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Towards Optimal Indexing for Relevance Feedback
in Large Image Databases�

Sharadh Ramaswamy and Kenneth Rose, Fellow, IEEE

Abstract—Motivated by the need to efficiently leverage user rel-
evance feedback in content-based retrieval from image databases,
we propose a fast, clustering-based indexing technique for exact
nearest-neighbor search that adapts to the Mahalanobis distance
with a varying weight matrix. We derive a basic property of
point-to-hyperplane Mahalanobis distance, which enables effi-
cient recalculation of such distances as the Mahalanobis weight
matrix is varied. This property is exploited to recalculate bounds
on query-cluster distances via projection on known separating
hyperplanes (available from the underlying clustering procedure),
to effectively eliminate noncompetitive clusters from the search
and to retrieve clusters in increasing order of (the appropriate)
distance from the query. We compare performance with an ex-
isting variant of VA-File indexing designed for relevance feedback,
and observe considerable gains.

Index Terms—CBIR, image database, index, relevance feedback,
similarity search.

I. INTRODUCTION

A DVANCEMENTS in semiconductor technology, mag-
netic storage hardware, and the growth of the Internet has

spawned new database applications for multimedia data, such
as multimediainformation systems, CAD/CAM, geographical
information systems (GIS), medical imaging where large
amounts of data are stored in databases for future retrieval. On
the other hand, the proliferation of personal digital multimedia
devices, such as digital cameras and video recorders, has
resulted in the need for new applications that can handle these
data, such as image search engines, personal digital libraries
and albums, etc. While searching based on keywords is the
current paradigm in many search engines, keywords are not
necessarily the most effective representation of multimedia
information. For example, it would be ineffective to mine
databases of medical images based on keywords or “metadata”
if the goal is to discover hidden correlations that are unknown
and, hence, have not been quantified through metadata. Clearly,
content-based image search and retrieval is a more appropriate
paradigm. Given that collections of digital multimedia are ever
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growing, organization and management of such image/multi-
media repositories is crucial.

Typically, images are represented by fixed-length feature vec-
tors and the measure of similarity between two images is as-
sumed to be proportional to the Euclidean distance between
their feature vectors. Popular descriptors are the color histogram
[1], the color layout descriptor [2], scale-invariant feature trans-
forms [3], shape descriptors [4], [5], etc. Recently, a combi-
nation of texture features (extracted through Gabor filters) and
color features (histograms) have been found to be efficient de-
scriptors for a broad class of images and form a part of the
MPEG-7 multimedia standard (see [6]). Useful feature vectors
are often high dimensional, such as the 60-D texture descriptors
of [6]. Last, we note that a “bag of features” representation can
also be followed, where a variable number of feature vectors are
used to represent each image. Similarity is now measured by the
single/multiple-histogram intersection [7]–[9], Earth Mover’s
Distance (EMD) [10], or the distance [11]. However, we
focus on fixed-length features and omit the “bag of features”
representation from discussion in subsequent sections.

II. MULTIDIMENSIONAL INDEXING

Similarity search is the search for elements in the image data-
base most similar to the query image. A popular query model is
the -nearest neighbor (kNN) query, where given a query image,
the most similar images are extracted from the database. We
distinguish between exact kNN search, where the kNNs are
guaranteed to be returned and approximate kNN search, where
the accuracy of search is sacrificed for increased search speed.
In either setup, since the feature vectors themselves are large in
number and of high dimensionality, it is more cost effective to
store them on a hard-storage device, typically a hard disk. While
computing speeds have largely followed Moore’s law, speeds
of hard disk devices have lagged behind and are limited by the
presence of mechanical components [12]. Hence, the search for
nearest neighbors in large, high-dimensional data-sets is chal-
lenging, with the search time being overwhelmingly dominated
by IO operations (e.g., hard disk access times).

A. Hard Disk Access and Performance Metric

Data stored on a hard disk device can be accessed serially
or through random accesses, which have different access costs.
The IO time is proportional to the amount of data accessed and
is determined by the number of sequential and random hard
disk accesses caused. Irrespective of the access strategy, data
are always stored and retrieved from the disk in units of disk
blocks or pages (see [12] for a more detailed description). Typ-
ically, the time spent in accessing one page with a random IO
is significantly more (by at least an order of magnitude) when
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Fig. 1. Proposed performance metric to compare hypothetical indexing
schemes A, B.

compared with sequential access. But, random IOs have the ad-
vantage of reading only the required pages. Hence, random IOs
would be faster in retrieving pages that are spaced far apart
while less costly sequential access of pages would be optimal
if the required pages are spaced close together (even if not con-
tiguously). The optimal search strategy would need to optimize
between the number of sequential accesses and the number of
random accesses caused.

To index a database is to organize the database so as to enable
faster search for required nearest neighbors. The common per-
formance metrics for nearest neighbor search have been to count
page accesses or the response time. However, page accesses may
involve both serial disk accesses and random IOs, which have
different costs. On the other hand, response time (seek times and
latencies) is tied to the hardware being used, and, therefore, the
performance gain/loss would be platform dependent. Addition-
ally, in any search strategy, by varying parameters, a sequence
of indexes with different sequential and random IO costs are
possible. To compare two indexing approaches, one would need
take into account the full range of solutions possible.

Consider Fig. 1, where the IO performance of two hypothet-
ical schemes A, B are plotted. Note that in our performance
metric, we count separately the number of sequential accesses
and number of random disk accesses . Given the performance
in terms of the proposed metric, i.e., the ( , ) pair, it is possible
to estimate total number of disk accesses or response times on
different hardware models. The number of page accesses is eval-
uated as . If represented the average time required
for one sequential IO and for one random IOs, the av-
erage response time would be . Now, if
(as in Fig. 1) given the same number of sequential accesses, the
random accesses of one scheme (A) is less than that of the other
(B), then clearly the first scheme (A) also incurs lower access
times on all hardware and lower page access costs and, hence,
is the better indexing approach. Given these favorable proper-
ties, in all our experiments, we use this performance metric to
compare different indexing schemes.

B. Early Multidimensional Indexing

In the general database search literature, several index
structures exist that facilitate search and retrieval of multidi-
mensional data. The typical approach is to recursively partition

the data-set and represent each partition by a bounding geo-
metric structure, such as rectangles (see R-tree [13]), spheres
(see SS-tree [14]), etc. These regular geometric data-structures
are used to prune the search space and return the nearest neigh-
bors. In low-dimensional spaces, such methods outperform
sequential scan.

However, it has been observed that the performance of many
multidimensional index structures degrades as the feature space
dimensionality increases and they eventually underperform se-
quential scan (see [15]). This is seen as a consequence of “the
curse of dimensionality” [16]. Due to the exponential growth
of hypervolume with dimensionality, a very large portion of the
space is actually empty and recursive feature space representa-
tion by regular bounding geometric structures, such as spheres
and rectangles, is ineffective. In fact, it has been shown that
in some cases almost no part of the search space can be ex-
cluded by using such hierarchical data-structures [15]. Hence,
searching on such naive index structures leads to a large number
of needless and costly random disk accesses, making it slower
than the simple sequential scan. In a famous result, Weber et al.
[15] have shown that whenever the dimensionality is above 10,
these methods are outperformed by a simple sequential scan.

C. Modern Approaches to Multidimensional Indexing

Recent approaches to exact kNN indexing have been in-
spired by compression. Here, a compressed representation
of the database is maintained and the search is performed
over this compressed representation. This includes the famous
vector approximation (VA)-file approaches [15], [17], where
scalar quantization of feature dimensions is utilized to prune
the search space, and clustering/vector quantization (VQ)
approaches [18]–[20]. There are also a few schemes which
attempt transformations of the feature space to a 1-D represen-
tation [21], [22] to speed up search. Finally, several researchers
have opined that feature vectors are poor approximations of
user perceptions. Therefore, even a exact nearest neighbor
search is inevitably approximate. Conversely, by returning
only approximate nearest neighbors significant time in IO-pro-
cessing can be saved. Notable approaches include VA-LOW
[23], locality-sensitive hashing [24], and clustering [25], [26].

III. RELEVANCE FEEDBACK IN IMAGE RETRIEVAL

While the Euclidean distance metric is popular within the
multimedia indexing community, it is by no means the percep-
tually “correct” distance measure. Hence, significant research
activity (in content-based image retrieval) has been directed
toward learning Mahalanobis (or generalized Euclidean) dis-
tances (see [27]–[30]) and nonlinear transforms (see [31]).

A. Mahalanobis Weight Adaptation

In subsequent sections, we assume that the data-set con-
sists of -dimensional feature vectors drawn from , i.e.,

. Given a positive semi-definite weight matrix , we define
the Mahalanobis distance parameterized by as the distance
function

(1)
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We clarify that the Mahalanobis distance here is a general
matrix weighted distance and not in the narrow sense where
the weight is restricted to be the covariance. Note that

. Also, note that we require , which implies that
is a metric. Clearly, the Mahalanobis distance measure

has more degrees of freedom than the Euclidean distance and
by proper updation (or relevance feedback), has been found to
be a much better estimator of user perception of similarity (see
[32], [33], [27]). The goal in relevance feedback is to adapt
the distance measure to match user expectations, by making
the search an interactive process. Here, in each iteration a set
of results is retrieved and the user provides feedback on the
relevance of each result. If Mahalanobis distance is employed,
this is used to update the weight matrix for the next iteration.
Two popular methods for weight adaptation are MARS [34] and
MindReader [32].

Let be the set of positive
samples returned from the earlier iteration, where

. Similarly, we define
.

In MARS, the weight matrix is constrained to be a diagonal
matrix. If is a finite set of real scalars, we use to
denote the variance of . If is the th diagonal entry of

, in the next iteration

(2)

and .
The MindReader approach attempts to estimate the full

weight matrix by minimizing the average distance from
the query to the elements of , with the determinant
constrained to be unity. At the same time, the query vector is
also modified. The “optimal” is found to be

(3)

where is the sample correlation matrix of and is a
constant of proportionality.

However, the MindReader approach can be affected by the
singularity of because of the relatively high dimensionality
of the space involved and the low cardinality of . A solution
proposed in [32] employs the Moore-Penrose inverse instead of

. Nevertheless, perceptual quality in experiments reported
in [33] is significant degraded. Hence, the authors of [33],
attempt to combine the MARS and MindReader approaches
within a unifying framework, where the weight matrix
constrained to be diagonal if is singular. If the weights are to
be updated in batch fashion (after accumulating several queries)
rather than the sequential online fashion, various optimization
or information theoretic approaches to learn the new weight
matrix have been proposed [28]–[30], [35].

B. Efficiency of Indexing With Relevance Feedback

Multidimensional search indexes are typically designed as-
suming a fixed Mahalanobis distance measure that is known in
advance. The weight matrix is diagonalized and the data are cor-
respondingly rotated and scaled into a new set of feature dimen-
sion s prior to indexing. However, in relevance feedback appli-

Fig. 2. VA-file under an unknown linear transformation.

cations, the weight matrix changes with time and renders most
standard indexes ineffective and very slow. Clearly, a truly ef-
fective relevance feedback application requires a new indexing
approach.

A very popular and effective technique employed to over-
come the curse of dimensionality is the vector approximation
file (VA-File) [15]. VA-File partitions the space into hyper-rect-
angular cells, aligned with the co-ordinate axes. Each dimension
is quantized uniformly and the quantization indices are stored
of each feature vector in the so called approximation file, on
the hard-disk. Upper and lower bounds on the distance to the
query from each cell are estimated and these are used to prune
the data-set of those vectors that are not likely to be good can-
didates. The final set of candidate vectors are read from the
hard-disk and the nearest neighbor are determined.

A change in the Mahalanobis weight matrix is equivalent
to rotating and skewing the bounding rectangles into uni-
form hyper-parallelograms. The method of [36] fits minimum
bounding rectangles that contain these parallelograms (see
Fig. 2). Note that these hyper-rectangles are larger and over-
lapping. A new set of distance bounds to these rectangles are
evaluated and used to prune the search space.

In this paper, we consider a clustering approach towards sim-
ilarity search. Clustering or vector quantization (VQ) is often
the method of choice for signal compression, as it can exploit
correlations across dimensions [37]. When adapted to database
search, what is required is an efficient way of cluster ranking in
order of relevance to the query. We expand on and subsume our
early results on the design of clustering based indexes for sim-
ilarity search [20], [38]. The data-set is clustered using a stan-
dard clustering/VQ technique (such as -means) and only rele-
vant (“nearest”) clusters are retrieved during query processing.
Clusters are retrieved until the th nearest neighbor discovered
so far is closer to the query than all remaining clusters, which
guarantees that the nearest neighbors have been discovered.
We further note that with only one cluster, the indexing tech-
nique degenerates to the sequential scan, i.e., sequential scan is
an extreme special case.

Central to such a search technique is the ability to tightly
bound the distance to a cluster, without accessing the elements
of the cluster [20]. We show how effective estimates of query-
cluster distances can be performed while adapting to a changing
weight matrix and how this filters out irrelevant regions of the
database, thus providing significant speed-ups over known tech-
niques. Consequently, the proposed clustering based approach is
effective for relevance feedback in image databases.
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IV. POINT-TO-HYPERPLANE DISTANCE

Let be the distance be-
tween any two feature vectors and . Without loss of gen-
erality, we assume is symmetric and positive definite, i.e.,

is a metric. Let be a
hyperplane and a point in the space outside of it. Then

(4)

Using Lagrange multiplier , let

We note that if were the identity matrix, then the formula
reduces to the known version for Euclidean distance. Next con-
sider two weight matrices and , it is easy to note that

(5)

In other words, the ratio of point-to-hyperplane distances under
differing weight matrices is independent of the point (as well
as the fixed translation ).

V. ADAPTIVE CLUSTER DISTANCE BOUNDING

It is easy to show that for any positive definite , the
shortest path between two points is along the straight line
passing through the two points. Now, given a cluster , the
query and a hyperplane that lies between the cluster and
the query (a “separating hyperplane,” see Fig. 3), by simple
geometry it is easy to see that for any

(6)

We focus on the second term, , the “support”.
Had been known in advance, this could have been evaluated
offline and stored. Instead, let us denote the weight matrix used
during clustering as . Then, (5) implies

(7)

Fig. 3. Hyperplane bound.

Fig. 4. Cluster distance bounding.

which demonstrates that it is unnecessary to reevaluate the sup-
port due to change in weight matrix after the clustering phase.
Without loss of generality, in subsequent discussion, we will
assume that is the Euclidean distance, and drop the
suffix .

If represents a countably finite set of separating hyper-
planes (that lie-between the query and the cluster )

(8)

The second lower bound presented in (8) can be used to tighten
the lower bound on . Next, we note that the bound-
aries between clusters generated by the K-means algorithm are
linear hyperplanes. If and are centroids of two clusters
and , and the boundary between them, then

Therefore, the hyperplane
is the boundary between the clusters and . We

emphasize that these hyperplane boundaries need not be stored,
as they can be generated during run-time from the centroids. It
is straightforward to show that: Given a query and a hyper-
plane that separates clusters and , it lies between
the query and cluster if and only if
(see Fig. 4).
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A. Reduced Complexity Hyperplane Bound

For evaluation of the lower-bound of (6) and (8), we would
need to precalculate and store for all cluster pairs

. With clusters, there are distances that
need to be precalculated and stored, in addition to the cluster
centroids themselves. The total storage for all clusters would be

. This heavy storage overhead makes the hyper-
plane bound, in this form, impractical for a very large number
of clusters. However, we can loosen the bound in (8) as follows:

where . This means that for every

cluster we would only need to store one distance term ,
thus reducing the total storage to . For the special
case when is itself Euclidean, i.e., no weight adaptation,
see [20]. For small , even , for all cluster boundaries ,
can be calculated offline and stored. Even otherwise, we note
that it is IO time (and not processor time) which is the bottle-
neck in query processing.

VI. CLUSTERING AND INDEX GENERATION

The first step in index construction is the creation of Voronoi
clusters. Voronoi clusters are created through nearest neighbor
partitioning of the feature space and have linear hyperplane
boundaries. There exist several techniques of clustering the
data-set, from the fast K-means algorithm [39] (which requires
multiple scans of the data-set) and generalized Lloyd algorithm
(GLA) [37] to methods such as BIRCH [40], which require
only a single scan of the data-set. The output of any of these
algorithms can be a starting point. From each of the clusters
detected by a generic clustering algorithm, a pivot is chosen,
i.e., pivot points in all. Then the entire data-set is canned
and each data-element is mapped to the nearest pivot. Last,
data mapping to the same pivot are grouped together to form
Voronoi clusters (see Algorithm 1). This would lead to slight
re-arrangement of clusters, but this is necessary to retain
piecewise linear hyperplane boundaries between clusters. We
believe the centroid is a good choice as a pivot. Thus, quick
Voronoi clustering, with possibly only a single scan of the
entire data-set, can be achieved using any generic clustering
algorithm.

We note that the K-means, GLA and BIRCH algorithms are
fast and can generate reliable estimates of cluster centroids,
from sub-samples of the data-set. Typically, for clusters, even
a sub-sample of size 100 K is sufficient. As we shall see, for the
range of clusters we are considering, this would be overwhelm-
ingly smaller than the data-set. Faster index construction would
be possible by allowing for hierarchical and multistage clus-
tering. However, only the clusters at the leaf level are returned.

Fig. 5. Proposed index structure.

Algorithm 1 Voronoi-Clusters

1: //Generic clustering algorithm returns
//K cluster centroids

GenericCluster
2: set
3: While do
4:
5: //Find the centroid nearest to data element

6: //Move to the corresponding Voronoi partition

7: end while
8: return

We tested several clustering techniques including GLA and
BIRCH, and the results were largely similar. While it is possible
to also optimize the clustering itself, that is not our goal in these
experiments.

A. Storage and Retrieval Strategy

Elements within the same cluster are stored together (contigu-
ously). We retain the cluster centroids and maintain pointers
from each centroid to the location of the corresponding cluster
on the hard-disk. We also maintain in a separate file the dis-
tance (bounds) of each cluster from its bounding hyperplanes.
We note that the total storage is and
real numbers, for the full and reduced complexity hyperplane
bounds respectively, where is the number of clusters.

Fig. 5 is representative of our index. We estimate the query
cluster distances through the hyperplane bounds, and thereafter
retrieve clusters in order of distance from the query. After each
cluster is read, the list of kNNs so far is evaluated/updated. If the
distance of the th best candidate so far is less than the distance
to the next closest cluster, the search stops since there already
exist at least better candidates, i.e., the kNNs have been found.
Otherwise, the next closest cluster is read till all clusters have
been read or the kNNs have been found.
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Fig. 6. IO performance with MARS (diagonal weight matrix).

VII. EXPERIMENTAL RESULTS

We compared the performance of our index (henceforth
referred to as “VQ-Hyperplane (full)” for full complexity and
“VQ-Hyperplane (reduced)” for reduced storage complexity
bounds resp.) with a well-known variant of VA-File [36] that is
adapted to leverage relevance feedback.

A. Data-Set CORTINA-Caltech101

This data-set consists of a 1 103 271 element sub-sample of
the CORTINA image data-set1 and consists of 48-D MPEG-7
texture features.2 Within this we embed 733 images extracted
from 11 classes of the CalTech 101 data-set [41] which have
strong texture signatures. The classes considered are “accor-
dion,” “barrel,” “bass,” “brain,” “beaver,” “cougar body,” “Leop-
ards,” “wild cat,” “hedgehog,” “platypus,” and “soccer ball.”
These images classes are a priori unknown to the system and
the images are used as queries for performance evaluation. For
each query, the ten nearest neighbors (10NN) were mined. We
also assumed a page size of 8 kB.

In one set of experiments, we evaluated the (diagonal)
weight matrix for each query-class according to principles
and heuristics established in MARS [34]. In another set of
experiments, the weight matrix was modeled as .
The orthonormal matrix was generated randomly and the
eigenvalues were uniformly distributed between 0 and 10.
We present results from one such realization of , that is
representative of general performance.

We evaluated the performance of VA-File at various quan-
tization levels (3–12 bits per dimension) and the VQ method
for varying numbers of clusters (10–400 clusters). We note that
with the MARS weights there is no rotation of the feature space.
In MARS, we notice moderate gains for the VQ-hyperplane
methods in the IO performance (Fig. 6). For the same number
of sequential accesses, random disk IOs are reduced by factors
ranging from 1.5X to 200X. But we note that the VA-File re-
quires X more preprocessing storage (Fig. 7) and also

X higher computational costs (Fig. 8). This is because the
VA-File maintains a separate compressed representation for
each element of the database, as a result of which distance
computations and storage of are needed, where

1See http://cortina.ece.ucsb.edu/.
2http://scl.ece.ucsb.edu/datasets/CORTINA\_HTD_1Million.bin

Fig. 7. Preprocessing storage with MARS.

Fig. 8. Computational costs with MARS.

Fig. 9. IO performance with random weight matrix.

is the size of the database. In order to reduce the number of costly
random access reads in the VA-File, the quantization resolution
in each dimension needs to be increased, which again results in
larger approximation files. In contradistinction, the VQ method
reduces random IO reads by reducing the number of clusters.

On the other hand, for the random weight matrix, our in-
dexes are able to consistently reduce the number of random
IO reads as compared with VA-File, when allowed (roughly)
the same number of sequential disk accesses (see Fig. 9). This
is because of the rotation and scaling of the space, which sig-
nificantly loosens the distance bounds of the VA-File. At 5-bit
quantization for the VA-File and 300 clusters for our indexes, we
note an X reduction in costly random IO reads. Clearly, at
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Fig. 10. Preprocessing storage with random weight matrix.

Fig. 11. Computational costs with random weight matrix.

this quantization level, efficiency of the VA-File in pruning the
search space is almost nil, i.e., it almost underperforms the se-
quential scan. The performance degradation from the full com-
plexity to the reduced storage complexity hyperplane bounds is
also minimal. Large gains in storage and computational costs
were also observed (Figs. 10 and 11).

B. Data-Set: BIO-RETINA

Our data-set BIO-RETINA3 consists of MPEG-7 texture fea-
ture descriptors extracted from 64 64 blocks generated from
images of tissue sections of feline retinas as a part of an on-
going project at the Center for Bio-Image Informatics, UCSB.
It is 208 506 elements long and 62-D. We also assumed a page
size of 8 kB. The query sets themselves were generated by ran-
domly selecting 100 elements from the relevant data-sets. For
each query, the 10 nearest neighbors (10NN) were mined.

The weight matrix, typically a correlation matrix [32], was
modeled as . The orthonormal matrix was gen-
erated randomly and the eigenvalues were uniformly distributed
between 0 and 10. We present results from one such realization
of , that is representative of general performance.

We evaluated the performance of VA-File at various quanti-
zation levels (5–12 bits per dimension) and the VQ method for
varying numbers of clusters (10–600 clusters). We note that our
indexes are able to consistently reduce the number of random
IO reads as compared with VA-File, when allowed (roughly)

3Download from http://scl.ece.ucsb.edu/datasets/BIORETINA\_features.txt

Fig. 12. IO performance.

Fig. 13. Preprocessing storage.

Fig. 14. Computational cost.

the same number of sequential disk accesses. For BIO-RETINA
(Fig. 12), at 6 bit quantization for VA-File, a nearly re-
duction in costly random disk accesses is achieved by the vector
quantization/clustering approach with 15 clusters. We note that
at clusters (the last/rightmost operating point), clus-
tering was done in a multistage fashion, which explains the
sudden “plateau” in storage/computation.

We also note that the VQ method has significantly
lower storage and lower computational costs (Figs. 13

and 14).
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Fig. 15. IO performance under precision metric.

C. Approximate Nearest Neighbors: BIO-RETINA

Since feature vectors are approximations of the objects they
represent, it could be argued that even exact search is unavoid-
ably approximate. Since each disk IO retrieves a cluster, it would
be sufficient to stop the search after the first few disk accesses
to extract an approximate result, that could be further refined
with user feedback. Since the results are not exact, a measure of
quality is needed and typically precision or recall of the returned
results is used. If and represent the approximate and
golden (true) answer sets for query , we define

For NN queries, and, hence, precision equals
recall.

It has also been argued that precision or recall are hard metrics
that improperly measure the quality of results [25], [42] and that
softer metrics such as the distance ratio metric proposed in [25],
[26] would be more appropriate

(9)

For brevity of presentation, we describe results for only the
reduced complexity hyperplane bound with the BIO-RETINA
data-set. Similar results are observed with the full complexity
hyperplane bound and with the CORTINA-CalTech101 data-
set.

1) Comparison With VA-LOW: Figs. 15 and 16 show the per-
formance of our clustering red. complexity hyperplane bound
retrieval and VA-LOW [23], a variant of the VA-Files that can re-
turn approximate NNs. In the VA-LOW, the search in the second
phase is stopped once sufficient vectors have been visited to as-
sure a certain precision.

We first note that even the very first cluster returns high-preci-
sion results. However, in order to reduce the number of sequen-
tial IOs, it is necessary to allow 300–500 clusters, which results

Fig. 16. IO performance under distance ratio (D) metric.

Fig. 17. Precision, 600 clusters.

Fig. 18. Precision, 1200 clusters.

in a few additional random disk IOs. However, in VA-LOW sev-
eral random and sequential disk access are necessary. Moreover,
we observe that 100% precision results, i.e., the retrieval of exact
nearest neighbors, is possible with just the first few disk IOs.
However, in this approach, there is no guarantee that the exact
NNs have been found, even though experimentally we notice
100% precision.

2) Comparison With Naive Cluster Retrieval: Next, we com-
pare performance against naive cluster retrieval, i.e., retrieval
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Fig. 19. Distance ratio (D) metric, 600 clusters.

Fig. 20. Distance ratio (D) metric, 1200 clusters.

of clusters in order of distances to the centroids. The search is
stopped at various stages and the precision (or distance ratio) is
measured. This was performed at two levels of clustering with

clusters and with clusters.
We note that when the performance measure is precision,

the retrieval performance of both schemes is very similar, with
minor gains for hyperplane based cluster retrieval. However, if
the performance measure is the distance ratio, we note that the
naive cluster retrieval is worse with disk accesses increased by
as much as 20%, when compared with hyperplane bound based
retrieval for roughly same accuracy (D). This is because, with
the hyperplane bound, better selection of clusters is possible.

VIII. CONCLUSION

The need to maintain large image repositories on secondary
storage devices necessitates efficient high-dimensional indexes
that are immune to the “curse of dimensionality.” There is also
the need to adapt to users’ perceptions of similarity, which could
be significantly different from that induced by the standard
Euclidean norm. The Mahalanobis distance metric has more de-
grees of freedom and with proper relevance feedback can adapt
to user perceptions. However, most indexing schemes typically
require that the Mahalanobis weight matrix be known before-
hand and are typically rendered useless if the weight matrix
changes after index creation. We proposed a clustering-based

indexing technique, where relevant clusters are retrieved till
the exact nearest neighbors are found. Central to our indexing
scheme is a cluster distance estimation technique that provides
tight lower bounds on query-cluster distances, while adapting
to changes in the distance metric. This enabled efficient cluster
pruning with low preprocessing storage and computation costs.
The IO access times of our index are significantly lower than
variants of VA-Files adapted to relevance feedback or naive
cluster retrieval and, thus, enabling effective application of
relevance feedback techniques.
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