generalized Probabilistic Descent (GPD).
vation systems, in the continuous case we optimize means

A/x% first briefly comment on our implementation of each
co-variances of state-dependent multimodal density functior%).mp?tmg deS|gp method_. _Next,' we present the.re.f,ults Of. the
For tied-mixture HMMs, optimization is over a codebook ngpenments,_whlch are divided into two categories: The flrst_
densities (Gaussians) and a matrix of mixing weights. Preli Si-et of e_xperlments demonstrate; performance on syn'ghehc
nary experiments in this direction indicate that the DA extensirg'ﬁne SEres data, a_nd the second is a s_et of _expenments in the
to design continuous observation HMMs [15] outperforms M[ecognmon of English letters spoken in isolation.
and achieves good recognition results. Extensions to tied-mix- ,
ture HMMs are currently under development and investigatiorﬁ: Comments on Implementation

2) Connected Word and Continuous Speech Recogni-l) Maximum Likelihood:The ML method was implemented
tion: We envisage another important and nontrivial extensiomthe conventional way using the Baum—Welch algorithm. First,
of the DA approach to design connected word and contithe observations were uniformly segmented into states, and the
uous speech recognition systems. Although no experimerdgtdte dependent emission probabilities were initialized from the
work has been performed as yet, it appears safe to prediegmental histogram of observations in each state. The tran-
that the theory developed here for isolated word recogniti@ition probabilities were initialized randomly, using a uniform
is extendible to tackle the connected word and continuodsstribution over the allowed interval (0 to 1). The prior prob-
speech problems. In both connected word and continucalsilities were fixed to be consistent with the L-R nature of the
speech recognition, the objective is to minimize the error ratéMMs. Fifty iterations of the maximum likelihood algorithm
in classifying an observation composed of a concatenatedre run. During optimization, the values of all probabilities
string of speech units. A speech unit refers to either a wowekre constrained to lie in the intenv@o—¢, 1 — 10°).
(connected word recognition) or a subword unit such as a phon&) Deterministic Annealing:The DA method was imple-
(continuous speech recognition). In both cases, recognitiorented according to the description in Section Ill, with the
is performed as follows: HMMs are designed for individualollowing specifications: initial value of the scale parameter,
speech units and segments of the input utterance are eagl = 0.1, initial temperature; = 1.0, final temperature,
classified via assignment to an HMM model that represerity = 10, annealing scheduley(7") = 0.97, quenching
a speech unit. The observation is thus mapped to an outpoheduleg(~) = 1.2, and minimum entropyH ,;, = 107°.
string of speech units. An important aspect of the problem T$e detailed information of parameter choices is provided
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here not because of its importance but to facilitate exact TABLE I

i i ; P i+~ A COMPARISON OFTRAINING AND TEST ERRORRATES OBTAINED FOR HMM
re.pmduc“on of the eXpe”men.tS.' .Pr.lor to pf‘arfo,fmlng DA iter CLASSIFIERS DESIGNED USING ML, GPD AND DA METHODS FOR8
ations, the HMMs were each initialized to “flat” models—all prrerenT SYNTHETIC DATASETS. THE TRAINING SETS (TR) ARE OF SIZE
transition probabilities were chosen to be uniform and a?000AND THE TESTSETS (TE) ARE OF SiZE 10 000. FACH DATASET CONSISTS
emission probability distributions were chosen to be identicaPf DA™ FROM & = 2, 3, OR4 CLASSES THE LAST COLUMN SHOWS THE

. . . ERROR OF THEOPTIMAL (BAYES) CLASSIFIER

to the state-independent histogram of observations for the

corresponding class. The value of the initial temperafyreas

) : . . Method ML GPD DA
simply “high enough” based on our experimental observatior Bayes
that the HMM models did not significantly change from the Dataset | X | TR | TE | TR | TE | TR | TE
flat initial models, if the temperaturé, was greater than 1.0. 1 2 | 174 | 100 | 174 | 190 | 65 | 85 | 72

The gradient descent steps were performed in the log domail
2 2 | 316 | 318 | 315 | 312 | 217 | 257 | 243

as described in Section llI-F. For efficient implementation, the
scale parametery was fixed at each temperature and re-opti- 3 2 | 265 | 276 | 258 | 273 | 18.7 | 232 | 219
mized via a line search procedure after the completion of the

= e X 4 3 | 287 | 204 | 284 | 292 | 209 | 246 | 237
optimization steps for the HMM parametef&; } at this tem-
perature. Each gradient descent step was performed simultan 5 3] 270 | 277 | 264 | 273 | 21.0 | 214 } 200
ously on all HMM parameters. The scale parameter forthe gra ¢ 30 325 | 323 | 317 | 317 | 273 | 308 | 268
dient (g; defined in Section IlI-F) was chosen using a simple
7 3| 249 | 227 | 248 | 227 | 174 | 194 | 196

line search procedure. Following each gradient descent step, ¢
gradients were recomputed using the FB algorithm. Gradien 8 4 | 423 | 430 | 420 | 429 | 317 | 366 | 335
descent steps were continued until the fractional improvement
in the free energy was found to be less than a threshold of )
4.0 x 1021 At this point,~ was optimized using line search,B- Synthetic Data Sets
and the temperature was lowered (annealing) before more grawe first experimented with the classification of synthetic
dient descent steps were performed. time series data. The experiments were performed over eight
3) Generalized Probabilistic Desceniffthe GPD method different data sets, each consisting of 2000 labeled time se-
was implemented as a special case of DA—the temperature \wagnces of discrete observations. Each data set was generated
set to zero, the value ef was fixed by the level of smoothing by a system of/f HMMs (J = 2, 3 or 4 depending on the data
desired, and free energy minimization steps were performset). Each data-generating HMM had three, four or five states.
via gradient descent in the log domain, similar to BA. The HMMs used in the classifier were, however, constrained
We recognize that ours is one of many possible implementa-have only three states. The introduction of some modeling
tions of GPD. We chose this implementation to facilitate a dimismatch is appropriate since, in real-world situations, we
rect comparison of the design principles behind GPD and Do not have access to the true model that generated the data.
In the course of our experiments with GPD, we observed thehe number of states that we allow in each HMM during
the performance of GPD depends significantly on both the irglassification is typically determined in an ad-hoc manner.
tialization for the HMM parameters (as expected) and the vallide three methods, ML, GPD and DA were applied to the
chosen fory (the smoothness parameter). training sets. The error rate was measured on the training data
To improve the GPD results, we allowed 20 differenand on an independent test set of 10 000 time sequences. The
values for the parametery and two different initial- classification error results are tabulated in Table Il. Clearly, the
izations for the HMM parameters. The allowed valueproposed DA approach improves the classification performance
of 4 were chosen according to the geometric seriespnsistently and significantly. Improvements over ML and
1.0, 2.0, 4.0,8.0, ---, 524 288.0 which allows for a large GPD were obtained over both training and test data for all data
variation in its value, and which effectively is a “post’-opti-sets. In summary, the DA design method was found to reduce
mization ofy. Two initial sets of ML-designed models werethe error rate measured over the training set by a factor of 1.3
each obtained from different random initializations of the trarte 2.5 compared to the ML and GPD methods. The test set
sition probabilities. For each initialization, the same emissiomprovement factors were in the range of 1.05 to 1.5. Note
probabilities were chosen (state-specific histograms followirtgat in most cases, the test set error rate achieved by the DA
uniform segmentation). ML was implemented as fifty stepspproach was very close to the error rate of the optimal Bayes
of the Baum—Welch algorithm. In the literature, ML-designedlassifier, which is also provided in the Table for reference.
models have often been used as initialization for GPD.
Each GPD model was thus obtained by running 40 differeft Spoken Letter Recognition

GPD experiments—using 20 values-pénd two initial sets of  The recognition of spoken English letters appears as an
HMMs—and choosing the best of the 40 solutions in terms @hportant subproblem within several applications [20], [23]
performance on the training set. including automatic car navigation, automated directory assis-

\When the f h o 10 Fue | dient d tance and voice activated call forwarding.
en the free energy changes frdia to F... in one gradient descent : .
step, the fractional improvement in free energy is definellas— Frow/ Fold- Speech recognizers based on HMMs [33]' [20]' dynamlc

2As mentioned in Section Ill, whefl = 0 andy is fixed, the free energy of time warping (DTW) [32], neural networks [12] and knowl-
DA is equivalent to the GPD cost function. edge-based classifiers [10], [23] have been proposed to tackle
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Discrete ML-designed
feature ———g» full-alphabet No» No No No»,
vector recognizer
Yes Yes

Yes Yes
v v

Discriminative Discriminative

A-set E-set
r recognizer recognizer

Discriminative

I-set : M-set
-set recognizer recognizer

Discriminative

Recognized
letter

Fig. 2. Block diagram of a multipass full alphabet recognition system.

this important problem. In [33] Rabiner and Wilpon presentia a sequence of discrete features for each isolated word. In
comparison of different approaches on benchmark data setsour experiments, we used either 16 or 32 prototypes. We refer
The task of recognizing spoken English letters is known to the observations quantized to 16 prototypes as IBatad
be challenging due to the high confusability of the alphabéhose quantized to 32 prototypes as Batarhe codebook of
Four subsets of English letters are highly confusable: Tlpeototypes was designed from features extracted from all speech
E-set{b, c,d, e, g,p,t v, 2z}, the A-set, {a, k, j}, the framesinthetraining setusinga vector quantizer design method
I-set{i, r, y}, and theM -set{m, n}. Most notorious for its based on successive splitting of prototypes [14, Ch. 11].
confusability is the’-set. In real-world situations, the difficulty We recognize that the front-end feature extraction process
is further aggravated by the presence of background noise atioes not reflect the current state-of-the-art, and improvement
possibly, by the presence of channel distortion. of this part of the system may lead to significantly better clas-
1) Speech Database and Feature Extractiorhe speech sification rates for all competing methods, but this is secondary
used in our experiments is drawn from the ISOLET databaaad orthogonal to our focus in this paper, which is on the fun-
[11]. ISOLET consists of utterances by 150 native Englisttamental HMM training technique.
speakers (75 male and 75 female, ages 14 to 70 years), wher®) Recognizer DesignThe objective of our experiment is
each speaker utters, twice, the 26 English letters in isolatido.design context-independent whole-word models for the let-
The data is divided into five sets (ISOLET1 to ISOLET5), eacters using each design method and to compare the error per-
containing utterances by 30 speakers. The ISOLET speech di@snance. Each word model consists of a 5-state left-to-right
recorded with a Sennheiser HMD 224 microphone that waivM.
low-pass filtered at 7.6 kHz and sampled at 16 kHz. First, we designed an HMM classifier for the entire alphabet
In our experiment, we used this database to design and tgsihg the ML approach. As observed before, the main problem
speech recognizers in the “multispeaker” mode—one set of it-using standard ML appears to be the confusion between mem-
terances of all the letters by the 60 speakers in ISOLET1 abdrs within theE, A, I, andf sets. A straightforward remedy
ISOLET2 was used as the training set and the other set of utt@buld be to use a discriminative design approach such as GPD
ances by the same speakers were used as the test set. or DA to design a recognizer for the entire alphabet. However
The sampled speech signal was divided into 20 ms frameése complexity of discriminative methods is proportional to the
where consecutive frames overlap by 10 ms. A set of featurgguare of the number of classes, and is further aggravated by the
were extracted from each speech file by using a public domaiscessity to use a very large training set to obtain good perfor-
software for end-point detection and feature extractidile mance outside the training set.
end-point detector was employed to eliminate silent framesTo reduce the Comp|exity of the experiments we instead
at the beginning and the end of the speech file. A 28-dimegonsidered a two-pass classifier that can efficiently exploit the
sional feature vector consisting of 14 Mel-scaled FFT cepstigwer of the discriminative design methods. The structure of
coefficients (MFCC) [27] and their first-order time derivativeshe proposed system is motivated by the observation that the
(AMFCC coefficients) was extracted in each frame. The MFCfgain difficulty in alphabet recognition lies within the confus-
coefficients are believed to be relatively robust to noise and caBle sets and, hence, almost all the advantages of discriminative
be easily computed via an FFT. The feature vector in each fragigsign can be reaped if it can be effectively used to distinguish
was quantized using a codebook of “prototypes,” thus resultipgtween letters within each of the confusable sets.

3We used J. He's speech recognition research tool which can be obtained.viﬁ.bIOCk diagram of the two-pass reCOQni.tion SySte_m is shown
anonymous ftp from ftp.informatik.uni-ulm.de/pub/Nl/jialong/spchtool.zip.  in Fig. 2. The system works as follows: First, the discrete fea-
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TABLE Il 014 1
A COMPARISON OFERRORRATES OBTAINED IN CLEAN SPEECHCONDITIONS _E 0.12 Y
FOR EACHCONFUSABLE SET (E-SET, A-SET, I-SET, AND M -SET). TRAINING B
(TR) AND TEST(TE) ERRORS ARESHOWN FOR(a) DATA 16 AND (b) DATA32 § 0.1 4
3 ——Training set error probability
ML GPD DA 2 0.08 —=—Training loss function
Dataset Set 2 \\ \."j:Q -+ Test set error probabiliy
TR TE TR TE TR TE ; 0.06 \‘\‘\-\‘ —»—Test set loss function
E 49.4 60.2 47.6 58.9 25.2 42.8 Z 0.04 S
A 122 | 183 | 67 | 200 | 39 9.4 2
Datal6 £ 0.02
1 10.6 12.8 4.4 8.9 0.6 7.2 o
0 +—————Tr—T :
M 150 | 26.7 12.5 21.7 7.5 15.0 - @ L~ o = o
@ iteration
ML GPD DA Fig. 3. Evolution of the loss function and the misclassification probability on
Dataset Set the training and test sets during GPD design.
TR TE TR TE TR TE
E 32.6 459 311 46.3 204 45.4
A 106 | 206 | 33 17.8 0.6 1.1 DA method improves significantly over both ML and GPD de-
Data32 » 7 | s0 | o6 | 27 | os | 47  sign methods on both training and test sets. The improvements
M 100 | 217 75 233 25 159 are more substantial for Ddié& than for Dat82, especially
®) over the test set.

We have also performed some preliminary experiments on
the robustness of the recognizer to background noise. We first
TABLE IV generated two noisy databases from the ISOLET database by

A COMPARISON OFERROR RATES OBTAINED BY DESIGNING MULTISTAGE adding synthetic white noise and recorded car noise (ata
HMM RECOGNIZERS FOR THEENGLISH ALPHABET. TRAINING (TR) AND TEST

(TE) ERROR ARE SHOWN FOR CLEAN, WHITE NOISE AND CAR NOISE dB energy level relative to the speech signal) to the clean speech
BACKGROUND CONDITIONS FORBOTH DATA16 AND DATA32 files. (Of course, the utterances themselves were recorded in a
noise-free environment and the speaker’s reaction to the pres-

Background | Dataset ML GPD DA ence of acoustic noise is neglected). We next designed a mul-

TR | TE | TR | TE TR TE tipass recognizer for the clean condition as well as for each
Datalé | 325 | 405 | 315 | 401 | 237 | 344 noisy condition. The recognizer for each of the noisy condi-
Data32 | 203 | 299 | 187 | 300 | 150 | 29.5 tions was designed from a training set of speech files with the
White Datalé | 344 | 404 | 342 | 405 | 289 | 381 appro_priate noise syr_1thetically added. The results, in terms of
Noise | pamiz | 271 | 327 | 237 | 319 | 186 | 308 classifier errors obtaln_ed for each m_ethod over the entire al-
. phabet, are tabulated in Table IV, which also shows the error
Datalé | 345 | 405 | 317 | 394 | 250 | 367 . ) . . .
Car Noise rates obtained for car and white noise against the those obtained
Data32 | 252 | 306 | 21.7 | 304 | 159 | 281 for clean speech. The recognizer designated as “ML” represents
a one-pass system that uses only an ML-designed full-alphabet

. recognizer (the first stage of the system shown in Fig. 2). The
tures extracted from the speech signal are presented to a st 5D” recognizer compared in this table was obtained by using

dard ML-designed HMM classifier for the entire alphabet. lfthﬁqe two-pass recognizer of Fig. 2, wherein, “ML” was used

input is mapped by the classifier to a letter outside all the co T the first pass and the second pass classifiers were each de-

fusable sets, the winning letter is declared as the output of { ned using the GPD approach. The “DA” recognizer was also
classifier (only one pass is used). If instead, the input is mapp, 0-pass recognizer with “ML” used in the first pass, but its
to a letter inside any of the confusable sets, then a second cla g(l: '

fier is invoked. The second classifier is one that has been preE— ond pass classifiers were each designed using the proposed

Clean

ously optimized by a discriminative design method (either GP. A\ approach. The "ML" "GPD" and "DA’ recognizers were
or DA) to distinguish effectively between tokens within the ap_e3|gned independently on Dagaand Data2, and for clean,

ropriate confusable set. If a second pass is used. the class hite noise and car noise conditions. The results indicate that
propriate c X X P ' ificant performance gains can be obtained by using DA in-
wins in this pass is declared as the output class. Clearly,

second pass that uses either DA or GPD trained HMMs can i%nazjditioofnl\sm_ and GPD methods in both clean and noisy speech
prove on the performance of the first pass. '

The results of our experiments comparing the desiﬁ _ .
methods are presented in Tables Il and IV. To obtain thé Graphical lllustration of GPD and DA
results in Table Ill, we designed and tested classifiers for eachFigs. 3 and 4 are graphic illustrations of the typical evolution
confusable set using only tokens from that confusable set. Tdfethe error rates during GPD and DA design of HMM classi-
design was performed independently for each confusable dietrs. Both figures correspond to the recognition edet letters
on Datd 6 and Data2 using ML, GPD and DA. The objective in the clean background for the Datal16 set. This particular case
of this comparison is to demonstrate the type of improvemeistchosen only as an illustration. Fig. 3 shows the evolution of
achievable in each confusable set. The results indicate that theloss function{#.)) and the true error raté¥,) during a GPD
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Fig. 4. Evolution of the training and test set error probabilities during DA design.

run. The initial solution which is an ML-designed model corre- TABLE V

sponds to iteration index, 1. From Fig. 3, it is clear thﬁ) A COMPARISON OFAVERAGE EXECUTION TIME (IN SECONDS FOR ML,

.. . . GD AND DA DESIGNS COMPARISONS AREPERFORMED OVER SPEECH
measured on the training set decreases monotonically in eachecoenimion PRoBLEMS OF DIFFERENT SIZES (TWO, THREE, OR NINE

successive iteration of the algorithm. The training and test setCLASSES. THE 2 CLASS AVERAGES WEREOBTAINED FROM THE M -SET
error rates also improve, although not monotonically. The opti- CHASSIFIER DESIGN THE 3-CLASS FROM THEL AND A SETS, AND THE
R . . . 9-CLASS FROM THE E-SET CLASSIFIER DESIGN
mization is terminated when the fractional improvemenr{tiy)
is smaller than a threshold. In this example, the algorithm ter-
minated in iteration 16. The final GPD error rate was 4.4% on
the training set and 8.9% on the test set. 2|30 ] 5] 209
Fig. 4 illustrates the evolution of the error rate in DA, for the Datal6| 3 74 | 1514 | 6928
same dataset. The initial temperature was sé&f te 1. As an-
nealing begins, the error rate continues to remain at the initial
(high) value until the temperature is reducedte- 0.1. At this 2 28 | 404 | 1872
point, there is a sudden change in system parameters and the
training error rate decreases to 7%. We refer to this temperature,
as the first “critical temperature” of the system. Critical temper- 9 | 389 | 25426 | 63863
atures, which are data-dependent, are associated with significant

drops in the free energy of the system, and are typical char@Cperformed over the speech recognition examples of different
teristics of DA optimization. The change in system paramete(s oo (2, 3, and 9 classes) and over different data sets (Datal6

at the critical temperatures is often viewed as the equivalent.gf Data32). The 2-class case representdfreet, the 3-class
“phase transitions” in physical annealing [38]. Following thg,qe represents an average over fii@hd the “A” sets and the

first phase transition, the training error rate briefly appears §.|ass case represents tHeset. In the case of GPD, we ac-
stabilize at 7%, before a gradual drop ensues fore= 0.03 oo nt for time required to run the design method with multiple

until 7" = 0.003, when the error settles at it's final value ofiyjti5lizations as needed to achieve good quality of results. On

0.6%. During the rest of the annealing and during quenching,erage the computational complexity of DA is 86 times that of
there was no change in the error rate on this dataset. The {§stsnd 3.7 times that of GPD.

set error rate, which is also shown in Fig. 4, decreases to 10% simuylations were performed on a Dell Pentium Il PC with

during the first phase transition and finally settles at 7.2%. DA 350 MHz clock and 128 Mbytes of RAM, under the Linux

performed significantly better than GPD on this dataset.  gnerating system. The software was written in C and compiled
using the GNU gcc compiler.

Dataset | Classes| ML GPD DA

9 582 | 22280 | 58345

Data32 3 74 1354 | 6171

V. A NOTE ON COMPUTATIONAL COMPLEXITY

The improvements in recognition performance of DA over VI. CoNcLUSIONS

GPD and ML are obtained at the cost of additional computa- A novel training algorithm for designing HMM-based speech
tional complexity. We emphasize that the additional complexitgcognizers was presented. The proposed training method di-
is entailed only for the design process. The DA method has rextly minimizes the recognizer’'s misclassification error rate
effect on the computational complexity of the classifier itselfinlike the commonly used maximum likelihood approach. At
Table V shows a comparison of the average computation tintbe heart of this method is the deterministic annealing optimiza-
in seconds (total elapsed real time from beginning to end tdn strategy. The new method can be used to design isolated
simulation) required for each design algorithm. The comparisaord and continuous speech recognition systems based on both
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continuous and discrete observation HMMs. The effectiveneREMAPS objective cost function (40) with the DA method’s
of the novel design method was tested on synthetic data as waliddom classification error in (11), especially in light of the re-
as on the problem of training a simple recognizer of isolatddtionship derived in (38).

English letters. Our tests compared the error rates obtained byone difference between the two design methods is that in
using DA against those obtained by using the popular maREMAP, unlike DA, the “scale parametet’is not optimized
imum likelihood approach and the recently proposed generdliring training, but fixed td; (different for each observation).
ized probabilistic descent method. Significant improvements Another difference is the entropy constrained minimization of
error rates were obtained by using DA. The performance imiF.} in DA; entropy constrained optimization is important for
provements were obtained at the cost of a manageable incremszding poor, locally minimal solutions. The fundamental dif-
in design complexity. A detailed investigation into the effectiveference is that DA targets directly the MCE objective without
ness of applying DA to continuous speech recognition is cuaissuming that HMMs are accurate models for speech. It simply

rently in progress. seeks the best choice of parameters to minimize the classifica-
tion error.
APPENDIX Another popular discriminative design method that is related
CONNECTIONS WITH OTHER to REMAP is MMI [1]. Here too the underlying assumption is
DISCRIMINATIVE DESIGN METHODS that the basic data generation model (system of HMMs) is cor-

In this appendix, we discuss some interesting mathematiCgFt To overcome the shortcomings of the ML design method,

relationships between DA optimization and the mathematical®"V design objective is proposed where an information-theo-

formulations of other discriminative design methods. As a firéft'c mutual information measure is evaluated over the observa-

step in establishing these relationships, we consider links BN and the classes. Specifically, the MMI objective is
tween the probabilities that define the random classifier in DA 1 X
(PIs, j|x;]) and the standard generation probabilities of obser- max {I =N Z 1(j, Xi)} (41)
vations based on the stochastic hidden Markov model. ’ i=1

The HMM defines the joint probabilityi[s, x;|j] that state \herel(-, -) represents the mutual information of two random
sequence and observatiox; are generated if the word corre-yariables. Assuming that all classes are equi-probable, the MMI

sponding to clasg is utteredt This joint probability is related opjective can be equivalently stated as
in a simple manner to the normalized log likelihood parameter,

I(x;, s, H;), which we interpreted simply as a path score in the . 1 & -
DA formulation. Specifically, g {1 N ; log [Ci|xi]} ' (42)
Bls, xilj] = 1G> 1), (36)  Comparing (42) with (40), it is clear that the MMI objective
Assuming a uniform priof(j) = 1/.J, we can compute tha function is similar to REMAPs, with the exception of the log-
posteriori probability: based nonlinear scaling of the probabilities that is used in MMI.
olilloxi,5,Hj) One can interpret log scaling as a means to increase the relative
ols, jlxi] = - . (37) importance of misclassified observations (those associated with
Sy ittt smaller value ofi[c;|x;]) on the cost function, and thereby im-
i’ s'CS, (Hyr) prove the efficiency of the design method.
Note that (37) is strikingly similar to the Gibbs probability mass Let us recall the relationship we derived in (38), in order
function in (10): to interpret the MMI objective from the DA viewpoint. MMI
. . : consists, roughly, of minimizing the log of the random classi-
pls, jlxi] = Pls, jlxi] it v =1 (38) fier's misclassification probability, averaged over the training
although this particular choice of is very arbitrary from the set. However, as in REMAR,; is not optimized during MMI
viewpoint of DA. Further, by marginalization we get: design, but fixed af;. Moreover, no entropy constrained opti-
a1 . mization, or annealing, is performed.
plixil = CSE(:H ) Pls, jx] (39) Note that both REMAP and MMI rely on a fundamental as-
S i j

_ _ sumption that the underlying stochastic model (HMMs) is valid.
Assuming that the HMMs are in fact the correct models fq8oth methods attempt to optimize all the HMM models jointly,
the observed patterns, we can compute the Bayes classifighough neither directly targets a minimization of the classi-

whose classification error probability is given by: fier's error rate. In contrast, Generalized Probabilistic Descent
R 1 X (GPD) [18], completely discards the stochastic model suggested

P=1- N pleilx;] (40) by HMM. Instead, it views the HMM classifier simply as a max-
i=1 imum discriminant based mapping and attempts to optimize the

wherec; is the correct class for observatia. A natural de- discriminant parameters (HMM parameters). Since the true mis-

sign objective is to minimizé’.. This is precisely the goal of classification cost function is piece-wise constant and therefore

the REMAP design method [6]. It is interesting to compardifficult to optimize, GPD attempts to minimize a smooth ap-
4 , _ _ Proximation to this cost. In this sense, the GPD principle is
Henceforth, we use the “tilde” symbol while referring to probabilities thal o L

are based on the stochastic hidden Markov model and thereby distinguish tH&@re closely related to DA than it is to the other discrimina-

from probabilities associated with the random classifier. tive methods.
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We now proceed to derive the GPD method and relate itlkermal equilibrium at zero temperature. Note, however, that in
design objective to the free energy minimization of DA. IDA, the iterations at zero temperature start from HMM models
GPD, the piecewise constant classification error cost surfaoberited from the optimizations performed at higher tempera-
is smoothed at many levels. At the lowest (optional) level, thares. In contrast, the GPD models are usually initialized heuris-

hard decision of choosing the path with the highest likelihodétally; one common initialization for GPD is maximum likeli-
in an HMM is replaced by a soft-max function. Thus, instealood designed models.

of defining the discriminant for clagsas the likelihood of the

Another important difference is the role of the scale parameter

most likely path in an HMM, the following soft discriminant~. While ~ is chosen heuristically in GPD, the value pfat

may be used:
l/a
eozl(x, s, H;)

|Su; (Hy)

2.

sCS,; (Hj)

gj(X, HJ) = 10g

(43)
A second level of smoothness is introduced in GPD throug
the definition of theclass misclassification measur8uch a
measure replaces the hard decision of a maximum discrimin
classifier by one that assigns nonzero weights to all classes
pending on the class discriminants. The standard definitionco
this quantity in GPD approaches is

1/n

dj(x) = —g;(x, H;) +logy

Z en9gr(x, Hy)

k, k%5
(44) 1]
The third and final level of smoothing in GPD is via the use of
the “loss function.” Although a number of different choices for
this function have been suggested, the most common one (se[é]
e.g., [18]) is

1 (3]
) = T e R
In GPD, the overall performance of a classifier is measured

by

(5]
i (6]

which must beminimizedduring design by optimizing the clas-
sifier parameterg§ H, }. 0

GPD uses three different smoothing parametessr( and
k), and a bias parametet, The values of these parameters are
usually chosen heuristically. In some GPD implementations, 8]
including the experiments in [8] and [7], the smoothing pa-
rameters were chosen to be identical. Under these special cir9]
cumstances, it is possible to establish a connection between the
re-estimation formulae of GPD and those of DA. Specifically,j; g
the GPD design objective is equivalent to the minimization of
the average classification err@F.) in the DA formulation if
two special conditions hold. First, the three GPD smoothnes%ll
parameters are chosen to be equald.es n = k = v, where  [12]
~ is the scale parameter used in DA. Second, the bias parameter
is set tod = —log(J — 1), whereJ is the number of classes
(words).

At this point, we wish to re-iterate that unconstrained mini-[14]
mization of the random classifier's classification er(@t.) is (15
equivalent, in the DA context, to attempting free energy mini-
mization at zero temperature without performing any annealing,
Thus, under the special circumstances described above, G
is identical to the final step in DA optimization, i.e. achieving

zero temperature in DA is inferred from its optimal value at the
previous temperature. Moreoverijs optimized in DA, while it
remains fixed in GPD iterations.

Interestingly, the final sequence of “quenching steps” that we
have proposed at the end of the DA procedure may be viewed
s a series of GPD iterations performed as the smoothness pa-

metersq, 1 andx are gradually increased. (To the best of our
knowledge, such a scheme has not been proposed for GPD.) The
Blective of guenching is to gradually eliminate any residual
1oothness in the free energy thereby ensuring that the DA
st function converges ultimately to the actual misclassifica-
tion error of the classifier.
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