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Abstract—This paper focuses on contour tracking, an important
problem in computer vision, and specifically on open contours that
often directly represent a curvilinear object. Compelling applica-
tions are found in the field of bioimage analysis where blood vessels,
dendrites, and various other biological structures are tracked over
time. General open contour tracking, and biological images in par-
ticular, pose major challenges including scene clutter with similar
structures (e.g., in the cell), and time varying contour length due to
natural growth and shortening phenomena, which have not been
adequately answered by earlier approaches based on closed and
fixed end-point contours. We propose a model-based estimation al-
gorithm to track open contours of time-varying length, which is ro-
bust to neighborhood clutter with similar structures. The method
employs a deformable trellis in conjunction with a probabilistic
(hidden Markov) model to estimate contour position, deformation,
growth and shortening. It generates a maximum a posteriori esti-
mate given observations in the current frame and prior contour
information from previous frames. Experimental results on syn-
thetic and real-world data demonstrate the effectiveness and per-
formance gains of the proposed algorithm.

Index Terms—Biomedical image processing, tracking.

I. INTRODUCTION

O BJECT tracking has been one of the most challenging
problems in computer vision with diverse applications.

In this context, tracking is commonly aided by contour repre-
sentation of the object where application specific challenges,
such as noise, clutter, etc., are partially addressed by enforcing
constraints on the contour topology. In the special case of open
contours, typically representing a curvilinear, thin elongated
object, the assumption of fixed start and end points restricts the
search space and enables fast marching and level set methods
to produce very fast estimates of the contour position [1]. How-
ever, the invalidity of these assumptions in general, combined
with interference of other similar objects, present considerable
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Fig. 1. (a) Frame showing the microtubules in a cell, (b) enlarged region.

challenges for open contour tracking. These issues are central
to the applications found in the emerging field of bioimage
analysis. Typically, curvilinear structures such as blood vessels,
dendrites, microtubules, and other filamentous structures are
tracked over time for subsequent statistical analysis.

Biological and specifically microscopy images often exac-
erbate the difficulties encountered in general imagery. For ex-
ample, typical fluorescence microscopy images would suffer
from additive fluorescence in clutter, or fluorescence degrada-
tion over time, known as photobleaching. Furthermore, often
similar structures occlude each other or otherwise interfere with
the objects of interest which is illustrated in Fig. 1. Finally,
many such sub-cellular structures are assembled and disassem-
bled to their building blocks during the course of their func-
tion, hence eliminating useful simplifying assumptions about
length, fixed start and end points, etc. In this paper, we address
two main issues in open contour tracking: (i) natural clutter by
other contours, and (ii) time-varying length of the contour. Ear-
lier approaches based on active contours and point matching do
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not adequately address these issues. In the active contour ap-
proaches [2], end points are assumed to be fixed, hence any
length changes due to end point motion (or growth and short-
ening) are not captured. On the other hand, tip matching-based
tracking schemes [3] are highly prone to clutter.

For the purposes of demonstrating our approach, we applied
it to microtubule image sequences which exhibit the challenges
described above. Besides being a challenging example for
open contour tracking, microtubules are highly important in
their own right as their dynamic behavior is a current focus
of attention in enhancing the understanding of Alzheimer’s
disease and cancer. Although the proposed method is designed
for curvilinear structures without branches, it can be extended
to other similar bioimage problems involving branching tubular
structures such as the analysis of dendrites and blood vessels.

A. Related Work

Most tracking algorithms start with an initial contour and in-
crementally perform tracking by updating the predicted con-
tour position on each consecutive frame. Therefore, initial con-
tour detection plays an important role in the contour tracking
process. Manual initialization is an option in some applications,
but is usually not preferred in many other applications due to
poor sampling resolution and accuracy.

Satellite imagery is one of the major applications, where
the objects of interest are roads, rivers, etc. In [4], the authors
present a method based on steerable line profile matching with
multiple scales. A robust detection of contour points followed
by a linking algorithm based on the line profile orientations is
presented in [5]. An alternative strategy is to attach points to
the current contour based on the local information [6], where
the orientation of the contour and the local filter response are
used together to minimize the uncertainty about the point to
be attached to contour. Blood vessel extraction is another key
application on retinal imaging domain [7], [8]. A detailed
review on vessel extraction methods can be found in [9].

The contour position in the current frame is roughly estimated
based on the previous positions of the contour, and is then ad-
justed given the observations in the current frame. The predic-
tion schemes range in complexity from simply using the pre-
vious contour position to sophisticated and complex methods.
Kalman filter-based prediction and active contour-based adjust-
ment can be combined in a single framework [10], [11]. A statis-
tical framework for active contour-based tracking is presented in
[12]. In [13], the authors present a geodesic active contour-based
adjustment for tracking. More recent work on active contour and
level set-based tracking can be found in [14]–[17].

Active contours provide an iterative framework for con-
tour adjustment starting from an initial contour. While active
contours represent an intuitive approach for tracking, it is
susceptible to local optimum traps. Motivated by this fact,
algorithms based on dynamic programming are proposed to
obtain globally optimal solution at reasonable computational
complexity [18]–[20]. The Hidden Markov Model (HMM)
has been used in tracking of closed contours in [21], [22] to
combine different visual cues in a probabilistic framework.
HMM provides globally optimal solutions for contour adjust-
ment with the Viterbi decoding which is based on dynamic

Fig. 2. System block diagram. The output of the current frame is fed to the
following frame as the prior estimate.

programming. This critical advantage was exploited in our
preliminary work to perform open contour tracking using a
deformable trellis with ad hoc parametrization [23]. This paper
subsumes [23] and provides a comprehensive method including
model parameter learning schemes and overall optimization of
the probabilistic model without recourse to ad hoc or manually
tuned parameters.

II. METHOD

The problem of open contour tracking can be separated into
two sub-problems. The first problem is the detection of the open
contour on the initial frame. Traditionally, this is the initializa-
tion step, where the initial contour position may be marked by
the user or it can be estimated by a curve detection algorithm.
The second problem is the adjustment of contour point loca-
tions on consecutive frames. We will refer to the first problem
as tracing, and the second problem as tracking. In the case of
varying contour length, tracking must additionally account for
potential extension of the contour length. Thus, either the con-
tour points must be adjusted to cover the extension, necessi-
tating the detection of the new ending point of the contour,
or alternatively the tracing paradigm should be incorporated to
handle contour extensions. Here, we opt for the second method
for the following reasons: (i) detecting the contour end is a chal-
lenging task, especially when other contour tips are present in
the vicinity, and (ii) adjusting of the contour points to account
for both lateral displacement as well as the displacement along
the contour is ill posed and considerably harder. We will further
see that the shortening and growing cases are different types of
problems and therefore should be handled separately.

On each frame at time , the tracking is performed by de-
forming the predicted contour position, , based on the image
observations and the model . The resulting estimate is
then employed as prior information on the contour position in
the next frame, at . The initial contour position at
is the output of tracing at . A block diagram of tracking
method is shown in Fig. 2.

A. Open Contour Adjustment on a Deformable Trellis

We introduce the deformable trellis on a fixed-length contour
segment, postponing for later discussion of how to handle length
variations. The main idea underlying the deformable trellis is
the ability to express (probabilistically) the lateral deformations
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Fig. 3. (a) Possible deformations of� at � with respect to the estimate ��, (b) cor-
responding trellis covering deformations.

along the contour. Consider a contour undergoing a deforma-
tion between frames and , Fig. 3(a). We construct a two
dimensional lattice along as follows.

First, we select equally spaced points along the initial con-
tour estimate . Let , , represent these points.
At each we draw a normal to the enumerated by index
and define equally spaced points along these normals. Let

, , be the indexes of points along the normals.
Thus, we create a lattice around represented by , which
we refer to as the trellis, Fig. 3(b). The initial contour goes
through the sequence of points indexed by and

( is odd). Deformations of the contour are ob-
tained on this trellis by varying the values of at each . The
trellis is reconstructed after each contour position update and
evolves with the frames, thereby making the trellis deformable.
Based on the described structure, we define the contour adjust-
ment problem as finding the optimal sequence of points on the
trellis (or a path through the trellis) that jointly accounts for the
prior on the contour position and the evidence observed on the
current frame.

We formulate the problem within a probabilistic framework
by mapping the contour position to a state sequence of a hidden
Markov model (HMM), [24]. The points along a normal corre-
spond to the states, , of the HMM, and a path on the trellis
corresponds to a state sequence of the HMM. The set of all
possible state sequences is denoted by where is
a sample state sequence drawn from . Each element of , de-
noted by , is the state on the normal at .

We define the image observations as the emission proba-
bilities of the HMM. The emission probability at each state
reflects the probability of observing the image feature if
passed through that specific state. Thus, the contour adjustment
problem can now be expressed as finding the most probable
state sequence in the HMM, which can be efficiently calculated
by the Viterbi algorithm. Given the image observations, , and
the HMM, , the optimal state sequence is given by (Fig. 2)

(1)

Fig. 4. (a) HMM transitions � and emissions � are shown on the trellis,
(b) corresponding observation probabilities.

The optimal state sequence, , jointly accounts for the initial
contour shape and the new set of image observations, , which
we map back to image coordinates to estimate the new contour
position in the current frame by

(2)

Note the distinction between the contour positions and the con-
tour shape. The contour positions correspond to the actual image
coordinates. The contour shape refers to the possible deforma-
tions of the contour, which is represented by the state sequences
of . This is the mechanism that makes the trellis deformable
by representing the contour shape probabilistically.

B. Model Construction

A hidden Markov model is concisely defined by
, where , and are the transition, emission and

the state prior probabilities, respectively [24]. When the initial
contour estimate is available, we derive the parameters of
model as follows. Intuitively, the transition probabilities
represent the local flexibility of the contour, i.e., the change
of lateral position along the normals at consecutive ’s. On
the model this is represented by the probability of transi-
tioning from any state at to any state at .
The emissions, , reflect the probability of observing
a particular image feature, , when the model is in the state

. These are shown in Fig. 4(a). The details of estimating the
model parameters are provided in Section II-G.

Rather than calculating the probability of observing an image
feature conditioned only on the current state, Fig. 4(b), we could
condition it also on the state it transitioned from i.e., between the
normals at and (See Fig. 5(b)). This way, we condition
the observations on state pairs, which generalizes single state
conditioning. This type of HMM is known in the literature as the
arc-emission HMM, and will be seen to offer significant bene-
fits in this application. We propose arc-emission HMMs, since
they allow conditioning the observations on the direction of the
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Fig. 5. (a) HMM transitions � and arc emissions � are shown on the trellis,
(b) corresponding observation probabilities.

contour, rather than only location on the contour, Fig. 4(a) and
5(a). While the arc-emission HMM incurs a moderate increase
in computational cost, (See Section II-H), it has a significant im-
pact on results as we show in Section III. This is also a major
departure from earlier Markovian approaches [21], [22].

C. Accounting for Length Variations

The contour adjustment method described above assumes that
the contour length is fixed. However, the proposed method targets
applications where the contour length may be variable. To model
the length variations, e.g., shortening or growing of the contour
from frame to frame, we use two auxiliary states in the HMM, a
begin state and an end state . While the auxiliary states are
sufficient for handling the shortening of the contour, the growing
case isdifferentas it ventures intoareaswithoutpriorand requires
a further step toextend the trellis in theaprioriunknowndirection
of growth. For clarity, we explain the shortening case first and
describe the trellis extension (tracing) later.

State is a transient state designed to model shortening at
the initial end of the contour, and may be interpreted as “the
contour has not yet begun” state. It is only possible to remain
in this state or transition out of it, but impossible to later re-
turn to it. is an absorbing state that models shortening at the
other end of the contour. It is interpreted as “the contour has
already ended” state. Once the system transitions to this state
it will never transition out. Thus, shortening at the initial end
corresponds to late transition out of state , and shortening at
the other end corresponds to early transition into . Since
and are transient and absorbing states, respectively, the only
allowed transition into is its self transition, and the only al-
lowed transition from is its self transition. Fig. 6 shows the
state diagram and Fig. 7 shows the trellis of a simple model.
Transition and emission probabilities of and require indi-
vidual treatment (see Section II-F).

D. Deformable Trellis Extension to Capture Growth

The proposed model can capture various deformations along
the contour as well as shortening. The optimal representation

Fig. 6. Auxiliary states � and � and their transitions.

Fig. 7. Trellis of a simple model with � � �.

Fig. 8. Construction of extended trellis at � � � .

will be obtained as long as lies in the region that is covered by
the deformable trellis. However if extends beyond the initial
estimate , the prior will lack information about the parts that lie
outside the original trellis. In this case, we broaden the trellis by
iteratively adding points to both ends. At each iteration, first we
construct an extended trellis by adding candidate nodes to the
ends of the trellis. More precisely, the new nodes are positioned
at:

(3)

where , . Furthermore,
the vectors associated with the spacing between the nodes along
the trellis and the normals are denoted with and , respec-
tively. A sample extension to the trellis is illustrated in Fig. 8.

The points to be added to the trellis are determined by the most
probable path on the extended trellis. Including the auxiliary
states in the set of candidate states provides a probabilistic way to
determine whether to stop or continue the broadening iterations.
In this way, we compare the likelihoods of stopping versus
continuing the iterations, and stop according to the likelihood
test, i.e., as would best explain the observations. Equivalently,
we have the auxiliary states appear in the most probable path.

After the broadening phase, we construct the with the points
. The predicted contour is updated by so that it will be

used as the center of the deformable trellis for the next frame .
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Here, complex strategies for updating the can be used (such
as Kalman filtering [11]). Depending on the application, even
using smoothed version of may yield useful results.

The overall tracking method which captures contour growth,
shortening and deformation is summarized in Algorithm 1.

Algorithm 1 Open Contour Tracking with Arc-Emission
HMM

Require of the HMM.

Initialize on using [25] (or manually).

for all do

Construct the trellis around and extract .

Initialize and .

repeat

if then

Construct extension to trellis at .

Append the features of the extension to .

end if

if then

Construct extension to trellis at .

Append the features of the extension to .

end if

Calculate .

Decode .

if then

Set .

end if

if then

Set .

end if

until and

Update , .

end for

E. Feature Extraction

The image observation, , is a collection of image features,
, extracted on the trellis. The features represent the po-

tential for local ridges in the image. The features are extracted
based on the second derivative of the Gaussian filter response at
various orientations, as a common practice used in ridge detec-
tion. The response of the filter with orientation at point is
efficiently calculated via , where is the
Hessian evaluated at , and , [26].

Feature extraction must be adapted to the HMM-type. Specif-
ically, the state-emission HMM’s observations are only related

to the current state, while arc emission HMM’s observations re-
late to both the current and the previous state. Thus, an arc emis-
sion HMM embeds more information into the evaluation of ob-
servations. In this case, two consecutive states through which

passes provide information on the orientation of which is
then embedded in the observations. In the case of state-emission
HMMs, the orientation must be captured solely by state transi-
tions, compare Fig. 4 and Fig. 5. While the impact due to this
difference may not be immediately evident, the results of both
emission types confirm the considerable difference in accuracy.

1) Features for State-Emission HMM: In state-emission
HMM, the observation probabilities depend only on the current
state through which passes. Thus, the evidence of observing

on each of the states at is simply evaluated by filter
responses at those locations. Recall that on the trellis, the
states at a normal are indexed with . Thus, the features,

, computed at the normal at consist of the following filter
responses on the states

(4)

which corresponds to the largest eigenvalue of [27].
2) Features for Arc-Emission HMM: In the case of arc-emis-

sion HMM, observation probabilities are calculated between
consecutive normals at and . Thus, the features are cal-
culated along the line connecting the locations associated with
the states and of the deformable trellis. This setting
enables us to quantify the evidence for passing through the
consecutive states of interest.

The features, , extracted between normals at and
, consist of the following filter responses between the states

(5)
where, is the angle normal to the line between and

. Note that the term embeds the orientation into
the feature set .

F. Observation Probabilities

We represent the probability density function (PDF) of the
features extracted on the foreground (contour) and on the back-
ground with and , respectively. Accord-
ingly, if we consider the state-emission HMM image feature
extracted on the point , the and ,
represent the likelihood that belongs to the contour and the
background, respectively. The likelihoods associated with the
arc-emission HMM features can be defined similarly.

1) State-Emission Probabilities: Recall that the set of image
features consists of the features extracted from the
points, , that lie on the normal at with .
We assume that the elements of are con-
ditionally independent of each other given where repre-
sents the actual state at normal :

(6)

Intuitively, this assumption states that the image features ex-
tracted on the points of a particular normal are independent of
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each other given the point that contour passes through. Accord-
ingly, we model the observation probabilities as
follows:

if
else.

(7)

The probability of observing , given that the system in state
can be written as:

(8)

On image pixels, this is equivalent to the probability of ob-
serving only on the point , conditioned on the state
where . Similarly, the observation probability
conditioned on an auxiliary state, or , is the probability of
not observing on any point on the normal at .

(9)

2) Arc-Emission Probabilities: The probability of observing
a set of image features extracted between the normals at
and given that we are moving from state (at ) to state

(at ) is represented with . Observa-
tion probabilities are set to 0 if the associated state pair transition
is not allowed on the transition matrix. Similar to the state-emis-
sion case, when both and are non-auxiliary states, the
observation probability conditioned on the state pairs, and

, is associated with the probability that the image feature
belongs to foreground and the rest of the image fea-

tures belong to the background:

(10)

Observation probability associated with remaining in an auxil-
iary state at is clearly the probability of not observing at
these locations. In this case, it is given by the product of proba-
bility of not observing the contour, , through
all possible point pairs :

(11)

The above probability also applies for transitioning from an aux-
iliary state to a non-auxiliary state and vice versa. Thus, the arc
emission probabilities are evaluated conditionally as follows:

else

(12)

G. Learning Model Parameters

So far, we discussed how image features are related with the
emission probabilities of the deformable trellis. Note that this
relation is still in terms of the PDFs, and .
These distributions, as well as the transition and prior probabil-
ities of the HMM should be estimated from the training data.

Fig. 9. Manually segmented contour, � , superimposed on the predicted con-
tour, ��. The distance between � and �� on the normal at � is represented by � .

In this section, we describe a method for learning the param-
eters of the HMM, , based on manually segmented
open-contours over time. Dynamic and structural statistics of
the examples are considered to estimate the transition matrix,

, observation probabilities, , and the initial state distribution,
. Intuitively, estimating the model parameters can be thought

of as collecting statistics about how contour points effect the
movements of neighboring contour points. While theoretically
higher order HMMs could be used for a complete representation
of this dependence, the resulting computational cost may not be
justified in terms of performance gains. Here, we describe the
principle using first-order models.

In this work, the components of the HMM are modeled based
on Gaussian PDFs. We denote a Gaussian PDF with mean and
variance by . Furthermore, represents
the value of the evaluated at .

InFig.9we illustrateaportionofmanuallysegmented contour,
, superimposed on the predicted contour, , where the predic-

tion is based on the past manual segmentations. Here, is the
amount of lateral displacement with respect to the prediction. The
amount of bending on normal at with respect to position
on the previous normal at is . We model the distribu-
tions of the and for all with two Gaussian PDFs

and , respectively. The parameters of these
distributions are estimated based on the mean and the variance
of ’s and ’s for all on all training sequences.

1) Initial State Distribution ( ): We model the distribution of
for with a Gaussian PDF . The parameters

of are estimated based on the mean and the variance
of for on all training sequences. Accordingly, the
initial state probabilities for non-auxiliary states are modeled
with a Gibbs distribution as follows:

(13)
Here, is the spacing between points along the normal. The
prior probability is set as the probability of not observing
on the normal at . Since we do not expect to start with the
end state, , we set .

2) Observation Distributions ( ): As described in
Section II-F, the observation probabilities are modeled based on
twoPDFs: and .Thesedistributionsaremod-
eled using two Gaussian PDFs, and ,
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respectively. The parameters of these Gaussian PDFs are esti-
mated by the mean and the variance of image features computed
from points on contour and on background, respectively. Al-
though these features can be extracted on the training sequences,
one can also extract them on the initial frame using (See
Algorithm 1), thereby making the estimated parameters more
robust to illumination variations across different contours.

3) Transition Matrix ( ): Each element of the transition ma-
trix, , is the probability of moving to state given that the
system was at state . Graphical representation of the state
transitions is illustrated in Fig. 6. We represent the self transi-
tion probability of state with . Consequently, the probability
of moving from to any one of states , , is

assuming that the each transition is equally likely.
The self transition probability of end state is 1 and the prob-
ability of moving into is . To cover all possible transitions,
we consider a fully connected Markov chain for the non-auxil-
iary states , with the transition matrix . Here,
we focus on estimating and discuss the probabilities associ-
ated with auxiliary state transitions later.

A straightforward approach to estimate would be counting
the occurrences of the state transitions on the training data. In
the literature, this technique is known as Viterbi learning and
provides a computationally efficient way to learn the transition
matrix. However, it requires large amount of training data for
reliable estimation of parameters. Moreover, associating
with a state along each normal results in distortion due to the
finite precision sampling of states along normals. Considering
these drawbacks, we propose a method for robust estimation of

using a parametric representation. In this way, we reduce the
number of parameters to estimate and make use of the statistics
of and which is calculated with sub-pixel accuracy.
In the proposed method, we first represent the steady state dis-
tribution of the system with a set of parameters and learn them
from the training data. Then we relate the model parameters to
the steady state distribution and adjust to parameters such that
the desired steady state distribution is reached.

In the parametric representation, the steady state distribution
is modeled with a Gibbs distribution

(14)
Note that and are the mean and the variance of , respec-
tively. Similarly, each row of is also modeled with a Gibbs
distribution. In literature, this type of distribution is known as
the Gibbs distribution. The mean at each row, , represents the
most likely state that follows the , whereas the variance rep-
resents the likelihood of transitioning to other states. Estimation
of separate parameters for each row is still not desirable since it
requires large amount of training data. Therefore, we propose to
use the mean and the variance of (i.e., ), as the
parameters of the Gibbs distributions for each row. We then fur-
ther allow some deviation across rows through \emph{tilting}
coefficients,

(15)
In literature, this is known as the tilted-Gibbs distribution. Note
that small indicates the tendency for self transitions. Oppo-
sitely, frequent state changes makes large. Now the task is to

estimate the tilting coefficients based on the desired steady-state
distribution, representing the occupancy rate of the states over
infinitely many transitions

(16)

Unfortunately, the above equation that relates to the steady
state distribution is non-linear and no analytical solution exists.
However, we can re-write the (16) so that becomes fixed point
of the following function. This formulation enables us to use
fixed point iterations to obtain the optimal so that the desired
steady state distribution is reached

(17)

Scaling with a positive real number will not change the steady
state distribution. Therefore, the optimum should be selected
on the simplex (i.e., ).

Algorithm 2 Learning the Parameters of Arc-Emission HMM

for all Training Sequences do

Set as the prediction based on .

Construct the trellis around .

Calculate for all ’s (See Fig. 9).

Extract the image features for the arcs that are on the
contour and on the background.

end for

Estimate using all ’s for all training sequences and
for all ’s.

Estimate using all ’s for all training
sequences and for all ’s.

Estimate using all ’s for all training sequences.

Estimate using the image features for the arcs that
are on the contour.

Estimate using the image features for the arcs that
are on the background.

Initialize with random numbers .

Project , .

repeat

Set , . (Note that
and terms are used while calculating .
See (14) and (17) for details.)

Project , .

until Convergence
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Fig. 10. Convergence plots of the fixed point iterations. (a) Spectral radius of
��� �. (b) Kullback-Leibler divergence [29] between the desired steady state
distribution � �� � and the steady state distribution of� constructed with� .

The necessary condition for convergence of fixed point
iterations is [28]. Here, is the Jacobian
matrix of evaluated at the fixed point, , and
is the spectral radius of . The convergence plots of the
fixed point iterations are illustrated in Fig. 10. Based on ,
we can write the transition probabilities in matrix form, , as
follows:

(18)

4) Probabilities and : The transition probabilities from
states , , to is assumed to be same and rep-
resented with . Similarly, is the self transition probability of

. These transition probabilities play an important role in the
decoding stage even though they are combined with the image
observations probabilistically. Depending on the observations,
large might force the optimal path to reach too early. Sim-
ilarly, optimal path might stay in too long with large . To
avoid these undesired consequences, we propose to adjust and

based on the statistics of motion and the length of the .
Given that we start at , the expected number of self transi-

tions before we leave is [30]. Accordingly,
is set as the average number of normals where is not ob-

served (at end). Similarly, starting from states ,
, the expected number of transitions before reaching

is and on every frame, is set as the number of normals
on .

H. Decoding Complexity

In the decoding process, we are interested in finding the path,
that maximizes the posterior (1). In our set-

ting, the number of elements in the set is and grows
exponentially with the number of normals, . However, the op-
timal path that maximizes , can be efficiently found

with linear complexity in using Viterbi algorithm [24]. In the
Viterbi algorithm, can be re-written as follows:

(19)

We can further decompose the probabilities and
as product of observation and transition probabilities

(20)

Observation probabilities for state-emission HMM case

(21)

Observation probabilities for arc-emission HMM case

(22)

The complexity of the Viterbi algorithm in both state-emission
and arc-emission HMM case is . The complexity of
feature extraction for state-emission HMM is , whereas
for arc-emission HMM it is .

III. EXPERIMENTAL RESULTS

In this section, we demonstrate the performance of the pro-
posed tracking algorithm on synthetic and biological datasets
that exhibit severe noise, clutter and illumination variations. We
show the effectiveness of the HMM-based algorithm in compar-
ison to existing open-contour tracking methods.

A. Open-Contour Adjustment on the Synthetic Dataset

In this section, we illustrate a critical advantage of arc-emis-
sion HMM over the traditional state-emission HMM as well
as the active contour models in four scenarios. In the first sce-
nario, the open-contour is adjusted on an image with a single
sinusoidal open-contour. Note that in practice, one should ex-
pect similar objects cluttering the vicinity and where the “ack-
ground” no longer can be modeled by a distinct background
noise model. This is addressed in the other scenarios by in-
cluding an interfering open-contour in the vicinity. We illustrate
the output of different algorithms in Fig. 11.

Active contours provide a systematic way to adjust an initial
contour such that its energy is minimized. The energy minimiza-
tion is performed by gradient descent and the energy is defined
based on the local ridge strength and contour smoothness for
the open-contour adjustment [3], [31]. Low signal to noise ratio
makes the algorithm prone to be trapped in local minima, which
is the main drawback of the active contours. As illustrated on
the first column of Fig. 11, active contour attaches to either a
noisy region or a nearby contour. However, HMM-based con-
tour adjustment uses Viterbi algorithm [24] which provides the
globally optimal solution within the trellis.

Fast Marching methods [1] efficiently compute the distances
on weighted domains with the initial conditions on the starting
points. The distance map can be further used to find the shortest
paths from any point on the domain to the closest starting
point. The Fast Marching method can be adopted to solve the
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Fig. 11. Open-Contour adjustment results on synthetic dataset with four scenarios. Green lines on the columns illustrate the results associated with active contour
(with ridge features), fast-marching, state-emission HMM and arc-emission HMM respectively. Yellow lines are the initialization of the active contour. Yellow
dots represent the positions of the states in the state-emission and arc-emission HMM.

contour adjustment problem by using the intensity information
to construct the weighted domain. Then the Fast Marching
algorithm can be used to extract the optimal path between the
beginning and ending points. The performance of this method
for open-contour adjustment is illustrated on the second column
of Fig. 11. The main disadvantage is that interfering curvilinear
structures in the vicinity makes the fast marching algorithm
favor undesired “shortcuts” as observed on the second and
fourth scenarios from the top. In these cases, shortest path
jumps to the straight line since it results in shorter path and
there is nothing to prevent such behavior.

The last two columns of Fig. 11 illustrate the results of
state-emission and arc-emission HMM-based open-contour
adjustment. Arc-emission HMM does not show a significant
improvement over state-emission HMM in the first scenario
without an interfering curvilinear structure. However, on the
other scenarios, states that are located on either contour will
show significant evidence for a possible passage of the contour.
If the emission probabilities are only conditioned on the state,
there isn’t sufficient penalty for jumping from one contour to
the other, which the traditional HMM will do depending on
which contour’s local evidence is somewhat more pronounced
at each point. (The only penalty for such skipping is provided
by the state transition probabilities, but “tightening” those to
solve this problem will severely compromise the flexibility of
the trellis and its ability to model deformations). Arc-emission
HMM, on the other hand, allows evaluation of the local evi-
dence for consistency with the direction of the transition and
it can easily eliminate such confusion. This is demonstrated on
the last column of Fig. 11.

Quantitative performance measures are obtained by running
the algorithms 100 times on the images corrupted with additive
white Gaussian noise with zero mean and 0.25 variance. The
average distances between the output and the ground truth are
computed along the normals. The root mean squared distances
are provided in Table I.

B. Tracking of Live Cell Microtubules

In this scenario, we consider tracking of microtubules on live
cell florescence images. The dataset consists of 8 image se-
quences from [32] with approximately 40 frames per sequence.

TABLE I
PERFORMANCE OF THE OPEN-CONTOUR ADJUSTMENT

ALGORITHMS ON THE SYNTHETIC IMAGES

These images are extremely noisy and close proximity of sim-
ilar microtubules make it difficult even for manual tracking. To
represent this uncertainty on the ground truth, 4 experts manu-
ally tracked the same 30 microtubules by approximating their
bodies with polylines in each frame.

In these image sequences, microtubules grow and shorten on
the outer periphery of the cell. While moving towards nucleus,
microtubule concentration increases and makes the center re-
gion a big, typically overexposed, blob (See Fig. 1). Therefore,
in this application, we are interested in tracking the body of the
microtubule extending from a fixed end-point close to the nu-
cleus. These fixed points can be detected automatically during
the initialization of the tracking, which is beyond the scope of
this work. Instead, we let the user define the object of interest
by these fixed points and use the tracing algorithm described in
[25] to extract the body on the initial frame.

We measure the accuracy of the tracking by the distance be-
tween the output and the ground truth open-contours. We define
the distance between two open-contours, and , based on the
distances between the points on and the line segments on .
Specifically, for each point on we find a line segment on
such that the summation of the distances between these points
and corresponding line segments is minimized. We consider the
following constraints on matching a point to a line segment.
First and last point of is matched to the first and last point
of . A point can not be matched to a line segment before the
previous point’s match, in other words the matching is ordered.
This constrained matching problem can be effectively solved
using dynamic programming to obtain body distance which is
the optimal matching distance divided by the number of points
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Fig. 12. Calculation of distance between two open contours.

TABLE II
PERFORMANCE OF THE OPEN-CONTOUR TRACKING ALGORITHMS ON

THE LIVE CELL MICROTUBULE IMAGE SEQUENCES

on . An example matching problem and the corresponding so-
lution are depicted in Fig. 12.

The body distance results on the living cell microtubule
tracking application is given in Table II. The arc-emission
HMM outperforms state-emission HMM with the same tran-
sition model since the image observations between the state
pairs make the system more robust to interfering curvilinear
structures. This is also supported by the results obtained in the
synthetic data-set (See Section III-A). In the same table, we
further compare the accuracy of the HMM-based approaches
with three representations for the transition matrix. In the Gibbs
and tilted-Gibbs representations, the transition probabilities are
modeled with a Gibbs distribution

(23)

and a tilted-Gibbs distribution (15), respectively. Finally, in the
Viterbi learning-based representation, the transition probabili-
ties are estimated by counting the occurrences of the state tran-
sitions on the training data. As shown in Table II, the best re-
sults are obtained when the transition matrix of the arc-emis-
sion HMM is modeled with the tilted-Gibbs distribution. The
tilted-Gibbs representation improves the performance over the
plain Gibbs since it can effectively model asymmetric transi-
tions with reasonable model complexity. However, employing
a more complex model would not necessarily yield better ac-
curacy over a simpler model since the former would require a
larger amount of training data than the latter for reliable param-
eter estimation. In fact, in our experiments, for the arc-emission
HMM, a more complex model learned by the Viterbi learning
approach yields less accurate results when compared to a sim-
pler tilted-Gibbs distribution based model. This is primarily due
to the limited amount of training data for estimating param-
eters of the transition matrix.

The performance of the HMM-based open-contour tracking
methods are also compared with two earlier approaches based
on tip point matching [3] and discrete dynamic contour model
[33]. To the best of our knowledge, these are the closest ap-
proaches which address the variable length open-contour defor-
mations. We briefly summarize these two methods and discuss
the advantages of the HMM-based tracking over them.

The tip point matching method makes use of a graph where
the nodes are associated with the pre-detected candidate tip
points. The edge weights in the graph are set considering the
minimum geodesic distance on both consecutive frames. The
track associated with a user-specified tip point is determined
by the shortest path on the graph starting from that point. The
performance of the tip point matching algorithm is relatively
poor when compared to the HMM-based tracking method
since the morphological tip detection is very sensitive to noise.
Moreover, the track can easily jump to a nearby curvilinear
structure in the presence of clutter. However, the proposed
scheme simultaneously adjusts the tip and body position hence
yields better results. Sample results on live cell microtubule
tracking are illustrated in Fig. 13 and Fig. 15. Additional
tracking videos are available at [34].

In the discrete dynamic contour model (DDCM), the points
on the curvilinear structure are iteratively moved by the external
and internal forces to minimize a cost function based on the
contour curvature and image features. This method performs
relatively better than the tip matching method since it evolves
whole body during the tracking. However, the evolution is per-
formed using gradient descent which can get trapped in local
minima. On the other hand, HMM-based methods provide the
globally optimum solution within the trellis and yield better
performance. Moreover, in DDCM, the points are added and
removed by evaluating simple conditions based on image ob-
servations. Whereas HMM-based methods perform hypothesis
testing over the entire trellis to make decisions about addition
or removal of points.

The HMM-based tracking algorithm is implemented in
C++. Experiments are performed on a standard computer with
2.33 GHz CPU and 2 GB of RAM. The number of states are
set as 7 with 1 pixel spacing along the normals. The number
of nodes are selected such that the normals are separated by
2 pixels. The running times to track a single microtubule on
40 frames with frame size 560 452 using state-emission and
arc-emission HMMs are 15.80 and 17.55 seconds, respectively.
The DDCM and the tip matching methods are implemented in
Matlab. The running times to track a single microtubule using
the DDCM and tip matching methods are 20.97 and 24.23
seconds, respectively.

C. Tracking of Gliding Microtubules

The effectiveness of the proposed algorithm is also demon-
strated on tracking of gliding microtubules. In this case, both
of the starting and ending points are actively moving so that the
microtubules are gliding on the surface. The same tubes are also
tracked using the discrete dynamic contour model [33] and the
results are presented in Fig. 14. The tracking videos are avail-
able at [34].

It is clear that DDCM is sensitive to local illumination vari-
ations and performs poorly in the intersections. Joint adjust-
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Fig. 13. Output (green) of arc-emission HMM (first row), tip matching (second row) and DDCM (third row) together with the ground truth (red).

Fig. 14. Output of the proposed algorithm (first row) and the discrete dynamic contour model (second row) on tracking multiple gliding microtubules.

ment for body deformations and tip positions makes the pro-
posed approach robust. In this case, the tip matching method

does not apply as both ends of microtubules need to be tracked
simultaneously.
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Fig. 15. Output of the proposed method (green) on multiple intersections with relatively small intersection angles. The ground truth is shown in red.

IV. CONCLUSION

This paper presents an algorithm for variable length open-
contour tracking. There are three main contributions. A frame-
work based on arc-emission HMM is proposed for open-con-
tour tracking, and is shown to offer substantial benefits when
properly optimized. The arc-emission HMM framework is com-
plemented with auxiliary states so as to simultaneously capture
lateral deformations and time varying lengths of open contours.
As there are various biological structures that are curvilinear and
dynamic in nature, automated quantification methods can ben-
efit considerably from the proposed approach. Finally, we intro-
duce a learning method for parameter estimation in arc-emis-
sion HMMs. The experimental results on both synthetic and
real-life image sequences evidence the effectiveness of the pro-
posed scheme and substantial performance gains over earlier
approaches.

In this paper, our focus is on tracking curvilinear struc-
tures without branches. We note that curvilinear structures
with branches can be represented with a tree-graph and the
deformable trellis-based approach is extendible to identify
the most probable paths within such a graph. However, such
extensions would require non-trivial expansion of the scope and
volume of the paper, which will be considered in a future work.
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