TOWARDS OPTIMAL CLUSTERING FOR APPROXIMATE SIMILARITY SEARCHING

Ertem Tuncel and Kenneth Rose

Dept. of ECE, University of California, Santa Barbara, CA 93106
{ertem,rose}@ece.ucsb.edu

ABSTRACT

‘We propose an iterative optimization algorithm for the gene-
ric class of clustering-based indexing for approximate sim-
ilarity searching. It was previously shown that clustering
is a powerful component of approximate searching that re-
duces the number of retrieved data points. The proposed
algorithm’s objective is to maximize the expected search
quality given the query distribution. The problem is decom-
posed into minimization over three mapping functions, and
the fixed-point iterations of the algorithm alternately opti-
mize one mapping while fixing the other two. We demon-
strate via experiments on real high dimensional data sets
that the algorithm significantly improves the time/accuracy
efficiency over heuristic clustering design.

1. INTRODUCTION

The similarity search problem is central in a wide range of
applications in multimedia databases, which may contain
images, video, text, music, etc. The degree of similarity be-
tween two objects is often measured by a distance function,
e.g., the Euclidean distance, operating on feature vectors
extracted from the data. The user submits a query object to
a search engine, and may either provide a distance threshold
¢, or the number of objects k to be returned. These types
of queries are called range query, and k-nearest-neighbor
(k-NN) query, respectively.

The feature vector dimension is usually very high and
the search procedure is subject to Bellman’s notorious “curse
of dimensionality” [1], i.e., the search space grows expo-
nentially with the number of dimensions. It was shown
in [2] that all current index techniques degrade to linear
search for high enough dimensionality. However, significant
savings in disk I/O cost are possible if one allows for ap-
proximate search results. Usually, the extraction of feature
vectors from the data objects is itself a heuristic process
that attempts to approximately capture relevant informa-
tion. Moreover, even if the feature vectors represent the
original data with 100% accuracy, users would still differ
in their perception systems, and hence in their similarity
expectations. Thus, rather than incur the extremely high
cost of an exact result, it is more cost-effective to develop
a fast search engine that outputs an approximate set.

THIS WORK IS SUPPORTED IN PART BY THE
NSF UNDER GRANTS NO. EIA-9986057 AND EIA-0080134,
THE UNIVERSITY OF CALIFORNIA MICRO PROGRAM,
DOLBY LABORATORIES, INC., LUCENT TECHNOLO-
GIES, INC., MINDSPEED TECHNOLOGIES, INC., AND
QUALCOMM, INC.

0-7803-7304-9/02/$17.00 C2002 |IEEE

Various approximate similarity search algorithms ex-
ist in the literature. For a comprehensive survey on ap-
proximate algorithms, see [3]. In this paper, we focus on
a generic approach; clustering-based approximate similar-
ity search algorithms. In a clustering-based indexing algo-
rithm, clusters are stored in a sequential file for improved
I/O efficiency. To answer queries, a few clusters (chosen
by a decision process depending on the query) are retrieved
into the main memory. Among the retrieved objects, those
that are most similar to the query point constitute the an-
swer set. More specifically, in a range query, the answer
set consists of the retrieved objects whose distances to the
query point are less than e. On the other hand, in a k-NN
query, the objects are sorted by their distances to the query
and the best k are returned.

The power of clustering relative to other indexing tech-
niques has been addressed by others in [4] where cluster-
ing’s superiority is argued. From our perspective here, how-
ever, clustering-based indexing is a component of the sys-
tem whose objective is to reduce the number of retrieved
data points. It can later be combined with other methods
that aim to reduce the information retrieved for each data
point. It is evident that such a combination is necessary for
increased time/accuracy efficiency [5].

To the best of our knowledge, there is no algorithm in
the literature that measures and therefore targets the per-
formance of clustering during the design stage. Instead, a
heuristic method is usually employed (see for example [4]).
To measure the performance accurately, it is of paramount
importance to take into account the accumulated query his-
tory. If no such history exists, the data set itself can be used
as an approximate model for that purpose. In this work,
we take a step towards optimal clustering by proposing an
iterative optimization algorithm that targets the expected
search quality given the query distribution. The proposed
algorithm can be initialized by the output of any other clus-
tering method, and improves the performance. Finally, our
approach is general and is not restricted to any specific dis-
tance function as the measure of similarity.

2. PRELIMINARIES AND NOTATION

Let X and) denote the data and the query spaces, respec-
tively. We assume prior knowledge of the data distribution
px(z), and query distribution py (y). Let the similarity be-
tween z and y be measured by p: X x Y — [0,00). Let N
be the number of clusters. We denote the clustering func-
tion by f: X — I, where T = {1,2,..., N} is the cluster
index set. The scenario we consider dictates that the deci-

497

sion to access a particular € X must be purely based on
f(z) and y € Y. We can accurately model the decision by
a function h: T x Y — {0,1}.

Let G(y) C X be the golden (i.e., the true) answer set
for the query y. Denote by r(y) the radius of the query
sphere, i.e., the distance of the farthest data point in G(y)
to the query point:

r(y) = max p(z,y) .
Similarly, let A(y) C X denote the approximate answer set
for y. The set A(y) is obtained by retrieving all clusters ¢
for which h(i,y) = 1, and choosing a subset of the retrieved
points according to the search criterion.

We denote by T'(y) the fraction of accessed data points,
ie.,

T(y) = /X px(@1[A(f (), v)ldz

where 1[] is the indicator function. The data points in
each cluster are stored sequentially on disk, and each time a
query is processed, very few clusters are retrieved from disk.
Hence, during the processing of a query y € Y, very few
random seeks are needed, and the total I/O time expended
is approximately proportional to the number of accessed
data points, T(y).

The accuracy of an approximate similarity search is usu-
ally measured by the achieved recall, i.e.,

_ Al NnG(y)]
Reeall) = G001 -

A higher recall means a more accurate approximate answer.
We further assume that if a data point z € G(y) is accessed,
then it must fall into A(y), that is, a point in the golden
set is falsely dismissed if and only if it is not accessed. This
is a fair assumption, since it is true for both range and k-
NN queries, which are the most popular similarity searching
schemes. An equivalent expression for the recall then be-
comes

Recall(y) = 1 — /X px(@)d(z,9, h{(f(z), 9))dz ,

where d: X x Y x {0,1} — [0, 00) is defined as

zecG(y)andz=0
otherwise

1
dw.2) = { FO7

In this paper, we also consider an alternative accuracy mea-
sure D(y) given by

D(y)=1- /X px(2)d(z,9, (f(2), 9))da ,

where

1 gz,yz _—
d(z,y,2) = { o [1 28] e G andz=0
0

otherwise

‘We call this measure the distance-sensitive recall, since it
penalizes false dismissal of data close to the query point
more severely than that of data near the boundary of the
query sphere.

3. CLUSTERING DESIGN

An optimal time/accuracy trade-off is achieved by the fol-
lowing minimization:

min T(y)dy ,
min /y py(®)T(v)dy

subject to fy py(y)D(y)dy > D. Equivalently, we can at-
tack the Lagrangian cost

L= / py () [T(y) - \D(v)] dy ,)
y

where A > 0is a fixed multiplier. Before proceeding further,
let us further simplify (1) by introducing

A1 - =) _
T el [1 | £E€G)andz=0
l/\(Z,y,Z)= 1 a1

0 otherwise

‘We can now equivalently minimize
L= [[px@pr@ia(euh(@),)dndy . (2)
yJx

Note, however, that h(i, y) should be further constrained
in the above minimization for practicality purposes. In re-
ality, the only knowledge we have about py (y) comes from a
training set Q of limited size, so we can only design h(i,y)
for y € Q. As an approximation, for all other points in
the query space, we can use the nearest y € Q to evaluate
h(i,y), but this requires a huge memory, since the values of
h(i,y) must be stored in a table of size N x |Q]|.

The simplest approach, also adopted in [4], is to con-
strain h(Z,y) to be solely based on the distance p(Z;,y),
where &; is the centroid of cluster i. Essentially, cluster
centroids are sorted in increasing order of p(Z:,y), and only
few clusters corresponding to the nearest Z; are accessed.
This special form of h(Z,y) makes it extremely difficult to
attack (2), because for fixed f(z) the Lagrangian cost func-
tion becomes piecewise constant in {#;}}",. Perhaps the
only remedy to this difficulty is to cluster the data set with
a heuristic method, and to extract the corresponding clus-
ter centroids, as done in [4]. In fact, for comparison pur-
poses, we implemented such a simple scheme by clustering
the data set with the K-means algorithm [6]. Note that this
approach is overly simplistic in that the knowledge of the
query distribution py (y) is not exploited.

Our approach is to constrain h(%,y) to be of the form
K (i,g(y)), where g : ¥ — J = {1,2,..., M}, is a parti-
tioning of the query space. Note that it suffices to store in
memory an N x M table for the values h'(i,5). However,
now g(y) has to be in a special form that facilitates its eval-
uation outside the query training set Q. For that purpose
we constrain g(y) to be a nearest-neighbor partitioning, i.e.,

= in & ’ Uj ’
9(y) argmin (v, 95)
where §; €) are the partition centroids, and § : Y x Y —

[0, 00) is a distance measure in the query space. Note that
the domain of § is in general different from that of p, and

498

even when X =), we do not assume p(-,-) = 8(-,-). The
resultant Lagrangian minimization problem

min, [[ox(@oy @y K (@), o)ty @)

is still difficult to attack in terms of {g; }fil To overcome
this difficulty, we could fix {§;}Z, (and therefore g(y)), by
first running a clustering algorithm on the query training
set Q, and then minimizing the Lagrangian with respect to
f(z) and R'(%,7) only. But, this approach could result in
a very degraded performance, since it completely ignores
the data distribution during the design of g(y). Instead, we
initially neglect the nearest-neighbor partitioning assump-
tion on g(y), and attack (3). In effect, we design clustering
of the data and the query spaces simultaneously, together
with the decision function. In a second round, we compute
the centroids {g;}}Z,, fix g(y) as the corresponding nearest-
neighbor partitioning, and then re-optimize the Lagrangian
cost function with respect to f(z) and A'(3, j).

The design algorithm we propose is a fixed-point opti-
mization method, which is usually encountered as a power-
ful tool in various quantization problems [7]. The principle
is to fix two of the mappings f(z), 9(¥), and #’(, j), and op-
timize the other. We proceed by giving explicit expressions
for the optimal mappings:

e For fixed f(z) and ¢g(y), minimize
L= [[px(@pr()ia(e,v, (i)dody
2 Jy;

over h'(¢,7), where X; = {z : f(z) = i}, and Y
{y : 9(y) = 7}. The optimal '(3,) is determined by

05 A = in L7,
h(i,5) = argzg{lgll}l'z.,, ,
where
L0 _=/\/ / px(z)py (¥) [1 _ p(w,y)] dudy,
7 v; Jancw 1G®)] r(y)

and L}; = |X| - |Y;]-

For fixed g(y) and h’(3,7), the optimal f(z) is given
by

(@) = argmi [pv)irG@,, G0y

For fixed f(z) and A'(%, j), the optimal g(y) is given
by

o(0) = srzmin [px(@)la(@,. W (F(2), D)

We can initialize the algorithm by fixing any two of
f(z), g(y), and h'(4,5). We choose to fix f(z) and h'(3, 7).
Assume that f(z) is given to us by a competent clustering
algorithm. We first produce the centroids {:i:,}fvzl Denote
by n1(y) and n2(y) the indices of the nearest two centroids
for y € Q. For each y, we then add n:1(y) and n2(y) to the
list of encountered pairs so far. After we visit all y € Q, we
associate query clusters with the elements in the list. If the
jth pair in the list is (n1,n2), we set h'(n1,5) = k' (n2,5) =
1, and set the rest of the h'(4, j) values to 0.

499

4. EXPERIMENTAL RESULTS

In this section, we demonstrate the achieved improvement
of our algorithm over K-means clustering. We performed
experiments on two real world data sets. The first one is a
64-dimensional color histogram set, and the second one con-
sists of 60-dimensional texture features of an aerial photo
data set. Both sets are of size 10,000. We assume that
o(z,y) = &(z,y) = ||z — y||*>. We randomly pick a 2,500-
element subset of the data set as our query training set,
and test the performance of compared clustering algorithms
over another disjoint subset of size 1,000. We partition both
data sets into 32 clusters.

085

08

RECALL

— K-means with increasing o

07 © Proposed algorithm with increasing

J

L i

10

065 s s L L
6 7 8
PERCENTAGE OF ACCESSED DATA

11

Figure 1: Comparison of recall versus percentage of ac-
cessed data for 50-NN searching on the Histogram data set.

0.99

T T T T T T
0.98~ -
Joor]
097
2
o
w
2
E
2 096f- 4
[
@
g
<
t 0951 B
@
e ° —— K-means with increasing ¢
© Proposed algorithm with increasing A
094f-© B
093 s s . L L L

6 7 8 9
PERCENTAGE OF ACCESSED DATA

Figure 2: Comparison of distance-sensitive recall versus
percentage of accessed data for 50-NN searching on the His-
togram data set.

085 —— K-means with increasing o T
O Proposaed algorithm with increasing A

045 1 : 1 L . n

6 8 10 12
PERCENTAGE OF ACCESSED DATA

Figure 3: Comparison of recall versus percentage of ac-
cessed data for 100-NN searching on the Aerial photo data
set.

For the K-means clustering, the decision function h(z, y)
for k-NN search is determined as follows: Fix some a > 1.
Sort p(#:,y) in increasing order. Retrieve clusters in order
until the total number of retrieved objects exceeds a x k.

In Figures 1, 2, 3, 4, we compare the time/accuracy
performance of the K-means algorithm and the proposed al-
gorithm. Although the proposed algorithm targets optimal
trade-off between distance-sensitive recall and I/O time, we
also present the achieved recall versus 1/O time plots. The
solid lines show the results for the K-means algorithm with
changing a. As « increases, so does the I/O time complex-
ity and the accuracy. The circles reflect the performance
of the proposed algorithm with changing A\. The achieved
points are not connected with a line to emphasize the fact
that they are produced by separate runs of the algorithm
with different A. Increasing A puts more weight on the ac-
curacy component of the Lagrangian (3), and hence yields
better accuracy with the expense of worse time complexity.

Note that both the clustering schemes yield better per-
formance on the Histogram data set. That is because the
Histogram set is of clustered nature, whereas the Aerial
photo set is somewhat more uniformly distributed. This
phenomenon was also observed in [4]. Another observation
is that by looking at the achieved recall only, the perfor-
mance could be considered poor when the time complex-
ity is kept low (say, only around 4% of the whole data
set is accessed). However, the achieved distance-sensitive
recall is over 93%, which shows that most of the falsely
dismissed points are in fact close to the boundary of the
query sphere. For example, when the recall is 0.5, and the
distance-sensitive recall is 0.95 for 100-NN searching, as is
the case for the Aerial photo set, by easy algebra we can
see that the average distance of the falsely dismissed points
to the query point y is around 0.97(y).

When we compare the I/O time complexity for fixed
values of recall or distance-sensitive recall, we observe a
speedup of as high as 1.125 for the Histogram data set, and

1 T T T T T T
— K-means with increasing o

0.991 © Proposed algotithm with increasing A 0'
-
2
L o9sf 4
it
@
w
>
E
2 0971]
I}
2
w
Q
H
t 0.96 E
o

o
095 “
o
094 s L . s " L
2 4 6 12 14 16

8
PERCENTAGE OF ACCESSED DATA

Figure 4: Comparison of distance-sensitive recall versus
percentage of accessed data for 100-NN searching on the
Aerial photo data set.

1.54 for the Aerial photo data set.

5. REFERENCES

[1] R. Bellman, Adaptive Control Processes: A Guided
Tour, Princeton University Press, 1961.

[2] R. Weber, H.-J. Schek, and S. Blott, “A quantitative
analysis and performance study for similarity-search
methods in high-dimensional spaces,” in Proceedings of
the International Conference on Very Large Databases
(VLDB), New York City, New York, August 1998, pp.
194-205.

[3] P. Ciaccia and M. Patella, “Approximate similar-
ity queries: A survey,” unpublished technical report.
See www-db.deis.unibo.it/research/papers/TRs/CSITE-08-
01.pdt.

[4] C.Li, E. Chang, H. Garcia-Molina, and G. Wiederhold,
“Clustering for approximate similarity search in high-
dimensional spaces,” to appear in IEEE Transactions
on Knowledge and Data Engineering.

[5] H. Ferhatosmanoglu, E. Tuncel, D. Agrawal, and A. El
Abbadi, “Approximate nearest neighbor searching in
multimedia databases,” in Proceedings of 17th IEEE
International Conference on Data Engineering (ICDE),
Heidelberg, Germany, April 2001, pp. 503-511.

[6] R. O. Duda and P. E. Hart, Pattern Classification and
Scene Analysis, Wiley, New York, 1973.

[7] A. Gersho and R. M. Gray, Vector Quantization
and Signal Compression, Kluwer Academic Publishers,
Boston, MA, 1992.

500

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

