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ABSTRACT

This paper is focused on the problem of tracking cell contours across
an electron micrograph stack, so as to discern the 3D neuronal struc-
tures, with particular application to analysis of retinal images. While
the problem bears similarity to traditional object tracking in video se-
quences, it poses additional significant challenges due to the coarse
z-axis resolution which causes large contour deformations across
frames, and involves major topological changes including contour
splits and merges. The method proposed herein applies a deformable
trellis, on which a hidden Markov model is defined, to track con-
tour deformation. The first phase produces an estimated new contour
and computes its probability given the model. The second phase de-
tects low-confidence contour segments and tests the hypothesis that a
topological change has occurred, by introducing corresponding hy-
pothetical arcs and re-optimizing the contour. The most probable
solution, including the topological hypothesis, is identified. Exper-
imental results show, both quantitatively and qualitatively, that the
proposed approach can effectively and efficiently track cell contours
while accounting for splitting, merging, large contour displacements
and deformations.

Index Terms— Electron micrograph, neuronal structure track-
ing, hidden Markov model, topological change

1. INTRODUCTION

Recent advances in imaging have enabled visual inspection of image
stacks at the scale of a few nanometers, which provides new paths to
understanding of cellular ultrastructure. However, manual analysis
is labor intensive and impractical for huge volumes of image data.
Automatic high-throughput techniques are needed to acquire com-
plete cell and network maps. In this paper we consider the problem
of tracking contours of neuronal structures across z-slices in elec-
tron micrograph (EM) stacks. This problem is somewhat similar to
object tracking in video sequences, where the main challenges in-
volve translation, deformation, and changing of illumination or con-
trast [1]. However, the challenges here are exacerbated in several
ways. The coarse z-direction resolution of EM images causes larger
displacements and considerable non-rigid deformations. Moreover,
the neuronal structures are complex and the contours undergo major
topological changes, i.e., splitting and merging. At the extreme, ex-
perimental artifacts such as registration errors during the process of
mosaicking lead to dramatic displacements.

This work was supported by the NSF under grant OIA 0941717. The
authors thank Dr. Robert Marc, Dr. Bryan Jones and Dr. James Anderson
from the Univ. of Utah for providing data used in experiments.

Fig. 1. (Best in color) (a), (b): an example of splitting in 2 consecu-
tive frames; (c), (d): results of traditional HMM-based methods; (e):
uncertain segments; (f): hypothetical arcs associated with the uncer-
tain segments; (g): result contours after deforming the hypothetical
arcs; (h): result of the proposed method, which successfully captures
the splitting.

We employ the paradigm of a deformable trellis on which a hid-
den Markov model (HMM) is defined to track contours from frame
to frame. A multi-cue HMM framework was proposed in [2] for face
tracking. The probabilistic nature of HMM allows easy integration
of multiple cues from observations, and enables computationally
feasible global optimization via the efficient dynamic programming
algorithm [3]. In [4], an enhanced HMM technique was proposed for
tracking open-contour objects in biological image sequences, such as
microtubules. More recently, [5] added a part-based representation
to a generalized HMM framework for closed-contour face tracking
and achieved higher accuracy. However, the existing HMM methods
are insufficient to handle 3D neuronal structures mainly due to the
problems of topological changes. They, in fact, underperform non-
parametric methods such as level set methods [6], which naturally
capture topological changes.

A relevant work of parametric tracking in electron micrograph
can be found in [7], where Kalman-snakes and optical flows are used
to track axons over hundreds of frames. However, the target objects
do not split or merge, and the deformation and translation in their
data set is relatively small. In [8], segmentation is performed on
each frame to acquire all cells (or neurons), which are then matched
over frames to achieve 3-D reconstruction. However, to the best of
our knowledge, no single segmentation method works well on highly
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Fig. 2. (a)system block diagram, (b)an example of deformable trel-
lis. The black dashed curve is the initial contour, and the red solid
connected line is the estimated contour.

cluttered data as we have had to segment every cell. In [9], an active
contour framework is proposed to tackle the sub-problem of split-
ting, but leaves the merging problem unsolved. In this paper, we
propose a novel parametric HMM framework to handle the afore-
mentioned challenges. It preserves the inherent precision advantage
of HMM in terms of accurate contour location, and additionally han-
dles the problem of topological changes.

2. DEFORMABLE TRELLIS AND HIDDEN MARKOV
MODEL

The overall tracking procedure is depicted, at the high level, in
Fig. 2(a), following the paradigm of [4]. Given frame t in the image

sequence, together with the initial contour Ĉt of an object of inter-

est, we deform Ĉt to the estimated contour C̃t. The deformation
accounts for the observation Ot in the current image and the current
HMM parameters λt. The parameters λt are updated before reach-
ing the next frame, and C̃t is used as the initial contour for frame
t+1. To initiate the deformation, we construct a trellis about contour
Ĉt. The trellis nodes are points on each normal to the contour and
represent the states of the hidden Markov model, and hence any path
through the trellis is a potential new contour, as shown in Fig. 2(b).

The HMM is determined by λ = (π,A,B), which consists
of prior π, transition probabilities A, and observation probabili-
ties B. The output q is a sequence of states, each of which is
a position on a normal line in the trellis, and they jointly de-
termine a contour. By letting qφ be the φ-th state of the se-
quence, and oφ be the observation at time φ, we can define
πψ = P (q1 = ψ), aψ′,ψ = P (qφ = ψ|qφ−1 = ψ′), and
bφ,ψ = P (oφ|qφ = ψ), where ψ ∈ {−Ψ, . . . , 0, . . . ,Ψ}, and
φ ∈ {1, 2, . . . ,Φ}. The goal now is to find the state sequence that
best explains the observation. The most probable state sequence

is q∗ = argmax
q

{
πq1

∏Φ
φ=2 P (qφ|qφ−1)

∏Φ
φ=1 P (oφ|qφ)

}
, and

the exact solution can be found using the Viterbi algorithm at com-
plexity O

(
Φ(2Ψ + 1)2

)
. In addition, with the forward-backward

algorithm we can compute the likelihood of each state, which pro-
vides a local measure of confidence.

A part-based representation for HMM was later proposed to
cluster the entire contour into parts, and compute local parameters
for each part according to its characteristics [5]. In this way we
model the non-stationary nature of the contour statistics, as is often
the case in practice. It has been demonstrated that the part-based
representation is more robust than the globally homogeneous model.

Fig. 3. (Best in color) (a), (b): an example of large displacement in 2
consecutive frames, where the translation exceeds 50 pixels (yellow
arrow in (b)); (c): results of traditional HMM-based methods and the
uncertain segments; (d): 2 hypothetical arcs are created associated
with the uncertain segments; (e): result contour after deforming the
hypothetical arcs; (f): result of the proposed method, which success-
fully captures the real contour.

3. PROPOSED METHOD

3.1. Features and Observation Probability

In the proposed scheme, the observation oφ(ψ) for one point xφ,ψ
in the trellis is measured via one region-based and two edge-based
features. The region-based feature oRφ (ψ) captures local character-
istics inside the object contour near that point. The edge features
oE1
φ (ψ) and oE2

φ (ψ) involve the 1st and 2nd order average gradi-
ents along the normal line. The observation probability is bφ,ψ =
fRφ (ψ)fE1

φ (ψ)fE2
φ (ψ), where the features are assumed to be inde-

pendent Gaussians.

3.2. Topological Changes and More

Here we define a segment C̃i = {C̃i1, C̃i2, . . . } on the contour

C̃t = {C̃t1, C̃t2, . . . } to be uncertain if Lavg(C̃ik) < Lavg(C̃tk)−
σC̃tk

, where Lavg(·) is the average observation probability at every
point on the contour segment, i.e. a local measure of likelihood, and
σ is the standard deviation. The segments with high confidence are
left untouched, while we consider uncertain segments as candidates
for topological changes.

For each uncertain segment C̃i, we create one or more hypothet-
ical arcs {Hi1, Hi1, . . . } as new initial contours, and we deform all

Hij’s to obtain new estimated contours C̃t,ij’s. The Hij’s are fixed

at the 2 end points of C̃i, and they only differ in their curvatures. We
compare all average likelihoods of the newly generated estimated
contours C̃t,ij’s and the original uncertain contour C̃i, only the most
likely contour survives. Therefore, the final contour maximizes the
likelihood over all the choices considered. Please note that we av-
erage local likelihoods of all points on each contour, instead of the
sum of likelihoods, hence eliminate dependence on contour length.
In the following paragraphs, we explain how to use hypothetical arcs
to aid HMM with the problem of topological changes.
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Fig. 4. (Best in color) The first row shows the ground truth of the objects of interest in seven frames(left to right). The second row shows the
result of [6], and the third row shows the result of our proposed method.

3.2.1. Splitting Scenarios

When the object of interest splits into two, see Fig. 1 (a), (b), tra-
ditional HMM-based tracking algorithms tend to keep tracking the
combined outer contour which covers both objects, see the red con-
tours in Fig. 1 (c), (d). Since the parts of the contour between two
objects are in fact not object boundaries, they are most likely to be
detected as uncertain segments, see the cyan-colored segments in
Fig. 1 (e). To detect a possible splitting situation, we define the fol-
lowing criteria:

1. there are two uncertain segments C̃p = {C̃p1, C̃p2, . . . } and

C̃q = {C̃q1, C̃q2, . . . },

2. mini,j{d(C̃pi, C̃qj)} < εs1,

3. mini,j{g(C̃pi, C̃qj)} > εs2,

where d(·, ·) is the Euclidean distance of two points on the xy-plane,

g(·) is the geodesic distance along the contour C̃t, and ε’s are fixed
thresholds. The second criterion requires that the two uncertain seg-
ments be close in the xy-plane to support a possible split. The third
criterion avoids false alarms when two uncertain segments are virtu-
ally contiguous.

Once the criteria are satisfied, the “split hypothesis” is activated,
and we test it as follows. We create two pairs of hypothetical arcs,
e.g. the magenta-colored and green-colored arcs in Fig. 1 (f), repre-
senting the hypothesis is “true” and “false” respectively (where the
yellow arcs are not associated with splitting). We deform all the hy-
pothetical arcs and obtain their corresponding estimated contours,
see Fig. 1 (g). By choosing the pair of output estimated contours
with higher likelihood, we decide whether the splitting hypothesis is
more likely.

3.2.2. Merging Scenario

When dealing with merging scenarios, we first apply traditional
HMM-based tracking process for multiple objects, and then detect
whether a merging exists with the following criteria:

1. there are two objects with contours C̃k and C̃l,

2. mini,j{d(C̃ki, C̃lj)} < εm1,

3. D(C̃k, C̃l) < εm2,

where D(·, ·) is the Kullback-Leibler(KL) divergence of the pixel-
intensity distributions inside the two object contours. KL divergence
measures the difference of two probability distributions. We use the

symmetric KL version: D(d1,d2) = D̃(d1,d2) + D̃(d2,d1),
where D is the standard asymmetric KL divergence. The criteria
ensure that we only merge two nearby objects with similar inter-
nal characteristics. Once the criteria are satisfied, we activate the “
merge hypothesis” and test it similarly to the splitting scenario. We
compare the likelihood of the two pairs of the deformed hypothetical
arcs and decide whether the hypothesis is validated.

3.2.3. Large Displacement Scenario

Hypothetical arcs can help not only in the splitting and merging sce-
nario, but also when there is large displacement of an object within
two consecutive frames. In large scale and high-definition biolog-
ical images sequences, an object can suddenly shift by more than
fifty pixels away, and existing HMM-based algorithms would lose
its track. In this case we can also create hypothetical arcs for the
uncertain segments, and find the optimal estimation for the object
contour. An example is shown in Fig. 3, where there is an obvious
registration error in the second frame, which results in sudden large
displacement. The true contour can be found by deforming the hypo-
thetical arcs with similar procedures described in section 3.2.1 and
3.2.2.

4. EXPERIMENTAL RESULT

In the experiments we consider tracking contours of neuronal struc-
tures in electron micrograph stacks. First, we apply the proposed al-
gorithm on 15 neuron structures without splitting and merging. The
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Fig. 5. (Best in color) An example of both splitting and merging. The first row shows the ground truth of the objects of interest in 6 frames(left
to right). The second row shows the tracking result from the proposed method.

Table 1. Comparison of our proposed method and Chan-Vese
method on EM image sequences.

Chan-Vese method Proposed method

F-measure 0.8079± 0.1262 0.9217± 0.0587
MAD 8.8354± 5.0559 1.9474± 0.7465
HD 34.4051± 26.7430 9.1608± 5.1571

experiments are performed for over 20 z-slices of the EM stack. Sec-
ond, we use the proposed algorithm to track the contour of a single
neuronal structure which splits into two in 7 z-slices, see Fig. 4. Fi-
nally, we apply the proposed algorithm on multiple neuronal struc-
tures which split and merge within 7 z-slices, see Fig. 5.

Our results are compared with the classic Chan-Vese level set
method with the implementation of [10]. To measure the per-
formance, we use three different error metrics, a) F-measure, b)
mean-absolute-distance (MAD), and c) Hausdorff distance (HD).
F-measure is region-based score to be maximized, while MAD
and HD measures are distance-based costs to be minimized. Let
Cg = {cg1, cg2, . . . , cgm} be the manually annotated ground truth
of the object contour, and Cr = {cr1, cr2, . . . , crn} be the resulting
object contour from an automatic algorithm. MAD and HD are
defined as follows:

MAD(Cg, Cr) =
1

2

(
1

m

m∑
i=1

dm(cgi, Cr) +
1

n

n∑
i=1

dm(cri, Cg)

)
HD(Cg, Cr) = max

(
max
i
dm(cgi, Cr),max

i
dm(cri, Cg)

)
,

where dm(cgi, Cr) = minj |cgi − crj |. Given the available ground
truth, preliminary results show that our proposed algorithm outper-
forms the Chan-Vese method, (see Table 1). We note that there exist
many variants of the level sets algorithm, and we choose to com-
pare with the classic Chan-Vese method. The proposed algorithm is
coded in MATLAB, and, despite no further code optimization, the
computation time is less than 1 sec per object per frame.

5. CONCLUSION

This paper presents a novel topology-aware hidden Markov model-
based contour tracking algorithm for tracking contours of neuronal
structures in an electron micrograph stack. An estimated contour
is produced together with the confidence of each point on it com-
puted according to the HMM. We detect segments of low confidence

and use hypothetical arcs to test hypotheses of topological changes,
such as splitting and merging, and then identify the most probable
solution. Experimental results show, both qualitatively and quan-
titatively, the capability of tracking contours of neuronal structures
which split, merge, and deform, with the existence of cluttered back-
grounds. This provides an alternative parametric solution for the
problems of topological changes.
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