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ABSTRACT 
While the hidden Markov model (HMM) has been extensively ap- 
plied to one-dimensionalproblems, the complexity of its extension 
to two-dimensions grows exponentially with the data size and is in- 
tractable in most cases of interest. In this paper, we introduce an 
efficient algorithm for approximate decoding of 2-D HMMs, i.e., 
searching for the most likely state sequence. The basic idea is to 
approximate a 2-D HMM with a Turbo-HMM (T-HMM), which 
consists of horizontal and vertical I-D HMMs that "communi- 
cate", and allow iterated decoding (ID) of rows and columns by 
a modified version of the forward-backward algorithm. We derive 
the approach and its re-estimation equations. We then compare 
its performance to another algorithm designed for decoding 2-D 
HMMs: the Path Constrained Variable State Viterbi (PCVSV) al- 
gorithm [ I ] .  Finally, we combine our approach with PCVSV and 
show that the combination outperforms each algorithm taken sep- 
arately. 

1. INTRODUCTION 

One dimensional HMMs have a long history of success in var-  
ous problem domains, perhaps most notably in speech recognition. 
Their success is largely due to the development of computationally 
efficient algorithms, namely, dynamic programming (Viterbi) and 
Baum-Welch (see [2 ]  fur a tutorial). However, direct extension of 
these techniques to 2-D HMMs suffers from exponential growth 
in complexity (with data size) [3] and is hence intractable in most 
applications of practical value. 

Many approaches to solve the 2-D problem consist of approx- 
imating the 2-D HMM with one or many 1-D HMMs. Perhaps 
the simplest approach is to trace a I-D scan that takes into ac- 
count as much of the neighborhood relationship (or 2-D stmcmre) 
of the data as possible, e.g., the Hilben-Peano scan [4]. Another 
approach is the so-called pseudo 2-D HMM [3]. The assumption 
is that there exists a set of "super" states which are Markovian and 
which subsume a set of simple Markovian states. A recent exam- 
ple of such an algorithm, the PCVSV algorithm [I], is panicularly 
relevant to this paper and will be briefly described in section 6 .  

The approach we pursue here is to first convert a 2-D HMM 
into a Turbo-HMM. (T-HMM): a set of inter-connected horizon- 
tal and .vertical I-D HMMs that "communicate" through induc- 
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ing prior probabilities on each other. A modified version of the 
forward-backward algorithm, is pelformed successively on rows 
and columns and the process is iterated until convergence. Similar 
approaches have been proposed in the image processing commu- 
nity, mainly in the context of image restoration [ 5 ]  or page layout 
analysis [6]. The term "turbo" was also used in [61 in reference to 
the now celebrated turbo error-correcting codes. However, in [61 
the layout of the document is pre-formulated with two orthogonal 
grammars and the problem is clearly separated into horizontal and 
vettical components in distinction with the more challenging case 
of general 2-D HMMs. 

The next section specifies how to approximate a first order 2- 
D HMM with a T-HMM. In section 3, we derive the re-estimation 
equations. In section 4 we discuss potential convergence problems. 
Section 5 elaborates on the horizontal and vertical separability as- 
sumption. Section 6 briefly describes the PCVSV algorithm. We 
then proceed to combine it with our approach so as to benefit from 
their complementary nature. Experimental results are presented in 
section 7 for performance evaluation. 

2. APPROXIMATION OF THE LIKELIHOOD FUNCTION 

We assume in the following that the reader is familiar with 1- 
D HMMs (see e.g., [Z]). Let 0 = { q J , i  = 1 , .  . . , I,i = 
1,. . . , J }  be the set of all observations. For convenience we also 
introduce the notations oy and ay for the i-th row and j-th col- 
umn of observations, respectively. Similarly, Q = {qi,j, i = 
1 , .  . . , 1,j = 1 , .  . . , J }  denotes the set of all states, while qr 
and qy denote the i-th row and j-th column of states. Finally, let 
X be the set of all model parameters, and let A ?  and X y  be the 
respective rows and columns of parameters. We first approximate 
the joint likelihood of 0 and Q given A. 

p ( 0 , Q l A )  = p(OIQ, A)P(QIA)  

= p(o;,jIqi,j,  X)P(q,,jIqi,j-l,qi-l,,,X). 
i , j  

Note that the conditional probability P(q;,jlqi,j-l, q; - i , , ,  A) re- 
ducestoP(q,,,Iql,J-l,X)ifi= l , t o P ( q ; , l j q i - ~ , ~ , X ) i f j =  1 
and to P(q,,, IX) if i = j = 1. We will assume from now on 
that P(q, , j lq, , l- , ,qi-~,l ,X) is separable, i.e. that it can be de- 
composedinto the product of horizontal and vertical components. 
This approximation will allow us to run the forward-backward al- 
gorithm on rows and columns. Hence: 
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where u(qi,,-L, q i - I , , )  is a normalization factor: 
u(qz,j-l, qi-l , , )  = l/(xqL,, f ” ( q i , j ,  qi,j-L)f”(qi, i ,  9 ~ - 1 , j ) ) ,  

In effect, the factors f n ( q ; , , , q ; , j - , )  and f V ( q a , ] ,  q,-,, j )  ap- 
proximate P(q;,jlqi,,-,, A?) andP(q;,jlq;-,,, , A y ) ,  respectively. 
This approximation will be justified in section 5.  Hereafter, we 
will replace the notations f n ( q i , l , q ; , j - l )  and f ” ( q ;  ‘,qi-,,j) 
with the more intuitive notations P(q;,Jq;,,-1, A; ) and 
P(q;,;lqi-z,j, A y ) .  Moreover, we propose an additional simplify- 
ing assumption. To avoid the complexity due to terms that depend 
on states that are both on different rows and columns we assume 
that u(qi , j - , ,  q;-,,]) is approximately constant (i.e. does not de- 
pend on q;,j-, and qi-1, j ). 

P ( 0 ,  QP) 

d 

2 HP(o;,,lqi,,> V ( q i , ,  IA,>-l, A?)P(q;,Jq<-Lj, AY, 
I .; 

2 HP(O:I~~,A:)P(~~IA~)~P(~;,~I~~.~-I ,~?) 
j 

We approximate the conditional probability P(q,,]  lq;,j-l, A?) by 
modifying the condition: 

H 
P(q;,jlqi,,-I,A, ) 2 P ( % I O ? ,  A?), 

q q i . 1  Io?, A 3  = 

which can be justified as follows: 

P(q;,j-l,qi., lo?, A?) = 
9,,J-1 

where 01 andB are the forward and backward variables used in the 
forward-backward algorithm (see Table I for the list of notations). 
So P(qi,l)o?,Xh) can be seen as a weighted average of the 
P(q;,j lq, , j- l ,  A?)’s. The weights depend on the probability of 
the paths passing through q;,j-, and ql , j .  Now we have: 

whereeachtennP(oY,qyIA~) correspondsto a I-DverticalHMM. 
Note tha tn ;  P(q;,lIo?,AF) isineffectahorizontalpriorforcol- 
umn j and, hence, horizontal and vertical decoding “communi- 
cate”. We assume that the quantity P(q,,jlo?, A?) is known, i.e., 
that it was obtained during the previous horizontal step. 

3. THE MODIFIED FORWARD-BACKWARD 
ITERATIONS 

If we sum over all possible paths, we obtain the marginal: 

P(OlA) = Cp(O,QIA) 
0 

Table 1. HMM notation summary 

Letusnotep; = [P(oy :qy /Ay)n i  P(q , , j l o? ,A~)] .  t‘,”’scan 
be computed with a modified version of the forwadbackward al- 
gorithm which we describe next after introducing one last notation: 

3.1. The F o r w a r d a  Variables 

s Recursion: 

.z .”(9..,1“,” ,,,, pi+,,, b:+,,i(o.+L>l 
% j  1 

Termination: Py = Ew,,, eF, , (q , , j ]  

3.2. The Backward0  Variables 

Initialization: D)‘, = I 
o Recursion: 

3.3. Occupancy Probability 7 

Similar formulae can he derived for the horizontal pass. It is 
worthwhile to note that our re-estimation equations are similar to 
the ones derived for the page layout problem in [6] based on the 
graphical model formalism. Also, we can see that the interaction 
between horizontal and vertical processing, which is based on the 
occupancyprobability y, is not as simple as the one used in [51. 

Let us next consider the steps of the algorithm. We first ini- 
tialize 7‘s uniformly (i.e. assuming no prior information). Then, 
the modified forward-backward algorithm is applied successively 
and iteratively on the rows and columns. Whether the iterative pro- 
cess is initialized with row or column operation may theoretically 
impact the performance. However, this choice had a very limited 
impact in our experiments and we always s m e d  with a horizontal 
pass. This algorithm is clearly linear in the size of the data and can 
be further accelerated with a parallel implementation, simply by 
running the modified forward-backward for each row or column 
on a different processor. 
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Our goal in this paper is to perform decoding. Both [51 and [6] 
used the following heuristic: they chose the most likely state for 
every observation. Although this is known to be suboptimal when 
one is concerned with the probability of occurrence of sequences 
of states (21, we tested this heuristic since it gave acceptable re- 
sults. We also hied another approach which combines our itera- 
tive decoding (ID) and PCVSV (see section 6) and which proved 
to perform better for our task. 

4. A MEASURE OF CONVERGENCE 

Although we cannot guarantee that the ID algorithm converges, i.e. 
that the horizontal and vertical passes will “agree”in a well defined 
sense, we can define and employ a measure of convergence. The 
divergence or Kullback Leibler disrance between two probability 
mass functions p and q is defined as [71: 

Let yx (resp. 7”) be the joint distributions of the r g ( k ) ’ s  (resp. 
~ ? ~ ( k ) ’ s ) .  D(yx, 7”) is a measure of how well the horizontal 
and vertical decodings agree over the entire image. If we further 
assume independence of y z ( k ) ’ s  and similarly of r,”j(k)’s, then 

5. OPTIMAL SEPARABILITY 

In section 2 we approximated P(q;,jlqi,j-, , q;-l,j, A) by the prod- 
uctofhorizontal fn(q,,j,q.,j-~)andverticalf”(q;,,,q;-i,,)fac- 
tors. Here we derive equations for the optimal horizontal and ver- 
tical components. We then show that, if fH(qt,,,qj,j--l)’s and 
f”(q;,,, q ; - l , J ) ’ s  are optimal, then they effectively approximate 
P(qi, j lq; , j-~,  A )  and P(q,,jlq;-l,j, A), respectively. 

Let us first consider the pmhlem generally. Consider a con- 
ditional distribution pill* where Cip;ljk = l , V ( j , k ) .  We want 
to approximate pil,~ into the product ajjbik, where a i j  and bik 
are non negative and satisfy the requirement: xi ai, = 1,  ’Vj and 

bA = 1, Vk.  A positive normalization factor njx is needed to 
ensure: x i  n,kaijb;k = l , V ( j , k ) .  Since for all (j, k ) ,  bothpilj! 
and n,ka;,b.x are probability distributions, we can define the di- 
vergence between them: 

Our goal is to minimize Ej,* Djk subject to the above constraints. 
We hence minimize the Lagrangian: 

We obtain the following formulae: 

Since index 3 and k run from 1 to J and K ,  respectively, we can 
simplify the formulae for a,> and b,k :  

Now to interpret the result we observe that in generalp,lk = 
C . P ; I , ~ ~ , I ~ .  If we further assume that p,lk is maximally non- 
intonnative, i.e., uniformly distributed then we obtain 

which is exactly the formula we derived for bik above. A similar 
observation can be made regarding a;, . 

Next we specialize to the problem of interest, hence, pilJk is 
replaced with P(q, , ,  Iq,,j-l,qi-i,j, A),  a .  with fn(q i , J ,q i , j - l )  
andhk  with f”(qi,,,q;-,,>). So, when f ( ~ , , j , q , , ~ - ~ ) ’ s  (resp. 
f”(q;,j, q;-l,j)’s) are chosen optimally, they approximate 
P(qi,,lqt,l-~, A P ) ’ s  (resp. p(q;,,lq;-i,, , Ay)’s)assumingno prior 
informationonP(q,_~,j/q;,,-~,X) (resp. P ( q ; , l - ~ l q ; - , , , , A ) ) .  

“x 

6. PATH-CONSTRAINED VARIABLE STATE VITERBI 

In this section, we will first introduce the PCVSV algorithm and 
then show how to combine it in a simple manner with our proposed 
algorithm to exploit their complementary contributions. 

6.1. The PCVSV algorithm 

We recall that qy is the sequence of states on the i-th row. 9“s 
can be seen as states of a 1-D HMM. However, this I-D HMM 
has such a huge number of states that the direct application of the 
Viterbi algorithm is often unpractical. The central idea in PCVSV 
is to consider only the A’ sequences with the largest posterior prob- 
abilities (hence the name “Path Constrained Variable State Viterbi“ 
algorithm). A fast algorithm is designed to avoid the calculation 
of posterior probabilities for all state sequences, It separates the 
blocks on a row from other blocks by neglecting their statistical 
dependencies. So the selection of N near optimal nodes for row i 
consists simply of identifying N state sequences with the largest 
C, logb,.,, (oL,j). 

Columns or diagonals could also be chosen instead of rows. In 
[ I ] ,  diagonals are chosen since blocks on diagonals are more ge- 
ometrically distant than blocks on rows or columns and are there- 
fore expected to exhibit less correlation. In the following, PCVSV- 
H (resp. PCVSV-D) will be the notation for the horizontal (resp. 
diagonal) variant of the PCVSV algorithm. 
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6.2. A Combined Technique 

PCVSV is guaranteed to converge to an at least local maximum- 
likelihood solution for sufficiently large N ,  the number of prese- 
lected paths. However, one may have to choose a very large value 
N to find an optimal path and hence defeat the purpose of the 
method. Indeed, the preselection of paths is inefficient since we 
only take into account local information. On the other hand, the 
computation of 7's during the iterative decoding takes into account 
both local and context information but the selection of the best path 
is admittedly suboptimal. 

Hence the idea is to combine both approaches. The preselec- 
tion of N nodes for PCVSV is based on the y's computed during 
the iterated forward-backward. During the preselection, we will 
look for the N state sequences with the largest log yi, ,  (q i , j ) .  
As we will see in the next section, this combinedapproach pro- 
vides significant performance improvement over the individual ap- 
plication of the proposed appmachor PCVSV. 

7. EXPERIMENTAL RESULTS 

7.1. The Database 

We use 40 images from the ORL face database [8] and we gener- 
ate synthetic images using a 2-D HMM (c.f. Fig. 1). The original 
ORL images are tiled into blocks which can undergo two types of 
transformations: Gaussian noise addition and small shifts. The pa- 
rameters of the Gaussian noise (mean and variance) are determined 
by the emission probabilities of the 2-D HMM and the shifts by the 
transition probabilities. For each original image, we generate 25 
images, which results in a total of 1,000 synthetic images, 

2-D HMM 

4 
Fig. 1. Transformation of a face through a 2-D HMM 

7.2. Results 

The goal is to find the best posiible match between the blocks 
of a synthetic image and i s  associated ORL image knowing the 
2-D HMM parameters. The performance measure is the difference 
between the log-likelihood of the path Q that generated the syn- 
thetic data and the log-likelihood of the best path that is found. 
The larger this quantity, the closer is the match to the maximum- 
likelihood solution. This quantity may even exceed zero if the 
algorithm finds a path that "explains" the data better than Q. This 
score was plotted on Fig. 2 as a function of the computation time 
to match two images. For ID and PCVSV, the maximum number 
of iterations or the number N of preselected paths are indicated. 

We can see that PCVSV-H is outperformed by both PCVSV-D 
(as expected) and ID, and that PCVSV-D performs slightly bener 
than ID. This is due to the suboptimal choice for the best path in 
ID. However, when PCVSV-D is initialized with ID, the perfor- 
mance is significantly bener than each algorithm taken separately, 
at the expense of a very modest amount of additional computation. 

*.I , , , ,  , , 
4 8  

Fig. 2. 
PCVSV-D 

Performance of ID, PCVSV-H, PCVSV-D and ID + 

8. CONCLUSION 

We introduced in this paper a novel algorithm for decoding 2-D 
HMMr. The idea is to approximate a 2-D HMM by a T-HMM and 
to perform the fonvard-backward algorithm alternatively and iter- 
atively on rows and coIums.  We derived re-estimation equations 
and discussed convergence and separability issues. We compared 
the performance of the proposed approach with the PCVSV algo- 
rithm and combined them into a new algorithm that outperforms 
each of the individual techniques. 

While this paper focused on decoding, future work will con- 
centrate on the problem of training 2-D HMMs based on the same 
principles. 
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