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ABSTRACT
A main challenge in microtubule tracking is due to clutter, or

the presence of many similar intersecting structures. This paper pro-
poses a two-layered probabilistic formulation which has at its foun-
dation a factor graph serving as a multi-label inference engine de-
signed to provide distinction between open contours of interest and
other microtubules or noise. The second layer is a deformable trel-
lis defined over the resulting label probability map, where a Hidden
Markov Model (HMM) is employed to determine the most proba-
ble current location of the microtubule body. The overall framework
enjoys the “best of both worlds” - the factor graph is effective in dis-
criminating between contours of interest and others that exhibit sim-
ilar statistical properties, while the deformable trellis with its HMM
offer accurate modeling of microtubule dynamics in terms of growth
and shortening, as well as precise body tracing, accounting for prior
information, all within a principled Bayesian framework. Simulation
results provide evidence that the proposed approach outperforms ex-
isting techniques.

Index Terms— Microtubules, Factor Graphs, Deformable Trel-
lis, Belief Propagation, Hidden Markov Models.

1. INTRODUCTION

Object tracking is one of the fundamental problems in vision, and
is important in bio-image analysis. Microtubule (MT) tracking is
necessary for understanding MT dynamics, which is the focus of
extensive biological research, has been conjectured to have a signifi-
cant role in critical cell functions and processes, and correspondingly
have potential implication in various diseases [1], [2]. MT tracking
poses major challenges that go beyond those typically encountered
in object tracking in video sequences, including: (a) low signal to
noise ratio of MT microscopy images, (b) considerable clutter due
to frequent intersections with other MTs. The focus of this paper
is on powerful new approaches to effectively track MTs despite the
adverse conditions (see, example, Figure 1). The tracking results we
present are for MTs imaged by fluorescence microscopy.

2. PRIOR WORK

Earlier approaches to the problem of tracking curvilinear structures
and their dynamic analysis include approaches based on active con-
tours [4], and Kalman filtering [5], [6]. In [7], significant tracking
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Fig. 1. A specific example comparing output of [3] (on the left)
versus the proposed approach (on the right). The ground truth is
annotated in red, while green represents the tracker output

performance improvement was obtained by employing an HMM ap-
proach, which has natural capability to probabilistically account for
growth and shortening of the MT, and is computationally efficient
due to the applicability of the Viterbi algorithm. However, while the
method is highly effective in tracking an MT in noise, its shortcom-
ings emerge when we encounter clutter due to intersection with other
MTs that exhibit similar statistical attributes.

An alternative approach involves belief propagation on a factor
graph [3]. It formulates tracking in clutter as a multi-label inference
problem, which may be resolved by belief propagation. The out-
come is a label probability map in which MT tracing is performed
using a constrained maximization method from [8]. This method,
while providing the ability to discriminate between the contour of
interest from other intersecting structures, does not have an intrin-
sic ability to model growth and shortening and hence to effectively
model the MT dynamics. The motivation for the method we propose
herein stems from the realization of the complementary capabilities
inherent to the HMM and factor graph approaches.

3. THE PROPOSED FRAMEWORK

The proposed framework consists of two layers. A multi-label factor
graph defined as in [3] forms the first layer. Posterior probabilities
associating each node of the factor graph with the possible labels are
obtained using belief propagation [9]. The second layer involves a
deformable trellis that is overlaid on the probability map obtained
in the first layer. The trellis is positioned about the MT contour of
the previous frame, which allows for deformation of the contour in
the current frame, as well as length changes. An HMM is defined
over the trellis to compute the maximum a posteriori estimate of the
current contour location via the Viterbi algorithm.
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3.1. Factor Graph and Belief Propagation

A factor graph is defined over the image, where an image pixel is
associated with a ’variable’ node of the factor graph. Each variable
node can take value in a set of three labels - contour of interest lCoI ,
other contour lOc and background lBg [3]. There are two types of
factor nodes in this factor graph, which are described next.

A factor node that is defined on a single variable node i, is com-
monly referred to as a unary potential β(zi), which measure the prior
probability that the node belongs to the class or label zi. These prob-
abilities are a diffused version of posteriors from the previous frame
(and initialized by the user in the first frame of the sequence). Diffu-
sion is carried out in consecutive frames using distance transforms.

The second type of factor node is the binary potential α(zj , zk),
associated with two connected variable nodes j, k, i.e., neighboring
nodes. The binary potentials quantify two aspects of the model: (i)
Label transition probabilities - the probability of a node assuming a
particular label conditioned on the label of its neighbor. Such de-
pendence can be extracted from a training set of images where the
foreground and background classification is known. (ii) The data
likelihood term - which quantifies the probability of the observation
measured between two adjacent nodes, conditioned on the node la-
bels. This non-standard aspect is important in the context of tracking
curvilinear structures.

Observation features used to compute likelihood in the factor
graph are the ridge features, obtained by filtering the image with a
second order derivative gaussian filter. Observations computed be-
tween node pairs are obtained by averaging ridge features of the two
nodes, along the normal to the line joining them.

To obtain statistics for computing the binary potential, a training
image set is used, where MTs and background had been labeled.
In a training image, ridge features are measured for different pairs
of labels. Observations for each class (each possible pair of labels)
are modeled as Gaussian densities, whose means and variances are
evaluated. Any observation in the test image can then be evaluated
as evidence via the likelihood associating it with different classes.

With the above definition of potentials, the expression for the
joint label probability p(z) of the set of M pixels in the image is:

p(z) =
1

Z

M∏

k=1

β(zk)
N

′
∏

j=1,j∈N (k)

α(zk, zj) (1)

Where, N
′

= 4 is the number of neighbors for each pixel, and Z
provides normalization to obtain a valid probability distribution.

Once we evaluate the potentials for a given frame, belief propa-
gation is performed on the factor graph, to obtain posterior probabil-
ities for labeling each node of the graph.

3.2. Deformable Trellis and Hidden Markov Model

A deformable trellis is overlaid on the probability map correspond-
ing to the label lCoI . More specifically, the deformable trellis is
positioned about the contour estimated for the MT in the previous
frame. This trellis enables employing an HMM to optimize the MT
contour.

A first important distinction with the deformable trellis of [10]
and [7], is that here the trellis (and HMM) is overlaid on, and pro-
cesses the probability map, rather than the original image itself. The
intuition behind this paradigm is that it allows us to leverage the
factor graph capability to separate the contours of interest from the
clutter of other contours. The probability map lCoI is effectively a

highly processed version of the current frame which consists of prob-
abilities associating each node of the factor graph with the contour(s)
of interest. We basically propose to use this probability map as the
’observations’ for the HMM. Hence, our problem now reduces to
finding the best sequence of states along the trellis (positioned about
the MT contour of the previous frame), given the observations in the
current frame. The deformable trellis with the HMM offer powerful
statistical modeling capabilities, including the ability to model MT
motion, growth and shortening, in a principled fashion.

In summary, we position a trellis about the MT contour from the
previous frame (see Fig. 2). The trellis is constructed by forming
equally spaced normals to the initial contour, on which we define
states where the new contour may pass. (Note that to avoid graphical
clutter Fig. 2 does not show the actual trellis edges, which connect
every state on a given normal to adjacent states in the next normal
along the trellis). The HMM identifies the most probable sequence
of states, i.e., the most probable contour in the current frame. This
corresponds to the maximum a posteriori estimate of the MT contour
given its location in the previous frame, the model for MT dynamics,
and current observations in the form of the probability map produced
by the factor graph layer.

3.2.1. Details of the Hidden Markov Model

A Hidden Markov Model is parameterized by (A,B,π), where ’A’ is
the transition probability matrix, ’B’ is the observation or emission
matrix, and ’π’ is the initial state occupancy vector. π is modeled as
a Gibbs distribution, centered around the mid-state N+1

2
in a trellis

composed on N states, where, N is odd:

πi ∝ eγ(i−
N+1

2
)2∀i ∈ {1, 2, ....N}, (2)

where γ is extracted from training data.

Fig. 2. Trellis overlaid about the MT contour of the previous frame
(dotted line), where the most probable sequence of states estimates
the actual MT contour of the current frame (solid line)

We incorporate in the HMM auxiliary states defined similar to
[7], namely, the begin state, Sb, and end state, Se. These states
enable modeling length contractions in either end of the MT. The end
state is modeled as an absorbing state (it is impossible to transition
out of it). The begin state is correspondingly an expelling state. So,
the trellis is defined with the states {si : i ∈ {1, 2, ...N}, sb, se}.

To obtain a smooth contour post inference in the HMM, the Arc-
emission HMM is used, which differs from a conventional state-
emission HMM in that its observations depend on state pairs, the
current and previous states (Figure 3), rather than on the current sin-
gle state only as in the state-emission HMM. Decoding the state se-
quence of an Arc Emission HMM offers more flexibility at the cost
of some additional model complexity.

To model the observations which are drawn from the posterior
probability map produced by the underlying factor graph, we aver-
age the posterior values at the two locations corresponding to the two
consecutive states on the trellis, i.e., the two states forming the state
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Fig. 3. Graphical Model representation of an Arc Emission HMM.
Si denote states and Oi observations.

pair. So, the observation for the arc connecting the pair of states i,j
on adjacent normals of the trellis is:

oij =
pi + pj

2
, ∀i ∈ φk, ∀j ∈ φk+1, i, j ∈ E , (3)

where, E represents the set of connected edges in the trellis, pi and
pj are the posteriors at positions i and j, φk are the M normals
along the trellis overlaid about the contour inherited from the previ-
ous frame.

In order to model the observation emission matrix B, deformable
trellises are overlaid on training images with available ground truth
(i.e., the true contour is known and the probability map after belief
propagation is available). Here the correct contour is simply the se-
quence of mid-states in the trellis. Features measured along the mid-
state sequence represent observations that support the foreground,
and features measured between all other state pairs are observations
that support the background. For simplicity, in simulations we mod-
eled the emission probabilities for observations corresponding to the
foreground and background as two Gaussian densities, whose mean
and variance were evaluated from the training set (despite the obvi-
ous fact that these features are probabilities themselves and hence
vary between 0 and 1). Given these parameters it is straightforward
to generate the emission matrix B.

The transition probability matrix A assigns probabilities (or in-
versely, costs), that govern transitions from any given state to any
other state. Such a matrix is composed of elements modeled using
a tilted Gibbs distribution, which can be learnt using the fixed point
iterative method described in [7].

Once the parameters of the HMM are estimated, the MAP esti-
mate of the state sequence that represents the contour in the given
frame is obtained using the Viterbi Algorithm [11]. Thus, with the
above construction, lateral deformations of the contour, and length
contractions are modeled. Thus, in summary:

q∗ = argmax
q∈Q

P (q/Ot, λ) (4)

Ct = I(q∗, Ct−1), (5)

where the optimal state sequence q∗ is obtained by Viterbi algorithm
on the trellis given the probability map of the current frame, and Ct

is the position of the contour in the current frame obtained from the
mapping I(.), calculated from q∗ which is a sequence of states in the
trellis constructed about the previous frame’s contour Ct−1.

To account for potential growth into new areas of the image, a
funnel shaped graph is employed on the output of Viterbi’s algo-
rithm, as shown in Figure 4. We choose a set of points along the fun-
nel graph that have features that possess maximal statistical evidence
about the presence of the contour, (which must exceed a specified
threshold, as evidence for real MT growth). Then, an ’augmented’
trellis is constructed over the set of points obtained from Viterbi’s
decoding, along with the points obtained from the construction of

the funnel graph. Inference is performed on this augmented trellis,
to obtain the MAP estimate of the state sequence that enable us to
estimate the position and length of the contour in the current frame.

Fig. 4. Overlaying the Funnel Graph in the probability map obtained
as the output of Belief Propagation, with the contour in the given
frame (solid line), the contour inherited from the previous frame
(dotted line)

4. RESULTS

In this section, we compare the proposed two-layered method with
the HMM approach of [7] and the factor graph approach of [3]. We
elaborate on multiple metrics for comparison, in order to provide a
measure of precision in the contour estimate, but also account for
the fact that major tracking errors may overwhelm contour distance
measures. The metrics are: (i) Body distance between the contour
estimate and ground truth, averaged on the entire experiment, de-
noted doverall. The body distance is a constrained distance calcu-
lation technique requiring dynamic programming for its evaluation,
see [7]. (ii) Body distance averaged over a set that excludes “track-
ing errors”, denoted dsuccess. We declare tracking error if the body
distance exceeds a threshold, θ ∈ {3, 4, 5, 6} pixels. (iii) Percent-
age of tracking errors at a given threshold θ. Figures 5 and 6 display
some visual results comparing our approach with other approaches.

Table 1 displays the comparison in terms of the 3 measures,
where θ = 5, while figure 7 depicts how the percentage of tracking
errors varies with θ for the three methods (values are evaluated using
150 annotated frames of highly cluttered data belonging to particu-
larly challenging image sequences, indicating that the method out-
performs other approaches in these scenarios, while offering similar
performance in other relatively uncluttered sequences). All results
show favorable performance gains for the proposed method.

Fig. 5. A specific example comparing output of [3] (on the left)
versus the proposed approach (on the right). The ground truth is
annotated in red, while green represents the tracker output
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Fig. 6. Comparing results of [7] (top row) with the proposed approach (bottom row) in growth and shortening phases of the Microtubule:
ground truth in red, tracker output in green

Table 1. Body-Distance Comparison, error threshold θ = 5

Method doverall dsuccess % of tracking errors

HMM 7.9628 1.7877 57.89
Factor Graph 3.3624 1.4182 24.34

Proposed 2.2346 1.3560 9.21

Fig. 7. Tracking error rate versus the threshold θ

5. CONCLUSION

A two-layer probabilistic approach to track cluttered Microtubules
is presented. By overlaying a deformable trellis and a corresponding
HMM on the probability map generated from inference in an under-
lying factor graph, an effective tracking mechanism is achieved. The
framework enjoys the complementary advantages of two principled
subsystems - the factor graph approach, which lends the discrimina-
tory power to distinguish between the contour of interest from other
contours, and the deformable trellis enables seamless tracking of
length changes of the contour in successive frames. Results, in terms
of several criteria, provide evidence that the proposed approach out-
performs other techniques in tracking cluttered Microtubules.
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