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Deterministically Annealed Design of Hidden
Markov Model Speech Recognizers
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Abstract—Many conventional speech recognition systems are
based on the use of hidden Markov models (HMM) within the
context of discriminant-based pattern classification. While the
speech recognition objective is a low rate of misclassification,
HMM design has been traditionally approached via maximum
likelihood (ML) modeling which is, in general, mismatched
with the minimum error objective and hence suboptimal. Direct
minimization of the error rate is difficult because of the complex
nature of the cost surface, and has only been addressed recently by
discriminative design methods such as generalized probabilistic
descent (GPD). While existing discriminative methods offer
significant benefits, they commonly rely on local optimization via
gradient descent whose performance suffers from the prevalence
of shallow local minima. As an alternative, we propose the deter-
ministic annealing (DA) design method that directly minimizes
the error rate while avoiding many poor local minima of the cost.
DA is derived from fundamental principles of statistical physics
and information theory. In DA, the HMM classifier’s decision is
randomized and its expected error rate is minimized subject to a
constraint on the level of randomness which is measured by the
Shannon entropy. The entropy constraint is gradually relaxed,
leading in the limit of zero entropy to the design of regular
nonrandom HMM classifiers. An efficient forward–backward al-
gorithm is proposed for the DA method. Experiments on synthetic
data and on a simplified recognizer for isolated English letters
demonstrate that the DA design method can improve recognition
error rates over both ML and GPD methods.

Index Terms—Deterministic annealing, discriminative training,
hidden Markov model, isolated word recognition, minimum clas-
sification error.

I. INTRODUCTION

I N THE late 1960s, Baum and his colleagues presented a se-
ries of papers (including [4], [5]) investigating the mathe-

matical structure and practical usefulness of Hidden Markov
models (HMMs). In the years that followed, it became gener-
ally known that HMMs can be usefully employed for speech
recognition. This important realization is due to the pioneering
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work of several researchers, notably Jelinek [17], Baker [3], Fer-
guson [13] and Rabiner [29], [30]. Since then, the HMM-based
classifier has steadily replaced template matching as the main
paradigm for speech recognition.

In HMM-based speech recognition, the input speech is di-
vided into segments, each of which is classified to an element
of a finite lengthdictionaryof speech units. Speech units may be
words (in isolated word recognition) or subword phones (in con-
tinuous speech recognition). Classification is performed on each
segment via competition between HMMs that represent speech
units in the dictionary. In isolated word recognition, the seg-
ments correspond to words, and the task of dividing the input
speech into segments is usually performed prior to, and inde-
pendent of, the classification task. In continuous speech recog-
nition, segments correspond to subword units and the tasks of
segmentation and classification are performed jointly.

For superior performance, an HMM speech recognizer must
be trained on a large speech database. Since recognition is
performed by competition between HMMs, ideally, the training
procedure shouldjointly optimize all competing HMMs to
minimize the training error rate, which is defined as the
fraction of the training set that is misclassified. In isolated
word recognition, the error rate corresponds to the fraction
of training words that are misclassified. In continuous speech
recognition, the error rate may be measured as the fraction of
training sentences that contain any recognition errors.

One important design difficulty is the complex nature of the
error rate cost surface. This surface, which represents the clas-
sifier error as a function of the HMM parameters, is piecewise
constant and riddled with shallow local minima. In principle, a
design procedure seeks the system parameters that globally min-
imize this cost surface, but standard optimization methods such
as gradient descent will normally fail to produce the optimal so-
lution. The prevailing approach to speech recognizer design cir-
cumvents this difficulty by discarding the minimum classifica-
tion error (MCE) objective, and adopting instead the potentially
mismatched maximum likelihood (ML) objective. The choice of
ML leads to a smoother cost surface and also facilitates indepen-
dent optimization of each HMM via the efficient Baum–Welch
algorithm [4], [5].

The common justification for the employment of the ML cri-
terion is its asymptotic equivalence to the MCE criterion, which
is valid if infinite training data is available and if the HMM struc-
ture is a precise model for speech production. Unfortunately, in
practical speech recognition problems, neither of the above as-
sumptions hold. Thus, there is an (at least theoretical) advantage
to direct optimization of the MCE rather than the ML criterion.

The shortcomings of ML have been recognized by several
researchers (e.g., [1], [2], [6], [18], [7]) who provided strong
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reasons for discarding it in favor ofdiscriminative design
methods[31, Sec 5.6] that jointly optimize all the HMMs
in a classifier. One promising discriminative design method,
Generalized Probabilistic Descent (GPD), was proposed and
extended by Juang, Katagiri and others in a series of papers
that are reviewed in [21]. Not surprisingly, GPD and other
discriminative approaches are applicable to general (not
necessarily speech) structured pattern classifiers. The central
idea in GPD is to approximate the piecewise constant cost
surface by a smooth and differentiable function. Once the cost
is smoothed, gradient methods may be used to optimize the
classifier’s parameter set and find a local minimum on the
(smoothed) surface. Discriminative methods have been applied
to the design of speech recognizers based on both template
matching [7], [24] and HMMs [9], [18].

In the context of HMMs, it was shown in [9] and [18] that
GPD provides a significant improvement in recognition accu-
racy over ML design. Our starting point, however, is with the
observation that while cost surface smoothing allows the use
of gradient descent optimization, the smoothed cost surface is
nevertheless highly complex with numerous shallow local min-
imum traps. Consequently, GPD may often converge to a poor
local minimum and yield suboptimal recognition performance.
The experimental results in this paper validate this observation.

From the preceding arguments, it is clear that direct mini-
mization of the classifier error rate requires the use of a non-
convex optimization method that can avoid shallow local min-
imum traps on the cost surface. In this paper, we present a pow-
erful optimization method that builds on the technique of de-
terministic annealing (DA). DA is derived from fundamental
principles in statistical physics and information theory. It has
already been successfully employed to solve a number of diffi-
cult optimization problems in source coding and pattern recog-
nition (for a tutorial see [37]). The DA formulation for clustering
and related problems was first proposed in [38]–[40]. Later, DA
was extended to allow the inclusion and imposition of structural
constraints [25]. This extension has considerably broadened the
scope of its applications. Recently, DA methods have been de-
veloped to design pattern classifiers [25], regression functions
[36], [34] and a new class of source coding systems [35]. DA
has previously been proposed for HMM design, albeit with ML
as the design objective [26].

The design of discriminative HMM-based speech recognizers
requires an important and nontrivial extension of the DA ap-
proach. Our method is general and can be applied to design
both isolated word and continuous speech recognizers that use
discrete, continuous observation, or tied-mixture HMMs. This
paper’s focus is on the introduction of the basic derivation of
DA for speech recognition, and preliminary demonstration of its
usefulness and potential. We therefore restrict the formulation
and experiments here to the simpler case of isolated word recog-
nition with discrete observation HMM systems. The formula-
tion is supplemented with the derivation of a low complexity
forward–backward (FB) implementation, which may be viewed
as a generalization of the Baum–Welch re-estimation algorithm.

The results section reports on HMM design experiments
in time-series classification and in isolated word recognition.
The results compare DA with ML and GPD, and demonstrate

Fig. 1. An HMM-based speech recognition system viewed as a maximum
discriminant classifier.

that DA offers consistent accuracy improvements over the
competing methods.

The paper is organized as follows: In the next section, we re-
view HMM-based isolated word recognizers, present its central
design issues and motivate the need for a powerful optimization
technique. In Section III, we briefly review DA and derive an
explicit DA algorithm for the HMM design problem, including
the forward–backward implementation. The section ends with
comments on extensions of the basic DA formulation to con-
tinuous speech recognizers and continuous observation HMMs.
Section IV summarizes the experimental results, and Section V
offers comments on the computational complexity of the DA
method. In the Appendix, we establish and briefly discuss con-
nections between DA and other discriminative design methods.

II. HMM-B ASED ISOLATED WORD RECOGNITION

The input speech is divided into fixed-length frames and a
short-term feature vector (such as a vector of cepstral coeffi-
cients) is extracted per frame. Next, an end-point identification
algorithm is used to divide consecutive speech frames intoseg-
ments. Each segment is then mapped to a word in the dictio-
nary by an HMM-based pattern recognizer. Grammatical con-
straints and/or language models may further be used to improve
the recognition accuracy.

The pattern classification step is performed by a set of
HMMs, one per word in the dictionary. The classification
procedure consists, in fact, of competition between the HMMs
(Fig. 1). Each HMM, , computes aclass discriminant
given , the feature vector representing a speech segment. The
segment is ultimately labeled with the index of the “winner”
which is the dictionary entry corresponding to the HMM with
the highest class discriminant.

A. HMM Classifier Design

Obtaining good recognition performance depends to a large
degree on careful training of the classifier’s HMM parameters,
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which determine the class discriminants. During training, the
system accuracy is measured by the classification error rate, i.e.,
the fraction of training words incorrectly recognized by the clas-
sifier. We assume that the training data has been divided into
segments that correspond to isolated words and labeled with
the correct dictionary entries. The classifier design problem is,
therefore, to adjust the HMM parameters to minimize the error
rate measured over the labeled training data. We emphasize,
however, the generality of the basic approach which is not re-
stricted to the above simplifying assumptions.

Even this simple classifier design problem is extremely dif-
ficult to solve because of the piecewise constant nature of the
cost surface which prevents the use of gradient-based optimiza-
tion. As mentioned in the introduction, the common approach
to circumvent this difficulty is to discard the MCE criterion and
adopt, instead, the potentially mismatched ML criterion. The
training data is divided into subsets of identically labeled data
(segments that correspond to the same dictionary entry) and an
HMM is designed for each subset via maximum likelihood es-
timation of the HMM parameters.

B. HMM Design for Minimum Classification Error

The starting point for this work is the realization that max-
imum likelihood is potentially mismatched to the desired ob-
jective of HMM design. Speech recognition is fundamentally a
pattern classification problem whose ultimate objective is not
to accurately model utterances of particular words but, rather,
to distinguish between them while making as few errors as pos-
sible. The classifier’s performance is, therefore, measured most
appropriately by its error rate and, if possible, this cost should
be directly minimized during design via a joint optimization of
all HMMs.

It is important to note that a classifier system that is designed
by an ML technique is a close relative of the Bayesian classifier
which is optimal in the sense of MCE. However such optimality
depends on the availability of the precise probability distribu-
tions, and on the (improbable) assumption that the HMM prob-
abilistic model is in complete agreement with the speech source.
Even if the model structure were correct, in reality, one only has
access to reasonably short training sets that do not allow reli-
able estimation of the probability distribution parameters. Con-
sequently, the performance of ML may differ significantly from
that of MCE methods. This fact has been observed by several re-
searchers and we briefly review below some of the contributions
that are particularly relevant to this work. The results section
herein will also provide ample evidence to support this obser-
vation.

As an aside, it should perhaps be noted that the mismatch be-
tween the true objective and the commonly used design criterion
has been pointed out for the related problems of general pattern
classifier design and regression function design. This realization
has led to new approaches [19], [36], [25], [34] that directly op-
timize the true objective and demonstrate significant improve-
ments in performance.

In the specific context of HMM-based classifier design, the
inadequacy of the ML approach has attracted much attention.
One important example is the work in [1] which demonstrates

the suboptimality of ML and proposes a maximum mutual in-
formation (MMI) criterion as an alternative. In MMI design, the
HMM parameters are optimized such that the resulting statis-
tical model maintains the highest possible mutual information
between the feature vectors and the classes when measured over
the training set. Another proposal is the method of corrective
training [2] which is related to, and improves on, MMI. Cor-
rective training applies heuristic measures to train the HMM
parameters to generate high likelihood scores for the correct
classesand simultaneously generate low likelihood scores for
the incorrect classes. Experiments indicate that improvements
over standard ML are obtained by MMI and, to a larger degree,
by corrective training. We note that both corrective training and
MMI attempt to reduce error rates indirectly by increasing class
separability. Neither method attempts a direct minimization of
the error rate cost function.

Another interesting approach to solve the joint optimization
problem is the recursive estimation and maximization of a-pos-
teriori probabilities (REMAP) algorithm [6]. Although REMAP
was proposed in the context of the design of hybrid neural-net-
work/HMM recognition systems, it can in principle be applied
to the design of standard HMM recognizers. REMAPs design
objective is to maximize the a posteriori probabilities of the cor-
rect class, given the feature vector. REMAP is claimed to have
better optimality properties than ML and can be applied to de-
sign any statistical classifier. However, it relies heavily on the
assumption of the validity of the statistical model (in this case,
the HMM model).

From the perspective of the approach we take in this paper, a
particularly promising alternative is the discriminative learning
method based on generalized probabilistic descent (GPD) [19].
GPD is motivated by the understanding that a major difficulty
in minimizing the error rate arises from the piecewise-constant
nature of the cost surface, which implies that derivatives with
respect to the design variables vanish almost everywhere. More
specifically, since the training set is of finite length, an infinites-
imal change in the value of the design parameters will not change
the classification of any training utterance and hence will not
causeanychange in theerror ratecost.Clearly, it isnotpossible to
directly apply gradient based optimization. To overcome this dif-
ficulty, GPD replaces the piecewise-constant cost with a smooth
and differentiable approximation to it. The smoothed cost may
be minimized by a gradient descent method. The result is a local
minimum which, hopefully, approximates well the performance
of the globally optimal solution. The advantage of GPD is that
it does not make any assumptions on the validity of the statis-
tical model (HMM) but, instead, directly adjusts the classifier pa-
rameters to minimize the true cost. Experiments in [9] and [18]
show that discriminative design provides significant improve-
ments over ML design for HMM-based classifier systems.

However, an important and fundamental drawback of GPD
is that, even after smoothing, there are numerous shallow
local minima that riddle the cost surface. Consequently, gra-
dient-based algorithms that seek a local minimum on the cost
surface may easily be trapped in shallow local optima, and may
produce a substantially suboptimal classifier. It is, therefore,
our premise here that a powerful optimization technique will
provide the means for realizing the full potential benefits of a
direct minimization of the classification error.
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In summary, discriminative methods such as GPD are an im-
portant step toward optimality as they target the right cost ob-
jective-minimum classification error. There are, however, sub-
stantial additional gains to be recouped by using a powerful op-
timization algorithm that offers the capability to avoid shallow
local minima.

III. D ETERMINISTIC ANNEALING

A. Problem Formulation

An HMM classifier is to be designed given alabeled training
set,

(1)

wheretraining pattern is known to be an utterance of speech
unit , which is an entry in the given dictionary of speech unit
labels . The pattern is in fact a sequence
of observation feature vectors extracted from a segment of
speech frames, .

The exact nature of the observation feature vector is ap-
plication dependent. In many practical implementations,
consists of cepstral coefficients or linear prediction coefficients
and their derivatives. Since these features take value in a con-
tinuous space ( ), such classification is normally per-
formed by continuous observation HMMs. In a number of appli-
cations, however, the high computational complexity involved
in modeling continuous observations is not acceptable, and the
classification is implemented with discrete observation HMMs.
Here, the feature vector is extracted from the speech frame and
then vector-quantized to an entry in a pre-designed codebook of

prototype vectors. The sequence of quantization indexes
obtained by this process is the discrete observation vector or
training pattern, . The derivation in this paper assumes the dis-
crete observation case, . However,
the method is general and extendible to the case of continuous
observations [15].

The HMM recognition system for discrete observations
consists of a set of HMMs, , which
correspond to the words in the dictionary. The model
has states and is fully specified by the parameter set

where, following the standard notation,
is the state transition probability matrix, is the

emission probability matrix and is the ( )
initial state probability vector.

We consider HMM classifier systems that use the common
“best path” discriminant approach. Note, however, that this as-
sumption is not required, and the design method can be modified
to the case where the discriminant is obtained by appropriate av-
eraging of the likelihood over all paths in the HMM.

The best path classifier works as follows: Given a training
pattern, , for each HMM, , and for each sequence (length

) of states, in the trellis of , we
determine the quantity (“path score”)

(2)

which is the normalized log of the joint probability of observa-
tion and the state sequence,given the parameters of .
We use the conventional notation: denotes an element of
matrix ; and denotes an element of the vector. We note
that although normalization of the likelihood (by the length of
the observation) does not change the problem definition and is
not commonly used, we find it useful for the DA algorithm de-
scription.

Next, we maximize the path score over all paths in the trellis
of and determine the score of model :

(3)

where is the set of all state sequences of lengthin the
trellis of . The quantity approximates the likelihood
of model given the observation, . Interpreting as the
discriminant for class, we adopt the traditional discriminant-
based classification rule (Fig. 1):

(4)

The classification procedure can be viewed as a competition be-
tween paths. The HMM containing the path with the highest
score is declared “winner” and the classifier assigns pattern
to the corresponding class, or word in the dictionary. A known
advantage of the “best path” discriminant classifier is that the
search for the winning path can be reduced to a sequential op-
timization problem that can be solved via an efficient dynamic
programming algorithm.

The HMM-based classifier should, in principle, be optimized
by adjusting the HMM parameters to minimize the empir-
ical misclassification rate measured over the training set:

(5)

Here is the Kronecker delta function:
if
otherwise.

The introduction section of this paper provides a detailed
discussion of the difficulties in solving the above optimization
problem. These difficulties are due to the piecewise constant na-
ture of the cost function, , and the abundance of shallow local
minima.

B. Randomized Classification Rule

We adopt the DA formulation whose fundamental principles
are: a) Introduce randomness in the classification rule during the
design process; b) Minimize the expected misclassification rate
of the random classifier while controlling the level of random-
ness via a constraint on the Shannon entropy; and c) Gradually
relax the entropy constraint so that the effective cost converges
to the misclassification cost at the limit of zero entropy (non-
random classification).

Thus, we replace the original (nonrandom) best path clas-
sification rule with a randomized classification rule. While
the nonrandom rule assigns a pattern to a unique win-
ning state sequence, the randomized rule associates each
pattern, , with every state sequence,, in the trellis of
every model, , with probability . Naturally, these
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conditional probabilities are normalized functions such that
.

The probabilities, , are in fact, the representation of
the randomized classification ruleand should not be confused
with the probabilities characterizing the HMM model itself.

is the probability that the classifier will selectas the
winning path and, consequentially, as the winning HMM.
We propose to derive the classification probabilities from basic
principles. We first note that the nonrandom classifier takes in
pattern and finds the state sequencewith the highest score
among all state sequences in all HMMs, in order to determine
the class. We may trivially formulate this operation via the
criterion function

(6)

where and is the HMM to which

belongs. Clearly, this function is maximized by applying to each
the best-path classification rule:

(7)

We next define the optimal random classifier as the distribu-
tion that maximizes:

(8)

which is the immediate probabilistic generalization ofin (6).
Note that if we simply maximize over all distributions,

, we will still obtain the rule of (7) that assigns, with
probability 1, pattern to the path with the highest likelihood
score. While the best-path rule will ultimately be used once the
design process is complete, it is important to realize that, during
design, it is advantageous to maintain randomness in the classi-
fier decision as it makes the design more robust to shallow local
minima. Toward this end, we propose instead to maximize
subject to a constraint on the level of randomness in the classi-
fication rule, which we measure by the (conditional) Shannon
entropy,

(9)

More specifically, we maximize the Lagrangian

where the last term is used to impose that the distribution is nor-
malized to 1. By straightforward differentiation and constraint
imposition we obtain that the optimal probability distribution is
the Gibbs distribution,

(10)

The level of Shannon entropy corresponding to this Gibbs dis-
tribution is determined by the positivescale parameter . For

, the distribution over paths is uniform. For finite, posi-
tive values of , the Gibbs distribution indicates that we assign
higher probabilities of winning to state sequences with higher
likelihood scores. In the limiting case of , the random
classification rule reverts to the nonrandom “best path” classi-
fier, which assigns a nonzero probability of winning only to the
path with the highest likelihood score as in (7).

We re-emphasize that the random classifier paradigm is
adopted only during design. Ultimately, the DA algorithm will
produce a regular, nonrandom HMM classifier which is based
on the best-path discriminant.

C. The Effective Cost Function and the Statistical Physics
Analogy

So far we have derived a framework for randomizing the clas-
sifier, which captures the “best path” classification rule in the
limiting (zero entropy) case. We now apply this framework to
actually minimize the error rate of the classifier. The average
misclassification rate of the random classifier is given by:

(11)

which is a straightforward randomization of (5). The quantity
is the probability that the correct classwill be se-

lected as winner, and can be computed by summation over paths:

(12)

Thus, the design problem for the random classifier can be stated
as follows: Find the optimal values of the model parameters

and , which determine so as to minimize the
misclassification probability (11).

Note that direct minimization of (11) would lead to a non-
random ( ) distribution. This may be deduced by an-
alyzing the gradient of the error rate with respect to the scale
parameter, :

(13)

where denotes expectation with respect to the Gibbs
distribution of (10). We assume that the HMM parameter
set is “reasonable,” that is, the expected path dis-
criminant for paths in the trellis of the “correct” HMM,

, is on the average (over the
training set) greater than the expected path discriminant over all
paths in all HMMs, . Hence, (13) is negative
and drives to infinity to produce a nonrandom distribution. Of
course, such a nonrandom, best-path classifier is the ultimate
goal of the design procedure. However, as mentioned earlier,
we wish to enforce this “nonrandomness” gradually during the
optimization, to avoid shallow local minimum traps.

We, therefore, pose the problem of minimizing while
maintaining a level of randomness in the classifier through a
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constraint on the entropy: . This constrained optimiza-
tion problem is, equivalently, the minimization of the uncon-
strained Lagrangian cost function,

(14)

where is the Lagrange multiplier which is referred to as the
“temperature” to allude to an interesting analogy to statistical
physics: The Lagrangian minimization of (14) is analogous
to the classical definition of thermal equilibrium in statistical
physics. The quantity, , is the Helmholtz free energy of a
thermodynamic system (strictly speaking it is the Helmholtz
thermodynamic potential) with average energy , entropy

, and temperature . A fundamental principle of statistical
mechanics states that the free energy is minimized when
the thermodynamic system reaches thermal equilibrium at
given temperature . From the viewpoint of our optimization
problem, we are ultimately interested in thermal equilibrium at

which corresponds to direct minimization of , our
ultimate objective.

D. Annealing

The statistical physics analogy suggests that, in order to min-
imize , it is beneficial to implement an annealing process,
that is, gradually lower the temperature while maintaining the
system at thermal equilibrium. This process, of course, gradu-
ally reduces the entropy, or randomness, of the system. We start
at a high level of , where the sole objective is entropy maxi-
mization, which is achievable by the uniform distribution. We
then gradually reduce while tracking the minimum of . At

, the optimization of seeks the desired solution which
is the minimum of with respect to and . For prac-
tical reasons, it is efficient to end the annealing procedure with a
“quenching” step—when falls below a threshold we increase

in gradual steps to a very high value. Whenis sufficiently
high, the classifier reduces to the nonrandom “best-path” clas-
sifier.

The algorithm can be summarized as follows:

1) Set parameters: initial temperature, final temperature,
, minimum entropy, , annealing schedule function

and quenching schedule function, .
2) Set , .
3) (We use gradient descent

in our simulations)
4) Lower temperature: .
5) If goto step 3; else goto step 6;
6) Quenching: Increase according to ,

7) If goto step 6; else end design.
In our experiments, we used the following simple exponen-

tial annealing and quenching schedules: , and
. An analytical treatment of the question of an-

nealing schedules has not been attempted as yet.
The annealing process yields a sequence of solutions at de-

creasing levels of entropy and leading to a “best-path”
classifier in the limit. The optimization of the Lagrangian,,

at each temperature is accomplished by a series of gradient de-
scent steps based on the gradients:

(15)

and

(16)

Here, where
is the Kronecker delta function. The operation

represents the expectation of function taken over all state
sequences in the trellises of all HMMs. Hence,

(17)

E. Forward–Backward Algorithm

An important aspect of the proposed method is the discovery
of an efficient forward–backward (FB) algorithm to determine
the gradients in (15) and (16). Note that the summation in both
gradient expressions is taken over all state sequences in the
trellis of the HMMs. Since the number of state sequences grows
exponentially with the number of states in the HMM, it is im-
practical to compute each gradient by simply summing up the
contributions of individual state sequences.

The basis of the FB algorithm is a simple mathematical ma-
nipulation, which reveals that the gradients can be efficiently
evaluated via a forward–backward calculation that drastically
reduces the number of computations. The resulting computa-
tional and memory complexity is proportional to the square of
the number of states in the HMM. Thus, the complexity scales
similarly to that of maximum likelihood.

The FB algorithm for computing the gradient parameters is
implemented in the following manner: For each training pat-
tern, , and each class,, we perform an initialization, a for-
ward pass, and a backward pass as shown in Table I. In the for-
ward pass, the forward variables, and are
computed for all the states, in a sequential
manner for . In the backward pass, the back-
ward variables, and are computed for these
states in a reverse-time sequential manner, .
Next, the “transition variables,” and
are computed for each transition from stateto state for

.
For the purpose of interpreting the forward and backward

variables, it is useful to first define two quantities that we refer
to as “partial discriminants”:

(18)



RAO AND ROSE: DETERMINISTICALLY ANNEALED DESIGN OF HIDDEN MARKOV MODEL SPEECH RECOGNIZERS 117

TABLE I
COMPUTATION OF FORWARD, BACKWARD AND TRANSITION VARIABLES IN THE DETERMINISTIC ANNEALING ALGORITHM

and

(19)

The partial discriminant represents the contri-
bution of the first frames to the discriminant of state sequence

in for observation . Similarly, the second partial discrim-
inant represents the contribution from framein

until the end of the observation.
To explain the FB variables, it is convenient to begin with

descriptions of , , and . Following this, we pro-
ceed to describe the remaining variables, namely, , ,
and . Mathematically,

(20)

The summation in the above equation is performed over all paths
in the set which represents all sequences in the trellis

of which pass through state at time , i.e.
.

The backward variable corresponding to is

(21)

Both and have simple interpretations in terms of
path probabilities: The quantity represents theun-nor-
malizedpartial probability given the first frames of observa-
tion , that the winning state sequence forwill pass through
state in at time . By “un-normalized,” we mean that the
variable represents the numerator of a Gibbs distribution, and
that the denominator (the normalization constant) can be com-
puted to ensure that the appropriate probabilities add up to unity
at each time instantand for each training vector, . A similar
interpretation can be offered for —this quantity is the
un-normalized partial probability given the last frames
in , that the winning state sequence for, will pass through
state in at time .

The quantities and have the important property
that they can be computed iteratively: using forward it-
erations and using backward iterations. (These iterative
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equations are given in Table I). From and , we com-
pute transition variables, , which are defined as:

(22)

The above summation is evaluated over paths in the set
, which represents all state sequences inwhich

traverse through state at time and state at time , i.e.

The quantity represents the un-normalized proba-
bility that the winning state sequence for observationpasses
through state at and state at (both states in ).

We now define and :

(23)

and

(24)

The quantity may be interpreted as the “un-normal-
ized” conditional expectation of given the first

frames in and given that the the winning state sequence
for training vector, , will pass through state in at time
. Similarly, , may be interpreted as the (“un-normal-

ized”) conditional expectation of given the last
observations in and given that the the winning state

sequence for training vector, , will pass through state in
HMM at time .

Finally, we define

(25)

The quantity represents the conditional expecta-
tion of the discriminant (albeit un-normalized) given that the
winning state sequence for will pass through state at time

and state at time (both states in ).
The variables and are computed in an iterative manner

in the FB algorithm. The variables are computed from
, , and .

Interestingly, and reduce to the standard
FB variables in Baum–Welch re-estimation for the degenerate
special case of (ignoring the normalization by).

To obtain the gradient parameters from the FB variables, the
following quantities are defined:

(26)

(27)

and

(28)

The gradient parameters are given by:

(29)

(30)

and

(31)

We note that the scale parameter,, can also be optimized via
a gradient descent, with the gradient computed through the FB
algorithm. However, in our experiments, we found it simpler to
use a line search scheme [28] foroptimization.

Generally, the value of increases as the temperature is re-
duced, At high temperatures, the emphasis is on maximizing the
entropy. The optimization of accomplishes this objective by
settling at a small value. As the temperature is increased, the line
search prefers larger values of. The chosen value represents a
trade-off between the necessity to keep entropy high (small)
and the objective of reducing classifier errors (large). When
annealing ends at zero temperature,increases to a high value
in order to minimize . The final quenching step drivesto
infinity leading to the nonrandom classification rule.

F. Gradient Descent for Free Energy Minimization

To fully exploit the optimization capabilities of the DA ap-
proach, it is important to perform the free energy minimization
steps with an effective and efficient implementation of gradient
descent. Several variations on the general idea of gradient de-
scent are possible (see [16] for a discussion on this topic). In our
experiments, we obtained good results by using descent steps
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that were implemented in the log probability domain. The equa-
tion for each iteration of this method is given by

(32)

(33)

(34)

In the above equations, is a scale parameter for the gra-
dient, and , , and , are normalizing con-
stants, which ensure that the relevant probabilities add up to
unity after the gradient descent. The gradient with respect to
any parameter, in the log domain is given by

(35)

G. Extensions of the DA Derivation

This subsection briefly summarizes possible extensions,
some of which have already been addressed to a limited degree,
and others which still await investigation.

1) Continuous Observation HMMs:The basic DA approach
that we have presented in this paper can be extended to design
more complex HMM recognizers. The extension of DA to de-
sign classifiers based on continuous density HMMs or semi-
continuous (tied-mixture) HMMs is possible. The latter case re-
quires some nontrivial but largely understood extensions of the
basic approach.

The underlying principle of the DA approach is the same as
in the discrete observation case. However, the main difference
is that while we optimize the state dependent discrete emission
probabilities (represented by the matrix) in discrete obser-
vation systems, in the continuous case we optimize means and
co-variances of state-dependent multimodal density functions.
For tied-mixture HMMs, optimization is over a codebook of
densities (Gaussians) and a matrix of mixing weights. Prelimi-
nary experiments in this direction indicate that the DA extension
to design continuous observation HMMs [15] outperforms ML
and achieves good recognition results. Extensions to tied-mix-
ture HMMs are currently under development and investigation.

2) Connected Word and Continuous Speech Recogni-
tion: We envisage another important and nontrivial extension
of the DA approach to design connected word and contin-
uous speech recognition systems. Although no experimental
work has been performed as yet, it appears safe to predict
that the theory developed here for isolated word recognition
is extendible to tackle the connected word and continuous
speech problems. In both connected word and continuous
speech recognition, the objective is to minimize the error rate
in classifying an observation composed of a concatenated
string of speech units. A speech unit refers to either a word
(connected word recognition) or a subword unit such as a phone
(continuous speech recognition). In both cases, recognition
is performed as follows: HMMs are designed for individual
speech units and segments of the input utterance are each
classified via assignment to an HMM model that represents
a speech unit. The observation is thus mapped to an output
string of speech units. An important aspect of the problem is

that the task of dividing the observation into segments must be
performedin conjunction with, rather thanindependent of, the
task of classifying the segments.

In principle, recognition is performed by first implicitly gen-
erating models for each allowed segment string by concate-
nating HMM models of subword units that the string is com-
posed of. Next, the output string model with the highest likeli-
hood (“path score”) is determined through a search procedure.
Since the objective is to correctly identify the entire string of
words that composes an observation, the design objective is
stated as the minimization of the string error rate (the fraction
of training strings that are assigned to the wrong string models).

We envisage the following extension of the original DA for-
mulation to solve this problem: Given each observation, recog-
nition is viewed as a competition between allowed word strings.
Each class in the DA formulation is interpreted as a “word
string” instead of a word (the usual isolated word interpretation).
The DA optimization is derived in the usual way, with misclas-
sification error as the design objective.

One concern in the above formulation is the large number of
allowed word strings (classes) that will result with the use of
even a few subword models. However, the complexity of the
problem can be drastically reduced by using fully connected
string models (all subword model sequences are allowed) and
extending the FB algorithm.

IV. EXPERIMENTAL RESULTS

In this section, we report the results of our experiments
comparing the proposed DA method for HMM design with
two conventional design approaches—standard maximum
likelihood (ML) and Generalized Probabilistic Descent (GPD).
We first briefly comment on our implementation of each
competing design method. Next, we present the results of the
experiments, which are divided into two categories: The first
set of experiments demonstrates performance on synthetic
time series data, and the second is a set of experiments in the
recognition of English letters spoken in isolation.

A. Comments on Implementation

1) Maximum Likelihood:The ML method was implemented
in the conventional way using the Baum–Welch algorithm. First,
the observations were uniformly segmented into states, and the
state dependent emission probabilities were initialized from the
segmental histogram of observations in each state. The tran-
sition probabilities were initialized randomly, using a uniform
distribution over the allowed interval (0 to 1). The prior prob-
abilities were fixed to be consistent with the L-R nature of the
HMMs. Fifty iterations of the maximum likelihood algorithm
were run. During optimization, the values of all probabilities
were constrained to lie in the interval .

2) Deterministic Annealing:The DA method was imple-
mented according to the description in Section III, with the
following specifications: initial value of the scale parameter,

, initial temperature, , final temperature,
, annealing schedule, , quenching

schedule, , and minimum entropy, .
The detailed information of parameter choices is provided
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here not because of its importance but to facilitate exact
reproduction of the experiments. Prior to performing DA iter-
ations, the HMMs were each initialized to “flat” models—all
transition probabilities were chosen to be uniform and all
emission probability distributions were chosen to be identical
to the state-independent histogram of observations for the
corresponding class. The value of the initial temperaturewas
simply “high enough” based on our experimental observation
that the HMM models did not significantly change from the
flat initial models, if the temperature, was greater than 1.0.

The gradient descent steps were performed in the log domain,
as described in Section III-F. For efficient implementation, the
scale parameter, was fixed at each temperature and re-opti-
mized via a line search procedure after the completion of the
optimization steps for the HMM parameters at this tem-
perature. Each gradient descent step was performed simultane-
ously on all HMM parameters. The scale parameter for the gra-
dient ( defined in Section III-F) was chosen using a simple
line search procedure. Following each gradient descent step, all
gradients were recomputed using the FB algorithm. Gradient
descent steps were continued until the fractional improvement
in the free energy was found to be less than a threshold of

.1 At this point, was optimized using line search,
and the temperature was lowered (annealing) before more gra-
dient descent steps were performed.

3) Generalized Probabilistic Descent:The GPD method
was implemented as a special case of DA—the temperature was
set to zero, the value of was fixed by the level of smoothing
desired, and free energy minimization steps were performed
via gradient descent in the log domain, similar to DA.2

We recognize that ours is one of many possible implementa-
tions of GPD. We chose this implementation to facilitate a di-
rect comparison of the design principles behind GPD and DA.
In the course of our experiments with GPD, we observed that
the performance of GPD depends significantly on both the ini-
tialization for the HMM parameters (as expected) and the value
chosen for (the smoothness parameter).

To improve the GPD results, we allowed 20 different
values for the parameter and two different initial-
izations for the HMM parameters. The allowed values
of were chosen according to the geometric series,

which allows for a large
variation in its value, and which effectively is a “post”-opti-
mization of . Two initial sets of ML-designed models were
each obtained from different random initializations of the tran-
sition probabilities. For each initialization, the same emission
probabilities were chosen (state-specific histograms following
uniform segmentation). ML was implemented as fifty steps
of the Baum–Welch algorithm. In the literature, ML-designed
models have often been used as initialization for GPD.

Each GPD model was thus obtained by running 40 different
GPD experiments—using 20 values ofand two initial sets of
HMMs—and choosing the best of the 40 solutions in terms of
performance on the training set.

1When the free energy changes fromF to F in one gradient descent
step, the fractional improvement in free energy is defined asF �F =F .

2As mentioned in Section III, whenT = 0 and is fixed, the free energy of
DA is equivalent to the GPD cost function.

TABLE II
A COMPARISON OFTRAINING AND TESTERRORRATES OBTAINED FOR HMM

CLASSIFIERSDESIGNED USING ML, GPD AND DA METHODS FOR8
DIFFERENTSYNTHETIC DATASETS. THE TRAINING SETS (TR) ARE OF SIZE

2000AND THE TESTSETS (TE) ARE OFSIZE 10 000. EACH DATASET CONSISTS

OF DATA FROM K = 2; 3, OR 4 CLASSES. THE LAST COLUMN SHOWS THE

ERROR OF THEOPTIMAL (BAYES) CLASSIFIER

B. Synthetic Data Sets

We first experimented with the classification of synthetic
time series data. The experiments were performed over eight
different data sets, each consisting of 2000 labeled time se-
quences of discrete observations. Each data set was generated
by a system of HMMs ( or 4 depending on the data
set). Each data-generating HMM had three, four or five states.
The HMMs used in the classifier were, however, constrained
to have only three states. The introduction of some modeling
mismatch is appropriate since, in real-world situations, we
do not have access to the true model that generated the data.
The number of states that we allow in each HMM during
classification is typically determined in an ad-hoc manner.
The three methods, ML, GPD and DA were applied to the
training sets. The error rate was measured on the training data
and on an independent test set of 10 000 time sequences. The
classification error results are tabulated in Table II. Clearly, the
proposed DA approach improves the classification performance
consistently and significantly. Improvements over ML and
GPD were obtained over both training and test data for all data
sets. In summary, the DA design method was found to reduce
the error rate measured over the training set by a factor of 1.3
to 2.5 compared to the ML and GPD methods. The test set
improvement factors were in the range of 1.05 to 1.5. Note
that in most cases, the test set error rate achieved by the DA
approach was very close to the error rate of the optimal Bayes
classifier, which is also provided in the Table for reference.

C. Spoken Letter Recognition

The recognition of spoken English letters appears as an
important subproblem within several applications [20], [23]
including automatic car navigation, automated directory assis-
tance and voice activated call forwarding.

Speech recognizers based on HMMs [33], [20], dynamic
time warping (DTW) [32], neural networks [12] and knowl-
edge-based classifiers [10], [23] have been proposed to tackle
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Fig. 2. Block diagram of a multipass full alphabet recognition system.

this important problem. In [33] Rabiner and Wilpon present a
comparison of different approaches on benchmark data sets.

The task of recognizing spoken English letters is known to
be challenging due to the high confusability of the alphabet.
Four subsets of English letters are highly confusable: The

-set b c d e g p t v z , the -set, a k j , the
-set i r y , and the -set m n . Most notorious for its

confusability is the -set. In real-world situations, the difficulty
is further aggravated by the presence of background noise and,
possibly, by the presence of channel distortion.

1) Speech Database and Feature Extraction:The speech
used in our experiments is drawn from the ISOLET database
[11]. ISOLET consists of utterances by 150 native English
speakers (75 male and 75 female, ages 14 to 70 years), where
each speaker utters, twice, the 26 English letters in isolation.
The data is divided into five sets (ISOLET1 to ISOLET5), each
containing utterances by 30 speakers. The ISOLET speech was
recorded with a Sennheiser HMD 224 microphone that was
low-pass filtered at 7.6 kHz and sampled at 16 kHz.

In our experiment, we used this database to design and test
speech recognizers in the “multispeaker” mode—one set of ut-
terances of all the letters by the 60 speakers in ISOLET1 and
ISOLET2 was used as the training set and the other set of utter-
ances by the same speakers were used as the test set.

The sampled speech signal was divided into 20 ms frames,
where consecutive frames overlap by 10 ms. A set of features
were extracted from each speech file by using a public domain
software for end-point detection and feature extraction.3 The
end-point detector was employed to eliminate silent frames
at the beginning and the end of the speech file. A 28-dimen-
sional feature vector consisting of 14 Mel-scaled FFT cepstral
coefficients (MFCC) [27] and their first-order time derivatives
( MFCC coefficients) was extracted in each frame. The MFCC
coefficients are believed to be relatively robust to noise and can
be easily computed via an FFT. The feature vector in each frame
was quantized using a codebook of “prototypes,” thus resulting

3We used J. He’s speech recognition research tool which can be obtained via
anonymous ftp from ftp.informatik.uni-ulm.de/pub/NI/jialong/spchtool.zip.

in a sequence of discrete features for each isolated word. In
our experiments, we used either 16 or 32 prototypes. We refer
to the observations quantized to 16 prototypes as Dataand
those quantized to 32 prototypes as Data. The codebook of
prototypes was designed from features extracted from all speech
frames in the training set using a vector quantizer design method
based on successive splitting of prototypes [14, Ch. 11].

We recognize that the front-end feature extraction process
does not reflect the current state-of-the-art, and improvement
of this part of the system may lead to significantly better clas-
sification rates for all competing methods, but this is secondary
and orthogonal to our focus in this paper, which is on the fun-
damental HMM training technique.

2) Recognizer Design:The objective of our experiment is
to design context-independent whole-word models for the let-
ters using each design method and to compare the error per-
formance. Each word model consists of a 5-state left-to-right
HMM.

First, we designed an HMM classifier for the entire alphabet
using the ML approach. As observed before, the main problem
in using standard ML appears to be the confusion between mem-
bers within the , and sets. A straightforward remedy
would be to use a discriminative design approach such as GPD
or DA to design a recognizer for the entire alphabet. However
the complexity of discriminative methods is proportional to the
square of the number of classes, and is further aggravated by the
necessity to use a very large training set to obtain good perfor-
mance outside the training set.

To reduce the complexity of the experiments we instead
considered a two-pass classifier that can efficiently exploit the
power of the discriminative design methods. The structure of
the proposed system is motivated by the observation that the
main difficulty in alphabet recognition lies within the confus-
able sets and, hence, almost all the advantages of discriminative
design can be reaped if it can be effectively used to distinguish
between letters within each of the confusable sets.

A block diagram of the two-pass recognition system is shown
in Fig. 2. The system works as follows: First, the discrete fea-
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TABLE III
A COMPARISON OFERRORRATES OBTAINED IN CLEAN SPEECHCONDITIONS

FOR EACHCONFUSABLE SET (E-SET,A-SET, I-SET, AND M -SET). TRAINING

(TR) AND TEST(TE) ERRORS ARESHOWN FOR(a) DATA 16 AND (b) DATA32

TABLE IV
A COMPARISON OFERRORRATES OBTAINED BY DESIGNING MULTISTAGE

HMM RECOGNIZERS FOR THEENGLISH ALPHABET. TRAINING (TR) AND TEST

(TE) ERROR ARESHOWN FOR CLEAN, WHITE NOISE AND CAR NOISE

BACKGROUND CONDITIONS FORBOTH DATA16 AND DATA32

tures extracted from the speech signal are presented to a stan-
dard ML-designed HMM classifier for the entire alphabet. If the
input is mapped by the classifier to a letter outside all the con-
fusable sets, the winning letter is declared as the output of the
classifier (only one pass is used). If instead, the input is mapped
to a letter inside any of the confusable sets, then a second classi-
fier is invoked. The second classifier is one that has been previ-
ously optimized by a discriminative design method (either GPD
or DA) to distinguish effectively between tokens within the ap-
propriate confusable set. If a second pass is used, the class that
wins in this pass is declared as the output class. Clearly, the
second pass that uses either DA or GPD trained HMMs can im-
prove on the performance of the first pass.

The results of our experiments comparing the design
methods are presented in Tables III and IV. To obtain the
results in Table III, we designed and tested classifiers for each
confusable set using only tokens from that confusable set. The
design was performed independently for each confusable set,
on Data and Data using ML, GPD and DA. The objective
of this comparison is to demonstrate the type of improvement
achievable in each confusable set. The results indicate that the

Fig. 3. Evolution of the loss function and the misclassification probability on
the training and test sets during GPD design.

DA method improves significantly over both ML and GPD de-
sign methods on both training and test sets. The improvements
are more substantial for Data than for Data , especially
over the test set.

We have also performed some preliminary experiments on
the robustness of the recognizer to background noise. We first
generated two noisy databases from the ISOLET database by
adding synthetic white noise and recorded car noise (at a15
dB energy level relative to the speech signal) to the clean speech
files. (Of course, the utterances themselves were recorded in a
noise-free environment and the speaker’s reaction to the pres-
ence of acoustic noise is neglected). We next designed a mul-
tipass recognizer for the clean condition as well as for each
noisy condition. The recognizer for each of the noisy condi-
tions was designed from a training set of speech files with the
appropriate noise synthetically added. The results, in terms of
classifier errors obtained for each method over the entire al-
phabet, are tabulated in Table IV, which also shows the error
rates obtained for car and white noise against the those obtained
for clean speech. The recognizer designated as “ML” represents
a one-pass system that uses only an ML-designed full-alphabet
recognizer (the first stage of the system shown in Fig. 2). The
“GPD” recognizer compared in this table was obtained by using
the two-pass recognizer of Fig. 2, wherein, “ML” was used
in the first pass and the second pass classifiers were each de-
signed using the GPD approach. The “DA” recognizer was also
a two-pass recognizer with “ML” used in the first pass, but its
second pass classifiers were each designed using the proposed
DA approach. The “ML” “GPD” and “DA” recognizers were
designed independently on Dataand Data , and for clean,
white noise and car noise conditions. The results indicate that
significant performance gains can be obtained by using DA in-
stead of ML and GPD methods in both clean and noisy speech
conditions.

D. Graphical Illustration of GPD and DA

Figs. 3 and 4 are graphic illustrations of the typical evolution
of the error rates during GPD and DA design of HMM classi-
fiers. Both figures correspond to the recognition of-set letters
in the clean background for the Data16 set. This particular case
is chosen only as an illustration. Fig. 3 shows the evolution of
the loss function ( ) and the true error rate ( ) during a GPD
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Fig. 4. Evolution of the training and test set error probabilities during DA design.

run. The initial solution which is an ML-designed model corre-
sponds to iteration index, 1. From Fig. 3, it is clear that
measured on the training set decreases monotonically in each
successive iteration of the algorithm. The training and test set
error rates also improve, although not monotonically. The opti-
mization is terminated when the fractional improvement in
is smaller than a threshold. In this example, the algorithm ter-
minated in iteration 16. The final GPD error rate was 4.4% on
the training set and 8.9% on the test set.

Fig. 4 illustrates the evolution of the error rate in DA, for the
same dataset. The initial temperature was set to . As an-
nealing begins, the error rate continues to remain at the initial
(high) value until the temperature is reduced to . At this
point, there is a sudden change in system parameters and the
training error rate decreases to 7%. We refer to this temperature,
as the first “critical temperature” of the system. Critical temper-
atures, which are data-dependent, are associated with significant
drops in the free energy of the system, and are typical charac-
teristics of DA optimization. The change in system parameters
at the critical temperatures is often viewed as the equivalent of
“phase transitions” in physical annealing [38]. Following the
first phase transition, the training error rate briefly appears to
stabilize at 7%, before a gradual drop ensues from
until , when the error settles at it’s final value of
0.6%. During the rest of the annealing and during quenching,
there was no change in the error rate on this dataset. The test
set error rate, which is also shown in Fig. 4, decreases to 10%
during the first phase transition and finally settles at 7.2%. DA
performed significantly better than GPD on this dataset.

V. A NOTE ON COMPUTATIONAL COMPLEXITY

The improvements in recognition performance of DA over
GPD and ML are obtained at the cost of additional computa-
tional complexity. We emphasize that the additional complexity
is entailed only for the design process. The DA method has no
effect on the computational complexity of the classifier itself.
Table V shows a comparison of the average computation times
in seconds (total elapsed real time from beginning to end of
simulation) required for each design algorithm. The comparison

TABLE V
A COMPARISON OFAVERAGE EXECUTION TIME (IN SECONDS) FOR ML,
GD AND DA DESIGNS. COMPARISONS AREPERFORMEDOVER SPEECH

RECOGNITION PROBLEMS OFDIFFERENTSIZES (TWO, THREE, OR NINE

CLASSES). THE 2 CLASS AVERAGES WEREOBTAINED FROM THEM -SET

CLASSIFIER DESIGN, THE 3-CLASS FROM THEI AND A SETS, AND THE

9-CLASS FROM THEE-SET CLASSIFIER DESIGN

is performed over the speech recognition examples of different
sizes (2, 3, and 9 classes) and over different data sets (Data16
and Data32). The 2-class case represents the-set, the 3-class
case represents an average over the “” and the “ ” sets and the
9-class case represents the-set. In the case of GPD, we ac-
count for time required to run the design method with multiple
initializations as needed to achieve good quality of results. On
average, the computational complexity of DA is 86 times that of
ML and 3.7 times that of GPD.

All simulations were performed on a Dell Pentium II PC with
a 350 MHz clock and 128 Mbytes of RAM, under the Linux
operating system. The software was written in C and compiled
using the GNU gcc compiler.

VI. CONCLUSIONS

A novel training algorithm for designing HMM-based speech
recognizers was presented. The proposed training method di-
rectly minimizes the recognizer’s misclassification error rate
unlike the commonly used maximum likelihood approach. At
the heart of this method is the deterministic annealing optimiza-
tion strategy. The new method can be used to design isolated
word and continuous speech recognition systems based on both
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continuous and discrete observation HMMs. The effectiveness
of the novel design method was tested on synthetic data as well
as on the problem of training a simple recognizer of isolated
English letters. Our tests compared the error rates obtained by
using DA against those obtained by using the popular max-
imum likelihood approach and the recently proposed general-
ized probabilistic descent method. Significant improvements in
error rates were obtained by using DA. The performance im-
provements were obtained at the cost of a manageable increase
in design complexity. A detailed investigation into the effective-
ness of applying DA to continuous speech recognition is cur-
rently in progress.

APPENDIX

CONNECTIONS WITH OTHER

DISCRIMINATIVE DESIGN METHODS

In this appendix, we discuss some interesting mathematical
relationships between DA optimization and the mathematical
formulations of other discriminative design methods. As a first
step in establishing these relationships, we consider links be-
tween the probabilities that define the random classifier in DA
( ) and the standard generation probabilities of obser-
vations based on the stochastic hidden Markov model.

The HMM defines the joint probability that state
sequence and observation are generated if the word corre-
sponding to class is uttered.4 This joint probability is related
in a simple manner to the normalized log likelihood parameter,

, which we interpreted simply as a path score in the
DA formulation. Specifically,

(36)

Assuming a uniform prior , we can compute thea
posterioriprobability:

(37)

Note that (37) is strikingly similar to the Gibbs probability mass
function in (10):

if (38)

although this particular choice of is very arbitrary from the
viewpoint of DA. Further, by marginalization we get:

(39)

Assuming that the HMMs are in fact the correct models for
the observed patterns, we can compute the Bayes classifier
whose classification error probability is given by:

(40)

where is the correct class for observation. A natural de-
sign objective is to minimize . This is precisely the goal of
the REMAP design method [6]. It is interesting to compare

4Henceforth, we use the “tilde” symbol while referring to probabilities that
are based on the stochastic hidden Markov model and thereby distinguish them
from probabilities associated with the random classifier.

REMAPs objective cost function (40) with the DA method’s
random classification error in (11), especially in light of the re-
lationship derived in (38).

One difference between the two design methods is that in
REMAP, unlike DA, the “scale parameter” is not optimized
during training, but fixed to (different for each observation).
Another difference is the entropy constrained minimization of

in DA; entropy constrained optimization is important for
avoiding poor, locally minimal solutions. The fundamental dif-
ference is that DA targets directly the MCE objective without
assuming that HMMs are accurate models for speech. It simply
seeks the best choice of parameters to minimize the classifica-
tion error.

Another popular discriminative design method that is related
to REMAP is MMI [1]. Here too the underlying assumption is
that the basic data generation model (system of HMMs) is cor-
rect. To overcome the shortcomings of the ML design method,
a new design objective is proposed where an information-theo-
retic mutual information measure is evaluated over the observa-
tion and the classes. Specifically, the MMI objective is

(41)

where represents the mutual information of two random
variables. Assuming that all classes are equi-probable, the MMI
objective can be equivalently stated as

(42)

Comparing (42) with (40), it is clear that the MMI objective
function is similar to REMAPs, with the exception of the log-
based nonlinear scaling of the probabilities that is used in MMI.
One can interpret log scaling as a means to increase the relative
importance of misclassified observations (those associated with
smaller value of ) on the cost function, and thereby im-
prove the efficiency of the design method.

Let us recall the relationship we derived in (38), in order
to interpret the MMI objective from the DA viewpoint. MMI
consists, roughly, of minimizing the log of the random classi-
fier’s misclassification probability, averaged over the training
set. However, as in REMAP, is not optimized during MMI
design, but fixed at . Moreover, no entropy constrained opti-
mization, or annealing, is performed.

Note that both REMAP and MMI rely on a fundamental as-
sumption that the underlying stochastic model (HMMs) is valid.
Both methods attempt to optimize all the HMM models jointly,
although neither directly targets a minimization of the classi-
fier’s error rate. In contrast, Generalized Probabilistic Descent
(GPD) [18], completely discards the stochastic model suggested
by HMM. Instead, it views the HMM classifier simply as a max-
imum discriminant based mapping and attempts to optimize the
discriminant parameters (HMM parameters). Since the true mis-
classification cost function is piece-wise constant and therefore
difficult to optimize, GPD attempts to minimize a smooth ap-
proximation to this cost. In this sense, the GPD principle is
more closely related to DA than it is to the other discrimina-
tive methods.
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We now proceed to derive the GPD method and relate it’s
design objective to the free energy minimization of DA. In
GPD, the piecewise constant classification error cost surface
is smoothed at many levels. At the lowest (optional) level, the
hard decision of choosing the path with the highest likelihood
in an HMM is replaced by a soft-max function. Thus, instead
of defining the discriminant for classas the likelihood of the
most likely path in an HMM, the following soft discriminant
may be used:

(43)
A second level of smoothness is introduced in GPD through
the definition of theclass misclassification measure. Such a
measure replaces the hard decision of a maximum discriminant
classifier by one that assigns nonzero weights to all classes de-
pending on the class discriminants. The standard definition of
this quantity in GPD approaches is

(44)
The third and final level of smoothing in GPD is via the use of

the “loss function.” Although a number of different choices for
this function have been suggested, the most common one (see
e.g., [18]) is

(45)

In GPD, the overall performance of a classifier is measured
by

(46)

which must beminimizedduring design by optimizing the clas-
sifier parameters .

GPD uses three different smoothing parameters (, , and
), and a bias parameter,. The values of these parameters are

usually chosen heuristically. In some GPD implementations,
including the experiments in [8] and [7], the smoothing pa-
rameters were chosen to be identical. Under these special cir-
cumstances, it is possible to establish a connection between the
re-estimation formulae of GPD and those of DA. Specifically,
the GPD design objective is equivalent to the minimization of
the average classification error in the DA formulation if
two special conditions hold. First, the three GPD smoothness
parameters are chosen to be equal, i.e. , where

is the scale parameter used in DA. Second, the bias parameter
is set to , where is the number of classes
(words).

At this point, we wish to re-iterate that unconstrained mini-
mization of the random classifier’s classification error is
equivalent, in the DA context, to attempting free energy mini-
mization at zero temperature without performing any annealing.
Thus, under the special circumstances described above, GPD
is identical to the final step in DA optimization, i.e. achieving

thermal equilibrium at zero temperature. Note, however, that in
DA, the iterations at zero temperature start from HMM models
inherited from the optimizations performed at higher tempera-
tures. In contrast, the GPD models are usually initialized heuris-
tically; one common initialization for GPD is maximum likeli-
hood designed models.

Another important difference is the role of the scale parameter
. While is chosen heuristically in GPD, the value ofat

zero temperature in DA is inferred from its optimal value at the
previous temperature. Moreover,is optimized in DA, while it
remains fixed in GPD iterations.

Interestingly, the final sequence of “quenching steps” that we
have proposed at the end of the DA procedure may be viewed
as a series of GPD iterations performed as the smoothness pa-
rameters, and are gradually increased. (To the best of our
knowledge, such a scheme has not been proposed for GPD.) The
objective of quenching is to gradually eliminate any residual
smoothness in the free energy thereby ensuring that the DA
cost function converges ultimately to the actual misclassifica-
tion error of the classifier.
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