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Abstract—This paper proposes a new measure of “distance” between faces. This measure involves the estimation of the set of

possible transformations between face images of the same person. The global transformation, which is assumed to be too complex for

direct modeling, is approximated by a patchwork of local transformations, under a constraint imposing consistency between

neighboring local transformations. The proposed system of local transformations and neighboring constraints is embedded within the

probabilistic framework of a two-dimensional hidden Markov model. More specifically, we model two types of intraclass variabilities

involving variations in facial expressions and illumination, respectively. The performance of the resulting method is assessed on a large

data set consisting of four face databases. In particular, it is shown to outperform a leading approach to face recognition, namely, the

Bayesian intra/extrapersonal classifier.

Index Terms—Biometrics, face recognition, image processing, hidden Markov model, distance.
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1 INTRODUCTION

LET us consider the general pattern classification problem
where a sample x is to be assigned to one of a set of

possible classes f!ig. Within the Bayesian decision frame-
work, the optimal classifier (commonly referred to as the
minimum risk classifier) employs the decision rule: assign
observed pattern x to the class !i that minimizes the
conditional risk Rð!ijxÞ ¼

P
j �ð!ij!jÞpð!jjxÞ; where the

loss function �ð!ij!jÞ quantifies the loss incurred for
selecting !i when the true class of x is !j, and where
pð!jjxÞ is the (posterior) probability of class !j given that
sample x was observed, which is computed in practice from
pð!jÞ—the class prior probabilities—and pðxj!jÞ—the class-
conditional probability density functions (pdf). For a
detailed review see, e.g., [1]. Typically, the loss functions
are determined by the application and are hence assumed
known, but the class priors and class-conditional pdf’s need
to be estimated given a training set of labeled samples. In
practice, the more challenging task is the estimation of class-
conditional pdf’s that characterize intraclass variability, and
its accuracy is a primary determining factor for the classifier
performance. The quality of these estimates hinges on two
crucial factors: the correctness of the chosen model and the
availability of a sufficiently large training set to estimate the

model parameters. Obviously, these two considerations are
interrelated as the fewer parameters of a compact model
will require less training data to be robustly estimated.

The discipline of biometrics is concerned with the
automatic recognition of a person based on his/her
physiological or behavioral characteristics [2]. Biometric
applications involve pattern classification systems where
the samples are biometric data from a person under
consideration, and need to be classified into categories
whose nature depends on the specific task at hand. For the
identification task, a new biometric sample is assigned to the
most likely identity from a predefined set of identities. In
this case, the classes are the possible identities. For the
verification task, the system is probed with a biometric
sample and a claimed identity. The goal is to decide whether
the sample indeed corresponds to the claimed identity.
Verification is thus a two-class decision problem where the
classes correspond to the acceptance/rejection decision.

The focus of this paper is on face recognition [3], [4], a
central area in biometrics. It is a very challenging task, as
faces of different persons share global shape characteristics,
while face images of the same person are subject to
considerable variability, which might overwhelm the
measured interperson differences. Such variability is due
to a long list of factors including facial expressions,
illumination conditions, pose, presence or absence of
eyeglasses and facial hair, occlusion, and aging. Although
much progress has been made over the past three decades,
face recognition is largely considered an open problem, as
observed during the FERET evaluation [5] and the facial
recognition vendor tests (FRVT) 2000 [6] and 2002 [7], and is
a highly active research topic.

Data scarcity is often a problem of paramount impor-
tance in biometric applications. When a new user first
enrolls in a system, only a few instances of the considered
biometrics are typically captured in order to reduce the
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duration of enrollment and minimize inconvenience to the
user (as well as maximize user cooperation). Hence, very
little intraclass variability can be observed during the
enrollment session. If only one sample is provided,
intraclass variability is obviously impossible to assess. In
the case of face recognition, the image which is provided (or
its representation) is thus directly used as a template and
the likelihood pðxj!iÞ can be interpreted as a possible
measure of similarity between the query and enrollment
images. More generally, we note that the main issue is the
ability to define a distance between images which is
meaningful for the task at hand. While many algorithms
focus on the problem of representation, i.e., feature
extraction, less attention has been given to the derivation
and computation of an appropriate distance. For instance,
the popular Eigenfaces [8] and Fisherfaces algorithms [9],
[10], [11] employ low dimensional coding of face images.
The distance between faces in the face subspace is based on
simple metrics such as L1, L2, cosine and Mahalanobis
distances [12], [13]. Combinations thereof such as the
Mahalanobis-L1, -L2 and -cosine [14] have been proposed.
Variations, such as the “Yambor” distance [14] for Eigen-
faces or the weighted euclidean distance for Fisherfaces [9],
[15], have also been suggested. The candidate distance that
yields the best results in a given set of experiments is simply
chosen. However, it is often difficult to ascertain why one
distance measure performs better than another.

To define a meaningful distance, it is beneficial to
formalize the relationship between observations of the
same class, i.e., between face images of the same person.
Due to the scarcity of data, we have to assume (or postulate)
the existence of a “universal” distance measure that can be
applied to different classes, i.e., that the intraclass varia-
bility is similar in the various classes. Thus, the parameters
of the distance measure can be estimated from a larger
training set which is not restricted to images of persons that
are enrolled in the system. If Ot denotes the template image
for class !i, Oq a query image, and R the relationship
between images of the same class, then the class-conditional
probability is expressed as:

pðOqj!iÞ ¼ pðOqjOt;RÞ: ð1Þ

A distance based on the above expression has already
been used by the Bayesian intra/extrapersonal classifier
[16], [17], [18] that aims at estimating the distribution of
image differences and by related approaches such as [19].
Note that, while the Elastic Graph Matching (EGM) [20] also
defines a distance between face images, it does not make use
of a probabilistic framework. However, other approaches
related to EGM, such as [21], have made an attempt to
define a probabilistic distance.

In this paper, we consider a novel measure of “distance”
between faces. This measure involves the estimation of the
set of possible transformations between face images of the
same person. The global transformation is assumed too
complex for direct modeling and is approximated with a set
of local transformations under a constraint imposing
consistency between neighboring local transformations.
The proposed local transformations and neighboring con-
straints are embedded within the probabilistic framework

of a two-dimensional hidden Markov model (2D HMM).
This general framework is specialized to two types of
intraclass variability: facial expressions and illumination
variations. In the proposed system, they are modeled
separately using different types of local transformations.

The remainder of the paper is organized as follows: In the

next section, we provide a more detailed description of the

general framework of the proposed face recognition system.

In Sections 3 and 4, respectively, we specialize this frame-

work to the problems of face recognition in the presence of

facial expressions and illumination variations. In Section 5,

we relate this work to existing work in the face recognition

literature. In Section 6, we provide experimental results

involving 4 databases (the FERET [5], PIE [22], Yale B [23],

and AR [24] face databases) and more than 10,000 images.

Conclusions are drawn and presented in the last section.

2 FRAMEWORK

Our premise is that a global transformation between two

images may be too complex to be modeled directly and that

it should be approximated with a set of local transformations.

These local transformations should be as simple as possible

for efficient implementation but the composition of all local

transformations (i.e., the global transformation) should be

rich enough to model a wide range of variabilities between

face images of the same person. However, if we do not

restrict the set of admissible combinations of local transfor-

mations, the model might become overflexible and “suc-

ceed” to patch together very different faces. This

observation naturally leads to the second component of

our framework: the neighborhood coherence constraint whose

purpose is to provide context information and to impose

consistency requirements on the combination of local

transformations. It must be emphasized that such neighbor-

hood consistency rules introduce dependencies in the local

transformation selection for the various image regions, and

the optimal solution must therefore involve a global

decision. To combine the local transformation and consis-

tency costs, we propose to embed the system within a

probabilistic framework using 2D HMMs. Note that HMMs

have already been successfully applied to the problems of

face detection and face recognition [25], [26], [27], [28].

However, the approach we propose is fundamentally

different as our focus is on modeling a transformation

between face images while the goal of the previously cited

approaches is to model the face.

Let us assume that feature vectors are extracted on a grid

from the query image Oq. At any location on Oq, the system

is assumed to be in some unknown state. If we assume that

the 2D HMM is first-order Markovian, the state of the

system at a given position depends on the state of the

system at the adjacent positions in both horizontal and

vertical directions, as quantified by the transition probabil-

ities. At each position, an observation is emitted according

to the state-conditional emission probabilities. In our frame-

work, local transformations are identified with the states of

the HMM, and emission probabilities model the local
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mapping cost. These transformations are “hidden” and

information on them can only be extracted from the

observations. Transition probabilities relate states of neigh-

boring regions and implement the consistency rules.
The set of possible global transformations and, hence, the

resulting distance, primarily depends on the allowed local

transformations. In this paper, we consider in particular

two types of local transformations: grid and feature

transformations. A grid transformation consists of a local

deformation of the feature extraction lattice of the query

image. A feature transformation consists of transforming

the extracted features directly through the application of a

meaningful operator. Note that, if we work in a transform

domain, a feature transformation can reflect both geometric

or photometric transformations in the pixel domain.
We will next specialize this framework for two very

different types of variabilities: elastic facial distortions (such

as expressions), using grid transformations, and illumina-

tion variations, using feature transformations.

3 MODELING FACIAL EXPRESSIONS

Elastic distortions due to facial expressions will be modeled

through grid transformations. In Sections 3.1 and 3.2,

respectively, we consider the emission probabilities and the

transition probabilities of our HMM. Finally, in Section 3.3,

we briefly introduce the turbo hidden Markov model

(T-HMM) as an efficient approximation of the computation-

ally intractable 2D HMM. The T-HMM framework provides

efficient approximate formulas to 1) compute the score

P ðOqjOt;RÞ and 2) estimate the parameters of R.

3.1 Emission Probabilities

Let oi;j be the observation extracted from Oq at position ði; jÞ
on the grid with 1 � i � I and 1 � j � J . Let qi;j be the

associated state. It � is a translation vector, the emission

probability, i.e., the probability that at position ði; jÞ the

system emits observations oi;j given that it is in state qi;j ¼ � ,

is denoted b�i;j ¼ P ðoi;jjqi;j ¼ �;RÞ. If we examine our score

P ðOqjOt;RÞ, it is clear that the HMM parameters, denoted

�t;R to reflect their dependence on both Ot and R, may be

conveniently separated into face dependent parameters �t,

i.e., parameters that are directly extracted from Ot, and face

independent transformation parameters �R, i.e., the para-

meters of the shared transformation model R which can be

reliably trained by pooling together the training images of

all available individuals.
A translation � maps a position in Oq into another

position in Ot, so that a feature vector oi;j in Oq needs to be

matched to a feature vector in Ot that will be denoted m�
i;j

(cf. Fig. 1). The emission probability b�i;j represents the cost

of matching oi;j and m�
i;j. We model b�i;j with a mixture of

Gaussians. This choice is motivated by the fact that linear

combinations of Gaussians can approximate arbitrarily

shaped densities:

b�i;j ¼
XKi;j

k¼1

wk
i;jb

�;k
i;j : ð2Þ

Ki;j is the number of components at position ði; jÞ, b�;ki;j s are
the component densities and wk

i;js are the mixture weights
and must satisfy the following constraint:

XKi;j

k¼1

wk
i;j ¼ 1 ; 8ði; jÞ: ð3Þ

Each component density is a D-variate Gaussian function of
the form:

b�;ki;j ðoi;jÞ ¼
exp � 1

2 ðoi;j � ��;k
i;j Þ

T�
kð�1Þ
i;j ðoi;j � ��;k

i;j Þ
n o

ð2�Þ
D
2 j�k

i;jj
1
2

; ð4Þ

where ��;k
i;j and �k

i;j are, respectively, the mean and
covariance matrix of the Gaussian, D is the dimensionality
of the feature space and j � j denotes the determinant
operator. This HMM is nonstationary as the Gaussian
parameters depend on the position ði; jÞ. This allows to
weight automatically the different parts of the face during
the scoring process.

We now relate ��;k
i;j to m�

i;j by writing ��;k
i;j as a function of

m�
i;j. If we consider the case of an affine transformation,

then we write ��;k
i;j as:

��;k
i;j ¼ Wk

i;j�
�
i;j; ð5Þ

where ��i;j ¼
1

m�
i;j

� �
is a vector of size Dþ 1 and Wk

i;j is a

D� ðDþ 1Þ matrix.
Interestingly, similar equations have been written in the

field of automatic speech recognition (ASR) for the class of
speaker adaptive training (SAT) algorithms [29]. Especially
in [30], [31], the authors make use of “bipartite” models for
the Gaussian means to separate variabilities. These models
are made of two components: one models mostly the
speaker dependent (SD) part of the acoustic variabilities
and the other the residual speaker independent (SI)
variabilities. The Gaussian means are written as a function
f of the SD parameters where the parameters of f are SI,
which is exactly what is expressed by (5).

It is interesting to understand the meaning of the
previous equations and, especially, the impact of the
separation of the HMM parameters into face dependent
parameters and face independent transformation para-
meters. While the shape of b�i;j depends only on the face
independent transformation parameters wk

i;j, �
k
i;j, and Wk

i;j,
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Fig. 1. Local mapping of a feature vector oi;j in the query image Oq into a

feature vector m�
i;j in the template image Ot.



its mean should be approximately centered around m�
i;j, a

face dependent parameter.
Intuitively, b�i;j models the intraclass variability of the

face around position ði; jÞ.

3.2 Transition Probabilities

The neighborhood consistency of the transformation is

ensured via the transition probabilities of the HMM. If we

assume that the 2D HMM is a first order Markov process,

the transition probabilities are of the form P ðqi;jjqi;j�1; qi�1;jÞ.
We would like to outline that the choice of this simple first

order model is primarily motivated by its low complexity.

However, an improved performance may be obtained with

a richer model, by going beyond the first order statistics, at

the expense of an increase of the computational cost.
We show in the next section that a 2D HMM can be

approximated by a turbo hidden Markov model (T-HMM):
a set of horizontal and vertical 1D HMMs that “commu-
nicate” through an iterative process. The transition prob-
abilities of the corresponding horizontal and vertical
1D HMMs are denoted: aHi;jð� 0; �Þ ¼ P ðqi;j ¼ � 0jqi;j�1 ¼ �Þ
and aVi;jð� 0; �Þ ¼ P ðqi;j ¼ � 0jqi�1;j ¼ �Þ.

Invariance to global shift in face images is a desirable
property. Hence, if � 0 ¼ � þ �� , we choose aH and aV to be of
the form:

aHi;jð� þ �� ; �Þ ¼ aHi;jð��Þ; ð6Þ

aVi;jð� þ �� ; �Þ ¼ aVi;jð��Þ: ð7Þ

We can apply further constraints on the transition prob-
abilities to reduce the number of free parameters in our
system. For instance, we can assume separable transition
probabilities. If �� ¼ ð��x; ��yÞ, then:

aHi;jð��Þ ¼ aHx
i;j ð��xÞ � aHy

i;j ð��yÞ; ð8Þ

aVi;jð��Þ ¼ aVxi;j ð��xÞ � aVyi;j ð��yÞ: ð9Þ

We can also assume parametric transition probabilities. If
Ot and Oq have the same scale and orientation, then the
horizontal transition probabilities could have the following
form:

aHi;jð��Þ / exp � 1

2

��x

�Hx
i;j

 !2

þ ��y

�Hy
i;j

 !2
2
4

3
5

8<
:

9=
;: ð10Þ

A similar formula can be derived for vertical transition
probabilities. Another idea to reduce the number of
transition probability parameters would be to use the face
symmetry.

aHi;j and aVi;j model, respectively, the horizontal and
vertical elastic properties of the face at position ði; jÞ and
are part of the face transformation model R. Note that using
multiple horizontal and vertical transition probabilities at
different locations enables to model the different elastic
properties of the various parts of the face.

Finally, we consider the remaining set of HMM para-
meters—the initial occupancy probabilities. We assume
herein that the initial occupancy probability distribution is

uniform, to ensure invariance to global translations of face
images.

3.3 Turbo Hidden Markov Models

The one-dimensional hidden Markov model (1D HMM) is a
class of stochastic signal model which has a long history of
success in various problem domains, perhaps most notably
in speech recognition. This success is largely due to the
development of computationally efficient algorithms to
solve the three fundamental problems of HMM design,
namely, the forward-backward, Viterbi and Baum-Welch
algorithms [32].

The Markov random field (MRF) is the 2D counterpart of
the 1D Markov chain where the natural ordering of past,
present and future is replaced by the spatial concept of
neighborhood. The MRF modeling process generally con-
sists of the following steps [33]: defining a neighborhood
system, defining cliques, defining the prior clique poten-
tials, deriving the likelihood energy, and deriving the
posterior energy. In this paper, we consider a subclass of
MRF models, the Markov mesh random field (MMRF),
which reintroduces the notion of past, present, and future
thanks to the raster scan [34]. In this paper, we focus on the
first order MMRF. Let Q ¼ fqi;j; i ¼ 1; . . . ; I; j ¼ 1; . . . ; Jg be
a I � J array of states and let Qi;j be the set of states to the
left or above qi;j: Qi;j ¼ fqm;n;m < i or n < jg. Then the first
order MMRF can be defined by the following property (cf.
also Fig. 2):

P ðqi;jjQi;jÞ ¼ P ðqi;jjqi;j�1; qi�1;jÞ: ð11Þ

Reintroducing the notion of past and future is beneficial
as it allows to develop the joint distribution of states P ðQj�Þ
as is the case for the 1D HMM. Thus, the forward-
backward, Viterbi and Baum-Welch algorithms developed
for the 1D HMM can be extended to the 2D case. However,
even with the simple first-order Markovian model con-
sidered, the direct extension of these algorithms to the
2D case is exponential in the size of the data [35], and hence
intractable for most applications of practical value. Thus,
approximations are required.

Many approximations of the 2D HMM were suggested. It
seems that most approaches attempt to replace the 2D HMM
with a 1D HMM [34], [36] or a set of 1D HMMs [35], [37],
[38], [39] whose properties are well understood. In [39], the
turbo hidden Markov model (T-HMM) was introduced, in
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Markov mesh random field (cf. (11)).



reference to the celebrated turbo error-correcting codes, as
an efficient approximation of the 2D HMM. A T-HMM
consists of a set of horizontal and vertical 1D HMMs that
“communicate” through an iterative process by inducing
prior probabilities on each other. Thus, the use of the
T-HMM corresponds to a simple elasticity model of the face
where each part of the face is linked to its horizontal and
vertical neighbors by springs. The T-HMM framework
provides efficient approximate formulas to 1) compute the
score P ðOqjOt;RÞ and 2) estimate the parameters of R.

3.3.1 Estimation of P ðOqjOt;RÞ
The computation of P ðOqjOt;RÞ is based on a modified
version of the forward-backward algorithm which is
applied successively and iteratively on the rows and
columns until the horizontal and vertical priors reach a
desired level of agreement. This algorithm is linear in the
size of the data modulo the number of iterations. For more
details the reader can refer to [39].

3.3.2 Parameter Estimation

We recall that the parameters to be estimated are the �R
parameters, i.e., the parameters of the face transformation

model: wk
i;j, Wk

i;j, �k
i;j, aHi;j, and aVi;j. During training, we

present pairs of images ðOp
t ; O

p
qÞ that belong to the same

person and optimize the transformation parameters �R, to

increase the likelihood value
Q

p P ðOp
q jO

p
t ; �RÞ (Maximum

Likelihood (ML) estimation).
We recall that Q denotes a sequence of states: Q ¼

fqi;j; i ¼ 1; . . . ; I; j ¼ 1; . . . ; Jg and �R the current estimate of
the HMM parameters. The re-estimation formulas for HMM
parameters are usually derived by maximizing Baum’s
auxiliary function:

Qð�0
Rj�RÞ ¼

X
Q

P ðQjOq;Ot; �RÞ logP ðOq;QjOt; �
0
RÞ: ð12Þ

with respect to �0
R. It has been proven that the maximization

of Qð�0
Rj�RÞ leads to an increased likelihood (see, e.g., [40]).

As noted in [32], the re-estimation formulas can be
interpreted as an implementation of the Expectation-
Maximization (EM) algorithm in which the E step is the
calculation of the auxiliary function Qð�0

Rj�RÞ, and the
M step is the maximization over �0

R.
Let us consider the case where we have one pair of

images ðOt;OqÞ. During the E-step, one performs a modified
forward-backward to estimate ��i;j ¼ P ðqi;j ¼ � jOq;Ot; �RÞ
(occupancy probability),

	Hi;jð� þ ��; �Þ ¼ P ðqi;jþ1 ¼ � þ ��; qi;j ¼ � jOq;Ot; �RÞ

and

	Vi;jð� þ ��; �Þ ¼ P ðqiþ1;j ¼ � þ ��; qi;j ¼ � jOq;Ot; �RÞ:

We also define ��;ki;j , the probability of being in state qi;j ¼ �
at position ði; jÞ with the kth mixture component accounting
for oi;j, which can be estimated as follows:

��;ki;j ¼ ��i;j
wk

i;jb
�;k
i;jPKi;j

k¼1 w
k
i;jb

�;k
i;j

: ð13Þ

During the M-step, we set �Q
�wk

i;j

¼ 0, �Q
�Wk

i;j

¼ 0, �Q
��k

i;j

¼ 0,
�Q
�aHi;j

¼ 0, and �Q
�aVi;j

¼ 0 and obtain, respectively, the following

reestimation formulas:

ŵwk
i;j ¼

P
� �

�;k
i;jP

� �
�
i;j

; ð14Þ

ŴWk
i;j ¼

X
�

��;ki;j oi;j�
�
i;j

T
� � X

�

��;ki;j �
�
i;j�

�
i;j

T

 !�1

; ð15Þ

�̂�k
i;j ¼

P
� �

�;k
i;j oi;j � ŴWk

i;j�
�
i;j

� �
oi;j � ŴWk

i;j�
�
i;j

� �T
P

� �
�;k
i;j

; ð16Þ

âaHi;jð��Þ ¼
P

� 	
H
i;j � þ ��; �ð ÞP

� �
�
i;j

; ð17Þ

âaVi;jð��Þ ¼
P

� 	
V
i;j � þ ��; �ð ÞP

� �
�
i;j

: ð18Þ

Estimating Wk
i;j requires to solve a linear system of Dþ 1

equations with Dþ 1 unknowns (cf. (15)). In (16), we

assumed the general case of full covariance matrices. In (17)

and (18), we assumed unconstrained transition probabil-

ities. While these equations are given for the improbable

case where HMM parameters are estimated with only one

pair of images, their extension to the case of multiple pairs

of images is straightforward.

4 MODELING ILLUMINATION VARIATIONS

While grid transformations are useful to compensate for

facial expressions and, as we will show experimentally, for

pose variations, they are of no use when dealing with

illumination variations. Hence, new transformations (i.e.,

states) should be allowed by our HMM.
In Section 4.1, we first show how to transform the

illumination into an additive component in the feature

domain and how to modify the Gaussian parameters of the

emission probabilities to account for it. In Section 4.2, we

explain how to constrain variation in illumination through

the transition probabilities. Finally, in Section 4.3, we briefly

introduce the turbo state-space model (T-SSM) which is the

counterpart of the T-HMM in the case where the states are

continuous variables. The T-SSM framework provides

efficient formulas to 1) estimate the best sequence of

“illumination” states and 2) estimate the parameters of R
which correspond to the illumination compensation part of

our algorithm.

4.1 Modeling Illumination

The starting point for illumination modeling is the well-

known assumption that an image I can be seen as the

product of a reflectance R and an illumination L [41]:

Iðx; yÞ ¼ Rðx; yÞ � Lðx; yÞ: ð19Þ

Applying the logarithm operator, we obtain:

log Iðx; yÞ ¼ logRðx; yÞ þ logLðx; yÞ: ð20Þ
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and the illumination turns into an additive term in the pixel
domain. If the feature extraction operator F is linear, such
as convolution, then we obtain:

Fflog Iðx; yÞg ¼ FflogRðx; yÞg þ FflogLðx; yÞg: ð21Þ

and illumination remains additive in the feature domain.

The idea is hence to introduce feature transformations to

model the illumination and to enforce consistency between

feature transformations at adjacent positions, in the same

manner we enforced consistency between grid transforma-

tions, to constrain the illumination variation. Hence, our

states which represent both local grid and feature transfor-

mations are now doubly indexed: qi;j ¼ ð�i;j; 
i;jÞ. �i;j and


i;j are, respectively, the grid and feature transformation

parts of the state. If qi;j ¼ ð�; 
Þ, the emission probability b�;
i;j

is still modeled with a mixture of Gaussians:

b�;
i;j ¼
XKi;j

k¼1

wk
i;jb

�;
;k
i;j ; ð22Þ

where the b�;
;ki;j s are D-variate Gaussians with means ��;
;k
i;j

and covariance matrices �k
i;j. If the “feature” state 
 also

denotes the additive contribution of the illumination in the
feature domain, the Gaussian means are of the form:

��;
;k
i;j ¼ ��;k

i;j þ 
 ¼ Wk
i;j�

�
i;j þ 
: ð23Þ

4.2 Constraining the Illumination Variation

If we assume that grid and feature transformations model,

respectively, differences in facial expression and illumina-

tion between images, and that facial expression and

illumination variations are mostly independent (i.e., a facial

expression change between two adjacent positions has a

limited impact on the illumination change between the

same positions and vice versa), then the horizontal and

vertical transition probabilities can be separated as follows:

P ðqi;jjqi;j�1Þ ¼ P ð�i;jj�i;j�1Þ � P ð
i;jj
i;j�1Þ; ð24Þ

P ðqi;jjqi�1;jÞ ¼ P ð�i;jj�i�1;jÞ � P ð
i;jj
i�1;jÞ: ð25Þ

While the choice of a discrete number of grid transforma-
tions is natural due to the discrete nature of the feature
extraction grid of the template image, it is easier to deal
with the illumination with an infinite continuous set of
illumination states. We choose the horizontal and vertical
illumination components of the transition probabilities to be
D-variate Gaussians:

P ð
i;j ¼ 
j
i;j�1 ¼ 
0Þ ¼ P ð
i;j ¼ 
j
i�1;j ¼ 
0Þ

¼
exp � 1

2 ð
� 
0ÞTSð�1Þð
� 
0Þ
n o

ð2�Þ
D
2 jSj

1
2

:
ð26Þ

The choice of such a transition probability is primarily
motivated by its computational tractability. To reduce even
more the complexity, in the following we assume that the
covariance matrix S is diagonal and, therefore, that the
components of the feature vectors are independent from
each other. S is the only parameter of our illumination

transformation model and it models the speed of variation
of the illumination in each of the feature components.

4.3 Turbo State-Space Models

An HMM with an infinite continuous set of states is
generally referred to as a state-space model (SSM) [42]. The
growth in complexity that plagues the 2D HMM also arises
in the case of the 2D SSM and approximations are required.
In [43], the T-HMM framework was extended to the
continuous state turbo SSM (T-SSM). The T-SSM provides
efficient approximate formulas to the two following
problems: 1) estimate the best sequence of “illumination”
states and 2) estimate the parameters of R which
correspond to the illumination compensation part of our
algorithm, i.e., the diagonal matrix S.

We denote Q ¼ ðT;�Þ a sequence of states where T is a
sequence of grid states: T ¼f�i;j; 1 � i � I; 1 � j � Jg and �
is a sequence of feature states: �¼f
i;j; 1� i � I; 1 � j � Jg.
In the case where we attempt to model facial expressions
and illumination variations, our similarity measure between
face images is:

P ðOqjOt;�
�;RÞ; ð27Þ

where �� is the sequence of feature states that best explains
the illumination variation.

4.3.1 Finding the Best Sequence of States

In the case where the system can be in only one grid state at
each position and where emission probabilities are Gaus-
sian, we can extend the modified forward-backward
introduced for the T-HMM to the T-SSM (see [43]). During
the modified forward-backward, we can estimate �
i;j ¼
P ðqi;j ¼ 
jOq;Ot; �RÞ and then choose the sequence of
locally optimal states:


� ¼ argmax



�
i;j: ð28Þ

Although choosing the sequence of locally optimal states
may not lead to the sequence of globally optimal states, this
approximation is valid in the case where the best sequence
of states accounts for most of the total probability.

In the case where we perform an elastic matching and
where emission probabilities are mixtures of Gaussians, a
direct application of the modified forward-backward
would be too computationally intensive. Instead we
propose to apply iterative passes to find successively
the grid states, Gaussian indexes and feature states that
best explain the transformations between two images. Let
ki;j be the Gaussian index in the emission probability at
position ði; jÞ and let K be a sequence of Gaussian
indexes: K ¼ fki;j; 1 � i � I; 1 � j � Jg. Let us also de-
note, respectively, Tn, Kn, and �n the best set of grid
states, Gaussian indexes and illumination states after the
nth iteration.

The iterative procedure is as follows:

1. Initialize �0: 8ði; jÞ, 
i;j ¼ 0, i.e., we assume that
there is no illumination variation between Oq and Ot.

2. Tn ¼ argmaxT logP ðT jOq;Ot;�n�1; �jRÞ: During the
forward-backward, one estimates the occupancy
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probabilities ��i;j and chooses at each position ði; jÞ
the state �i;j ¼ �� such that: �� ¼ argmax� �

�
i;j.

3. Kn ¼ argmaxK logP ðKjOq;Ot; T ;�n�1; �RÞ: During
the forward-backward, one can also estimate ��;ki;j . If
�� is the optimal state found at position ði; jÞ, then
the optimal Gaussian index ki;j ¼ k� is chosen such
that k� ¼ argmaxk �

��;k
i;j .

4. �n ¼ argmax� logP ð�jOq;Ot; Tn;Kn; �RÞ: We apply
the modified forward-backward for the T-SSM and
estimate �
i;j and choose at each position ði; jÞ the
state 
i;j ¼ 
� such that: 
� ¼ argmax
 �



i;j.

5. Go back to Step 2 until Tn, Kn, and �n converge.

Although this iterative procedure is not guaranteed to
converge, it does provide acceptable results as shown in the
experimental results section. Note that, once �� is obtained,
the computation of the score P ðOqjOt;�

�; �RÞ is done with
the modified forward-backward for the T-HMM except that
we replace the features oi;j with their illumination compen-
sated version oi;j � 
�

i;j.

4.3.2 Parameter Estimation

The estimation of the parameter S ¼ diagfs½1� . . . s½D�g is
performed through the maximization of Baum’s auxiliary
function as done in Section 3.3.2. This maximization can be
done independently per feature components and, for the
considered transition probabilities, this leads to the follow-
ing re-estimation formula:

ŝs2 ¼
P

i;j

R

;
0 ð
� 
0Þ2½	Hi;jð
; 
0Þ þ 	Vi;jð
; 
0Þ�d
d
0

ðI � 1Þ � J þ I � ðJ � 1Þ : ð29Þ

Note that there exists a closed form formula, which is not
shown here due to its complexity.

It is interesting to note a very recent approach within the
discipline of speech recognition [44], [45], which employs a
philosophy that bears some similarity to our work on
illumination compensation, although in an altogether
different field and context. Indeed, in [44], the noise is
modeled as a sequence of states of a dynamical system with
a continuum of states. Observations generated by such a
system are assumed to be related to the state of the system
by a functional relation which models clean speech as the
corrupting influence of noise. In our case, we assume that
variations due to facial expressions corrupt the illumination
signal. The work of [45] brings important differences, one of
which is to perform a joint noise and speech tracking. This
is fairly similar with the joint grid and feature transforma-
tions estimation used in our approach.

5 RELATED WORK

As explained in the introductory section of this paper, only
a few face recognition algorithms concentrate on comput-
ing a distance between face images. A comprehensive
review of the literature on face recognition is beyond the
scope of this paper and the interested reader is referred to
[3], [4], [46]. In this section, we will focus on the Bayesian
intra/extrapersonal criterion [17], which will be referred to
as BAID as the basic idea of this approach is to perform a
Bayesian Analysis of Image Differences. There are two
main reasons for this choice. It was one of the top

performers during the 1996 FERET evaluations [5] (and
remains one of the most successful face recognition
algorithms to date [47]) and it can be related to our
approach. Hence, in Section 5.1, we first briefly describe the
BAID algorithm and then show in Section 5.2 that the BAID
and the proposed probabilistic model of face mapping can
be understood as different (competing) approximations of
the same high-dimensional density.

5.1 The BAID Algorithm

The focus of [17] is on modeling the difference � between
face images. The observed variability can be explained by
two mutually exclusive classes of variability: the intraper-
sonal variability �I (equivalent to our notation R) and the
extrapersonal variability �E . The chosen measure of
similarity between two face images is P ð�I j�Þ which,
using Bayes rule, can be evaluated as follows:

P ð�I j�Þ ¼ P ð�j�IÞP ð�IÞ
P ð�j�IÞP ð�IÞ þ P ð�j�EÞP ð�EÞ

: ð30Þ

A simple ML formulation, which uses only the intraperso-
nal variability, is often preferred to the previous MAP
classifier, as it reduces the computation by a factor of two at
the cost of very little degradation of the performance. In
such a case, the similarity score is simply P ð�j�IÞ.

The difference between face images of the same person is
assumed to be a normally distributed random variable:

P ð�j�IÞ ¼
exp � 1

2�
TS�1�

� �
ð2�ÞN=2jSj1=2

: ð31Þ

Due to the high dimensionality of� (e.g., for 128� 128 pixels

images, N ¼ 16; 384) the direct estimation of the parameter

of this probability density function, i.e., of the covariance

matrix S, is difficult. Moreover, estimating P ð�j�IÞ can be

very computationally intensive. Therefore, the intrapersonal

image difference space is separated into a principal subspace

F and its orthogonal complement �FF . Thus, P ð�j�IÞ can be

approximated as the product of two terms:

P ð�j�IÞ �
exp � 1

2

PM
i¼1

y2i
�i

n o
ð2�ÞM=2QM

i¼1 �
1=2
i

exp � 1
2
�2ð�Þ
�

n o
ð2��ÞðN�MÞ=2 ; ð32Þ

where yi is the projection of � on the ith principal direction
of F , �i is the eigenvalue associated with this direction,
�2ð�Þ is the squared Euclidean distance of � to F , and � is
the average eigenvalue in �FF (see [16], [17], [18] for more
details).

5.2 Relationship between BAID and the Proposed
Approach

We can now relate this approach to the proposed framework.

First, we could envision applying the Gaussian classifier
(and, thus, BAID) not on the pixel to pixel difference between
face images but on the difference between their representa-
tions, i.e., after a feature extraction step. We assume that the
set of feature vectors foi;jg and fmi;jg are extracted on a grid,
respectively, from the query imageOq and the template image
Ot. Note that [16] considers the case where feature vectors are
nonoverlapping gray-level blocks that cover the whole
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image. We denote �i;j ¼ oi;j �mi;j. If we assume that the
difference between feature vectors at adjacent positions is
uncorrelated, then the covariance matrix S is block diagonal.
IfSi;j is the block corresponding to position ði; jÞand ifD is the
dimension of the feature vectors, then:

P ð�j�IÞ ¼
Y
i;j

P ð�i;jj�IÞ ð33Þ

¼
Y
i;j

exp � 1
2 �

T
i;jS

�1
i;j �i;j

n o
ð2�ÞD=2jSi;jj1=2

: ð34Þ

This corresponds to the probabilistic distance for our
classifier in the very simple case where we perform a rigid
matching (no grid transformation) without any illumination
compensation (no feature transformation) and where we
use a single Gaussian per mixture with a full covariance
matrix. Hence, while BAID and a simplified version of our
algorithm can be viewed as different approximations of the
same high dimensional density, these two algorithms
pursue radically different approaches. BAID uses a global
approach as the difference between faces is modeled in its
entirety. The proposed approach makes use of a feature-
based approach as we consider local representations of the
face.

6 EXPERIMENTAL RESULTS

In this section, we present an experimental comparison of
BAID and our probabilistic mapping with local transforms
(PMLT). In Section 6.1, we first briefly introduce the four
databases used to carry out our experiments. In Section 6.2,
we describe the features extracted from the face images
and which are used by the face classifiers. The training
procedures employed in the design of the BAID and PMLT
classifiers are specified in Section 6.3. Finally, we carry out
the comparison and evaluate the robustness of BAID and
PMLT in the case of a degradation of the image resolution,
an imprecise segmentation and a variation in facial
expression, illumination or pose Section 6.4. All the results
we present are for identification experiments.

6.1 The Databases

The Facial Recognition Technology (FERET) database [5]
contains over 14,000 images taken from 1,199 individuals.
For each individual, two frontal views were taken (FA and
FB images) and a different facial expression was requested
for the second frontal image. For 200 individuals, a third
frontal image was taken with a different camera and
different lighting (FC images) and a set of images was
collected at various aspects ranging from right lo left
profile. For some individuals, a second set of images was
taken on a later date (duplicate sets).

6.1.1 Yale B

The Yale face database B (Yale B) [23] contains 5,850 images

of 10 subjects. Some variation across pose was obtained by

taking pictures simultaneously with nine cameras. To get

wide illumination variations, the database was captured

using a purpose-built illumination rig with 64 strobes. The

64 images of a subject in a particular pose were acquired in

about 2 seconds, so there is only small change in head pose

and facial expression for those 64 images. An additional set

of images was captured with no strobe going off (ambient

lighting).

6.1.2 PIE

The CMU Pose Illumination Expression (PIE) database [22]

contains over 40,000 images taken from 68 individuals. To

obtain large variations across pose, a set of 13 cameras was

used. To obtain significant illumination variations, a flash

system similar to the one constructed at the Yale university

was used. The flash system consisted of 21 flashes. Since

images were captured with and without background

lighting and since one picture was taken with ambient

lighting, 21� 2þ 1 ¼ 43 different illumination conditions

were obtained.

6.1.3 AR

The Alex Martı́nez-Robert Benavente (AR) face database

[24] contains over 4,000 images of 126 subjects. Images

feature frontal view faces with different facial expressions

(neutral, smile, anger, scream), illumination conditions (left

light on, right light on, both lights on) and occlusions

(wearing sun glasses, wearing a scarf). Each person

participated in two sessions separated by two weeks and

the same set of pictures were taken in both sessions.
For all images, we manually located the position of the

eyes and the nose and we extracted normalized 128� 128

pixels facial images. It was shown in [18] that BAID

performed very well even for face images with a much

coarser resolution (down to 21� 12 pixels). Therefore, we

will carry out a set of experiments in Section 6.4.1 to know

how the proposed PMLT depends on the image resolution.

Also, in Section 6.4.2, we will evaluate the impact of an

inaccurate location of facial features and, thus, of an

imprecise segmentation.

6.2 Features

As a preprocessing step, we first applied a log in the pixel

domain to partially compensate for illumination effects [48],

[49]. We then extracted Gabor features which have long

been successfully applied to face recognition [20] and facial

analysis [50]. Gabor wavelets are plane waves restricted by

a Gaussian envelope.
To define a bank of Gabor wavelets, [51] suggests to

partition the spectral half plane into M frequency and

N orientation bands. The set of filters is defined as follows

in the Fourier domain:

Gi;jð!u; !vÞ ¼ exp � 1

2

!2
u

�2
�i

þ !2
v

�2
i

" #( )

i ¼ 1; . . . ;M; j ¼ 1; . . . ; N

ð35Þ

with:

!u

!v

� �
¼ cosð!jÞ sinð!jÞ

� sinð!jÞ cosð!jÞ

� �
!x

!y

� �
� !�i

0

� �
: ð36Þ
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!�i and ��i are, respectively, the radial center and bandwidth

and !j and �i are, respectively, the angular center and

bandwidth. These parameters are defined as follows:

!�i ¼ !min þ �0
ðf þ 1Þfi�1 � 2

f � 1
; ð37Þ

��i ¼ �0f
i�1; ð38Þ

!j ¼
ðj� 1Þ�

N
; ð39Þ

�i ¼
�!�i

2N
; ð40Þ

with �0 given by:

�0 ¼
!max � !min

2

f � 1

fM � 1

� �
: ð41Þ

Therefore, to define a bank of Gabor wavelets, one has to set

five parameters: !min, !max, f , M, and N . After preliminary

experiments, we chose !min ¼ �=24, !max ¼ �=3, f ¼
ffiffiffi
2

p
,

M ¼ 4, and N ¼ 6, which resulted in 24 dimensional feature

vectors. Gabor responses are obtained through the con-

volution of an image and the Gabor wavelets. We use the

modulus of these responses as feature vectors which

introduces a nonlinearity in the computation of our

features. Thus, the illumination cannot be considered as a

perfectly additive term in the feature domain.
As the focus is on the comparison of the BAID and PMLT

classifiers, we used the same features for both approaches.

For the PMLT, feature vectors were extracted every 16 pixels

of the query images and every four pixels of the template

images, thus limiting the precision of a local grid

transformation to four pixels in both horizontal and vertical

directions. For the BAID algorithm, feature vectors were

extracted every four pixels for both the template and query

images.

6.3 Training

The training was performed on a set of 500 persons

extracted from the FERET database. These 500 persons

have one FA and one FB image and 200 of them have an

additional FC image. Hence, training was performed with

500� 2þ 200 ¼ 1; 200 images. We now describe the training

of the PMLT and BAID classifiers.

6.3.1 PMLT

The design of the PMLT requires a number of choices. First,

we chose the covariance matrices �i;j to be diagonal as a

linear combination of Gaussians with diagonal covariances

can approximate any distribution with arbitrary precision

and as diagonal covariance matrices require significantly

less computation than full covariance matrices. As for the

matrix Wk
i;j, it can be separated into Wk

i;j ¼ ð�ki;j..
.
�k

i;jÞ where

�ki;j is a vector of size D and �k
i;j is a D�D matrix. Thus, the

product Wk
i;j�

�
i;j takes the form �k

i;jm
�
i;j þ �ki;j. We tried the

following possibilities:

. �k
i;j ¼ ID, where ID is the identity matrix of size D,

i.e., we model only additive variabilities.
. �k

i;j is diagonal and �ki;j ¼ ½0 � � � 0�T , i.e., we model
only multiplicative variabilities.

. �k
i;j is diagonal, i.e., we model both additive and

multiplicative variabilities.

None of the systems seemed to clearly outperform the other

ones for all conditions and we chose to model only additive

variabilities as is the case for the BAID. Finally, we used

general transition probabilities and to reduce the number of

parameters to estimate, we used the face symmetry.
The model of face transformation is trained in two steps.

. During the first step, we train Gaussian parameters
and transition probabilities aHi;j and aVi;j. We assume
that there is no illumination variation and fix at each
position ði; jÞ
i;j ¼ ½0 � � � 0�T . Therefore, this first part
of the training only involves the FA and FB images.
At each location ði; jÞ, we start with one Gaussian
per mixture (Gpm). We initially set �i;j ¼ ½0 � � � 0�T
which is intuitive as, with this choice, b�i;jðoi;jÞ is
maximum if oi;j ¼ m�

i;j. We first perform a rigid
matching between the template and query images
and estimate the covariance matrices �i;j. As for the
transition probabilities, they are initialized uni-
formly. Then, covariance matrices and transition
probabilities are reestimated using iterative passes of
the Baum-Welch algorithm until the likelihood of the
training set converges. To train multiple Gpm, we
used an iterative strategy inspired by the vector
quantization (VQ) algorithm [52]. If a Gaussian was
estimated with a sufficient number of observations,
then it is split by introducing a small perturbation in
�ki;j. Then, parameters are reestimated using the
Baum-Welch algorithm. The splitting/retraining
operations are repeated until the desired number
of Gaussians is obtained. The maximum number of
Gpm was set to 16 throughout our experiments.

. During the second step, we train only the S parameter
to compensate for illumination variations and, thus,
we also use the FC images. To train S, we started with
the previously well-trained system. We initialized S
in the following manner S ¼ sID with s very large
and reestimated the matrix with the Baum-Welch
algorithm.

6.3.2 BAID

The ML classifier was trained exactly as described in [16]

with the 1,200 available images and, after preliminary

experiments, we decided to keep E ¼ 100 eigenvectors.

We tried to improve the performance by modeling

extrapersonal differences, i.e., by using the MAP classi-

fier. However, for our set of experiments, we did not

observe any significant difference between the ML and

MAP classifiers. These results are consistent with find-

ings from other researchers as it was even shown in [53]

that the ML classifier could lead to a slightly better

performance than the more complex MAP classifier. The

reason for the very small observed difference between

the ML and MAP classifiers is explained in [54]. As the

extrapersonal subspace is similar to the PCA eigenspace,

it does not contribute much to separating intra and

extrapersonal variabilities.
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6.4 Results

We performed six sets of experiments. We first evaluated
the robustness of BAID and PMLT with respect to a
degradation of the image resolution or an imprecise
segmentation of the face. We then assessed their perfor-
mance in the presence of facial expression, illumination, or
pose variations. In the last set of experiments, we evaluated
their performance in the challenging case of both illumina-
tion and pose variations. For each set of experiments, we
carried out the tests on the database(s) that, we thought,
would be the most interesting for the considered variability.

For all the following experiments, we performed
McNemar’s test to determine whether the observed
difference in performance between the BAID and the PMLT
could be considered significant. If one of the two classifiers
outperforms with more than 95 percent confidence the
other classifier, then its score is bold-faced.

6.4.1 Image Resolution

The robustness of BAID and PMLT with respect to the
image resolution was evaluated on the FERET database.
The test data consisted of 695 persons who were not already
in the training set. FA images were used as enrollment/
gallery data and FB images as test/probe data. Results are
presented in Table 1.

We can see that the dependence of BAID and PMLGT on
the image resolution is similar. Indeed, there is little
degradation of the performance down to 32� 32 pixels
and a significant degradation for 16� 16 pixels.

6.4.2 Imprecise Segmentation

The robustness of BAID and PMLT with respect to an
imprecise segmentation was evaluated on the same FERET
data set as in the previous experiment. To simulate an
imprecise segmentation at test time, the localization of facial
features on query images was perturbated with an additive
Gaussian noise with mean zero and a varying standard

deviation �. The localization of facial features for enroll-
ment images was not perturbated. The rational behind this
choice is the fact that enrollment is often supervised and,
thus, an incorrect segmentation can be manually corrected.

Results are presented in Table 2. Obviously, PMLT is
much more robust to an imprecise segmentation than BAID.
We believe that the robustness of PMLT is due to the local
grid transformations which allow more flexibility in the
matching. Therefore, we forced the PMLT to perform a rigid
matching by constraining the system to be at each position
ði; jÞ in the state �i;j ¼ ð0; 0Þ. The results we obtained with
this rigid PMLT for a standard deviation of 1, 2, and 3 pixels
were 90, 86, and 82 percent, respectively, which validates
our claim.

6.4.3 Facial Expressions

The robustness of BAID and PMLT with respect to facial
expressions was evaluated on the AR database. All the
available persons were used. The image labeled 01, which
corresponds to the neutral expression, was used as
enrollment data and the images 02, 03, and 04, which
correspond respectively to the smile, anger, and scream
expressions, are used as test images (see Fig. 3).

Results are presented in Table 3. PMLT outperforms
BAID for all expressions. Both BAID and PMLT perform
fairly poorly for extreme facial expressions such as the
scream of the AR database. Note however that this is not
surprising as the training data, which contains only images
from the FERET database, does not exhibit such variability.

We believe that the main reason for the difference in
performance between the BAID and PMLT is the fact that
grid transformations allow the PMLT to perform an elastic
matching of facial images while BAID works directly on
image differences and, thus, performs a rigid matching. To
test this hypothesis, we forced the PMLT to perform a rigid
matching as was done in the previous experiment. The
results for this rigid PMLT are respectively 94, 89, and
66 percent for the smile, anger, and scream, respectively,
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TABLE 1
Influence of the Image Resolution

Results on the FERET database.

TABLE 2
Imprecise Segmentation Results on the FERET Database

Fig. 3. The four expressions of the AR face database. (a) Neutral, (b) smile, (c) anger, and (d) scream.



and, thus, fairly similar to the BAID results. This experi-

ment supports the hypothesis.
Note that in this case our feature transformations are

useless and might decrease the performance of the system.

Indeed, the PMLT uses two types of transformations, grid

and feature transformations, which “compete” to explain

the observed variability and the performance of the PMLT

could decrease if we allow feature transformations while no

illumination variation is observed. We thus reran the PMLT

by constraining the system to be in the feature state 
i;j ¼
½0 � � � 0�T at each position ði; jÞ and we did not observe any

significant difference in performance. This shows than, even

if no illumination variation is observed, the PMLT does not

try to interpret facial expression variations as illumination

variations.

6.4.4 Illumination

The robustness of the BAID and PMLT with respect to

illumination variations was evaluated on the AR, PIE, and

Yale B databases:

. For the AR database, sets 05, 06, and 07, which
correspond, respectively, to the left light on, the right
light on, and both lights on, were used as test data
(see Fig. 4). The neutral expression was used as
enrollment image.

. For the PIE database, experiments were carried out
on the sets with and without ambient lighting, which
will be later referred to as PIE 1 and PIE 2 (see Figs. 5
and 6). Only the images corresponding to the frontal
camera were used. For each of the 68 persons, an
image corresponding to the pure ambient lighting of
PIE 1 was used as enrollment image and the 2� 21
other conditions were used as test data.

. For Yale B, we also only used those images which
correspond to the frontal camera. The image which
corresponds to the flash which is directly in the
optical axis of the camera was chosen as enroll-
ment image and we used as test data 38 images
which correspond to flashes which make an angle
between 20 degrees and 77 degrees with the optical
axis. The images of Yale B are very similar to the
images of PIE 2.

Results are shown in Table 4. PMLT seems to almost

always outperform BAID. Both algorithms perform very

well on AR 05 and AR 06 and on PIE 1. We believe that the

reason for the poor performance of both algorithms on

AR 07 is the fact that, with both lights on, many images are

overilluminated and have a very low contrast. The PIE 2

and Yale B, which both correspond to a flash when there is

no background illumination, seem to be also fairly difficult
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TABLE 3
Facial Expression Results on the AR Database

Fig. 4. The three illumination conditions of the AR face database. (a) Left light on. (b) Right light on. (c) Both lights on.

Fig. 5. Different illumination conditions for PIE 1, i.e., with ambient lighting.

Fig. 6. Different illumination conditions for PIE 2, i.e., without ambient lighting.



sets (remember that Yale B contains the face images of only

10 persons).
It is interesting to quantify the impact of the feature

transformations on the performance in the presence of

illumination variations. If we force the system to be at

each position ði; jÞ in the state 
i;j ¼ ½0 � � � 0�T , then the

performance of PMLT decreases significantly only for PIE 2

(54 percent) and Yale B (80 percent).
In the case of pure illumination variations, grid transfor-

mations are practically useless, in the same manner feature

transformations were useless to model facial expressions. We

thus ran the PMLT by constraining the system to be in the

grid state �i;j ¼ ½0 � � � 0�T at each position ði; jÞ and did not

observe any significant difference in performance. This

shows than, even if no facial expression variation is observed,

the PMLT does not try to compensate for illumination

variations with grid transformations.

6.4.5 Pose

Although we did not train our system to be robust to pose

variations, we think it is interesting to ascertain the

robustness of the PMLT with respect to the pose as it is a

source of large intraclass variability. Experiments were

carried out on the PIE database. The test data consisted of

the 68 persons. We chose the images with neutral expres-

sions from 6 cameras: 05, 07, 09, 29, and 37. These test sets

were grouped as follows: 07 and 09, 05 and 29, 11 and 37.

These three sets correspond approximately to up or down

rotations of the head of �15 degrees and to left or right

rotations of �22 degrees and �45 degrees (see Fig. 7).
Results are presented in Table 5. The PMLT algorithm

outperforms very significantly the BAID algorithm for all

poses. Since we also suspected that the difference in

performance was primarily due to the grid transformations

of the PMLT, as was the case for facial expressions, we ran

the rigid version of the PMLT and obtained respectively 72,

69, and 34 percent on 05 + 29, 07 + 09, and 11 + 37,

respectively. The scores we obtain with the BAID and the

rigid version of the PMLT are very comparable, thus

validating our hypothesis.
It is interesting to see, that while the PMLT was trained

only on the FA and FB sets of FERET which exhibit very little

pose variability, it does manage to generalize on novel views.

Note however that, even for the PMLT, the performance

drops drastically for poses of approximately �45 degrees.

6.4.6 Pose and Illumination

Finally, we demonstrate the ability of our algorithm to deal

with pose and illumination variations, and thus with grid

and feature transformations, at the same time. Experiments

were carried out on the Yale B face database. We used the

data from the nine cameras for these experiments and

images were divided into three sets according to the angle 

between the flash and the optical axis of the frontal camera:

20o �  � 25o for “illu 1,” 35o �  � 50o for “illu 2,” and

60o �  � 77o for “illu 3.” Results are presented in Table 6.
The PMLT outperforms significantly the BAID under all

other conditions, thus showing that the PMLT can deal with

both grid and feature transformations at the same time.

7 CONCLUSION AND FUTURE WORK

In this section, we first summarize the original approach

introduced in this paper and our experimental findings. We

will then consider two possible directions for future work.

7.1 Summary

In this article, we introduced a novel measure of “distance”

between faces which involves the estimation of the set of

possible transformations between face images of the same

person. The global transformation is approximated with a

set of local transformations under a constraint imposing

consistency between neighboring local transformations.

Local transformations and neighboring constraints are

embedded within the probabilistic framework of a two-

dimensional hidden Markov model. This general frame-

work was specialized to the problem of face recognition and

we focused on grid and feature transformations.
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TABLE 4
Illumination Results on the FERET, PIE, and Yale B Databases

Fig. 7. Different poses for PIE. (a) Camera 05. (b) Camera 07. (c) Camera 09. (d) Camera 11. (e) Camera 29. (f) Camera 37.

TABLE 5
Pose Results on the PIE Database



The performance of this probabilistic model of face
mapping was assessed on a large data set consisting of four
face databases (FERET, Yale B, PIE, and AR) and involving
more than 10,000 images. A comparison was carried out
with the Bayesian intra/extrapersonal classifier, which is
one of the most successful approaches to face recognition to
date, and it was shown that the proposed probabilistic
model of face mapping compares favorably for facial
expression, pose, and, to a lesser extent, illumination
variations. More precisely, grid transformations are espe-
cially useful to model facial expressions and to deal with
pose variations and feature transformations are useful to
compensate for extreme illumination variations.

7.2 Clustering

We believe however that one of the limitations of our
algorithm is its computational complexity. When running
our nonoptimized code on a 2 Ghz Pentium 4 with 1 GB
RAM, the comparison of two face images takes approxi-
mately 25 ms (once feature vectors are extracted from the
template and query images). This is to be compared for
instance to the computational cost of BAID for which the
comparison of two images takes on the order of 0.1 ms.
While it is possible to run our algorithm in the identification
mode for a set of approximately 100 persons, for a larger set,
the response time might be too long and, thus, incur an
inconvenience for the user.

A possible solution to this problem is to perform
clustering [1]. The basic idea is to group users into clusters
and to perform the identification in two stages. When a new
target image is added to the database, one computes the
distance between this image and all cluster centroids and
the image is associated to its nearest cluster. When a query
image is probed, the first step consists in determining the
nearest cluster and the second step involves the computa-
tion of the distances between the query image and the target
images assigned to the corresponding cluster, thus reducing
significantly the number of comparisons.

The clustering algorithm itself is performed offline in an
unsupervised manner. Note that the clustering procedure,
which involves 1) the computation of the distance between
the training observations and the cluster centroids and 2) the
reestimation of the cluster centroids, is heavily dependent
on the chosen measure of distance. Until now our work has
focused on the issue of distance computation between
images and the “missing” stage to be able to perform
clustering with the proposed distance is the centroid
estimation. When using simple metrics such as the Eu-
clidean distance, the centroid estimation consists in com-
puting a simple average of the assigned observations.

However, in the case of complex distances such as the
distance induced by the probabilistic model of face
mapping, computing the centroid is far from obvious. Note
that, to alleviate the issue of cluster centroid estimation, one
could make use of the concept of medoids [55], i.e., choose
as a centroid of a given cluster one of the face images which
is assigned to this cluster. While such an approach may give
reasonable results, our preliminary work on the topic shows
that, for the problem under consideration, an improved
performance can be obtained when using centroids instead
of medoids.

It should be underlined that the ability to compute the
centroid of multiple face images has other potential
applications than clustering. For instance, while enrollment
data can be limited to one unique face image, if multiple
images are available then the system should be able to deal
with this additional information and to merge these images
into a robust template. Also, as the face of a person
generally varies slowly over time, except for radical
punctual changes (due for instance to shaving), it could
be of interest to perform a continuous unsupervised
adaptation of the client models, i.e., if a user is accepted
by the system with a high degree of confidence, then the test
image could be used to update the template.

7.3 Applying PMLT to Other Domains

We believe that one of the strengths of the PMLT frame-
work is its generality and that it has the potential to be
extended to the retrieval of other types of images.
Especially, within the field of biometrics, we envision to
apply PMLT to the problem of automatic fingerprint
recognition [56]. We now explain how to export PMLT to
other problem domains and in particular to the case of
fingerprint recognition. The two crucial issues are the
choice of feature vectors and local transformations.

To choose a relevant set of features, it is necessary to
understand what characterizes fingerprint images. A
fingerprint is the pattern of ridges and furrows in the
central region of the fingertip. Fingerprint recognition has
been traditionally based on the extraction and matching of
minute details (minutiae) associated with ridges and
furrows [56]. However, such features are difficult to extract
precisely and alternative representations of the fingerprint
can be used. It has been shown that one could consider the
pattern of ridges and furrows as a texture image and that
Gabor features, which are particularly relevant for the
analysis of textures, could be used to characterize finger-
print images [57].

Then, it is crucial to understand which variabilities have
to be modeled and to choose our local transformations
accordingly. Indeed, as outlined in Section 2, the measure of
similarity primarily depends on the choice of local
transformations. In the following, we will focus our
attention on one type of variability: the elastic deformations
of the fingerprint image incurred from the acquisition
process. These deformations might change from one
acquisition to another as they depend on the exact contact
point but also on the pressure of the finger on the sensing
device. As a first approximation, these distortions may be
modeled with grid transformations in the same manner we
modeled the elastic deformations incurred from expressions
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Pose and Illumination Results on the Yale B Database



for the problem of face recognition. However, we believe

that such complex deformations would not be fully handled

by grid transformations and that it might be useful to make

use also of local rotation/scale transformations. Gabor

features would be particularly appropriate to model such

transformations. Indeed, each Gabor wavelet within the

filter bank corresponds to an analysis of the image content

in a given orientation and for a given scale. Thus, a small

rotation or change in the scale could be readily interpreted

as a shift of the energy between frequency bands. This

phenomenon can be approximated by a linear transform

(i.e., a matrix multiplication) of the Gabor feature vector. To

summarize, elastic distortions of the fingerprint could be

modeled accurately with a combination of grid transforma-

tions but also rotation and scale feature transformations.
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