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ABSTRACT

In this paper we propose a two-dimensional hidden Markov model
(HMM)-based framework for solving the cell tracing problem in a
biological image sequence. Given label initialization in the first
frame, we model the problem as pixel labeling for every conse-
quent frame. Common Markov random field-based frameworks for
this task require a fixed set of labels S = {1,2,---, L}, while in
our framework the set of labels or the state-space is spatially adap-
tive, i.e., available prior information is exploited to identify a smaller
state-space that varies from node to node. In the cell tracing problem,
specifically, temporal information on cell location in the previous
frame is used to reduce the states to a small subset of the complete
label set. The substantial reduction in average cardinality of the la-
bel set yields benefits not only in terms of computational complexity,
but also in the labeling accuracy. The general idea can be broadly
applied to many computer vision and image processing problems,
where prior knowledge enables local reduction of the state-space.
We consider the cell tracing problem on a publicly available chal-
lenging biological image dataset, which contains a series of electron
microscopy images of high resolution and a large number of objects
(neuronal processes) to be traced. Experimental results compare the
approach with other recently proposed methods, and show consider-
able improvement.

Index Terms— Cell tracing, electron microscopy, 2D-hidden
Markov model

1. INTRODUCTION

Neuroscientists have been imaging very large volume of neural tis-
sue for the purpose of reconstructing the neuronal circuitry. The
identification of post synaptic densities is crucial for this task, and
currently electron microscopy (EM) is the only imaging technique
that can provide sufficient resolution. Recent advances in sample
preparation and imaging processes, including mosaicking and regis-
tration, have enabled the acquisition of multi-terabyte data volume.
To acquire complete cell and network maps, manual analysis is labor
intensive and error prone even by experienced neuroanatomists, and,
therefore, automatic high-throughput techniques are essential for the
tasks of reconstruction and evaluation.

In this paper, we consider the problem of tracing many cells in a
biological image sequence. Since cell 3D reconstruction bears simi-
larity to video tracking, it is intuitive to assign each cell with a unique
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Fig. 1. (Best in color) (a): an electron microscopy image, (b):
the pixel labeling result using the proposed 2D-HMM-SASS frame-
work.

label and perform pixel-wise label propagation from frame to frame.
By assigning a label to each pixel in every frame, the locations and
shapes of all cell structures are determined. In this way, the topolog-
ical changes such as merging, splitting, and overlapping instances
are naturally handled. Such approach usually involves a Markov
random fields (MRF), a Markov mesh random field (MMRF), or a
conditional random field (CRF), where the labeling result can be
solved by belief propagation [1], two-dimensional hidden Markov
model (2D-HMM) with turbo-decoding [2] and graph cuts with a-
expansion [3], respectively. These methods, employing appropriate
energy functions and model parameters, are proven to provide accu-
rate labeling results, e.g. the methods of [4] applied a CRF frame-
work with high-order potentials to the multiple cell tracing problem.
However, with increase in the size of the image and the label space,
the computational complexity limits the usability of these methods.

An alternative approach is to convert the atomic units from pix-
els to superpixels using various over-segmentation methods. This re-
duces the number of nodes in a graph by at least two orders, and thus
dramatically decreases the computational complexity. However, the
labeling accuracy heavily depends on the initial over-segmentation.
Errors due to the superpixels, i.e. boundary inconsistency between
real objects and superpixels, will be propagated to the final labeling
results and, typically, there is no correction provision in such formu-
lation. Consequently, superpixel-based methods often yield worse
performance than the MRF-like methods but at lower complexity. In
this paper we propose a MMRF-based framework, 2D-HMM with
spatially adaptive state-space (2D-HMM-SASS), where the set of
labels for each node is determined by available prior information on
the local area. It offers the capability of handling a large number of
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labels at reasonable complexity without incurring the penalty of su-
perpixel over-segmentation. The idea of SASS could be utilized in
many different pixel labeling problems in computer vision. It is par-
ticularly suitable for the problem of multiple cell tracing in biologi-
cal images with a large number of objects of interest. Experimental
results show that the proposed framework is of low computational
complexity due to the smaller label spaces, and yields better pixel la-
beling performance due to minimized confusion per node. The states
of hidden Markov model are equivalent to the labels in a MRF-based
framework, and we use these terms interchangeably in the sequel.

2. RELATED WORK

There exists substantial prior work on 3D model reconstruction from
biological image sequences. Existing methods usually formulate the
3D reconstruction problem as one of grouping superpixels or super-
voxels using various graphical models. Graph-based segmentation is
utilized in [5] to obtain a 2D over-segmentation of every section, and
a hypergraph framework is designed to efficiently solve the group-
ing problem. In [6], a probability map of membrane detection is
learned by means of a random forest, and watershed segmentation is
performed on top of the probability map to produce supervoxels that
are then further grouped to reconstruct the 3D model. In [7], a set of
supervoxels is obtained by the SLIC algorithm and then grouped by
graph cuts [8].

Other methods assume that all neuronal processes can be seg-
mented well in every frame and then connect those segments in the
vertical direction. In [9], a simple thresholding and watershed seg-
mentation is performed on each frame to acquire 2D segments of all
neurons. Then a directed graph is constructed and Dijkstra’s algo-
rithm is used to find the optimal connectivity for each neuron in the
first section. In [10], the intra-section and inter-section segmentation
are done in separate procedures, where a merge tree with superpixels
as leaf nodes was used to reconstruct the 2D segmentation, and a sec-
tion classifier was trained for the inter-section neuron reconstruction.
In [11], a deep neural network is utilized to learn the neuronal mem-
branes in EM images. In [12], a framework was proposed for tracing
neuronal processes over serial sections by using graph-cut optimiza-
tion over the 3D volume. While using the directional energy in the
graph cuts boosts the 2D segmentation performance, this method
fails if the structures of interest are not orthogonal to the cutting
direction, due to the simple 3D linkage energy function employed.
In [13], an active semi-supervised learning method was proposed
for EM segmentation. The above 2D-segmentation-based methods
perform well on datasets where cell membranes can be easily seg-
mented, but, to the best of our knowledge, no single segmentation
method works effectively on the challenging dataset we have, in the
presence of highly cluttered background and intracellular structures.

Other than superpixels or supervoxel-based grouping methods,
in [14] and [15], a set of over-segmentation results are generated
as multiple hypothesis, and graph cuts are utilized for optimizing
the merging results. In this paper, we propose a pixel-wise labeling
framework, 2D-HMM-SASS, to effectively and efficiently solve the
problem of cell tracing on a highly challenging EM image sequence
of a rabbit retina.

3. BACKGROUND

3.1. Turbo 2D-HMM

The hidden Markov model has been known to provide optimal so-
lutions for one-dimensional multiple-labeling problems, leveraging
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Fig. 2. Ilustration of a 2D-HMM with spatially adaptive
states. Similar to standard 2D-HMM, an observation probability
P(04,5]¢i,5, A) is emitted at each node (3, j), and the (horizontal)
transition probability P(g¢;,j|qi,j—1,A) is defined over nodes (i, )
and (z,j — 1). However, the state-space is spatially adaptive and the
cardinality is often reduced to a small subset of the full set Sq;.

the efficient forward-backward algorithm or Viterbi decoding. How-
ever, its direct extension to two-dimension is impractical because the
complexity grows exponentially with the image size. There are sev-
eral approximating variants of 2D-HMM algorithms [2], [16] and
[17], of which the turbo 2D-HMM [2] is an effective and efficient
algorithm that has been applied to a number of computer vision
problems [18] [19] [20]. With a modified version of the forward-
backward algorithm, the turbo 2D-HMM iteratively decodes each
row and column independently as a 1D-HMM, but allows them to
“communicate” by inducing priors on each other. More specifically,
the column-wise occupancy probabilities from the previous iteration
are utilized as prior information in current row-wise decoding, and
vice versa.

Let O = {o;;} and Q = {qi,;} be the observations and the
states to be predicted of all pixels, and A be the model parameters.
Using the Markovian property, the joint likelihood of all nodes is

P(0,Q)) P(O|Q,\)P(Q[N) 1)
= [ P0islais NP(@islai-1.5, -1, ),
i

where P(0i,;|qi,j,A) and P(qi,j|gi—1,5,¢i,5-1,\) are observation
and transition probabilities respectively. The observation probabili-
ties are parallel to the unary potentials, and the transition probabil-
ities are parallel to the binary potentials in a Markov random field
formulation. For clarity, we will omit A in the following equations.
It is assumed that the transition probabilities can be decomposed into
the vertical and horizontal components, i.e.

P(Qi,j

Let the observations and the state sequence of row ¢ and column
j be denoted by o}/, o, qJV , qf, where the superscripts V' and
H denote vertical and horizontal, respectively. The turbo 2D-HMM
approximates the overall joint likelihood to be the product of all row-
wise (column-wise) joint likelihoods accompanied with some priors
from column-wise (row-wise) decoding results, i.e.
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As a result, the optimization can be solved by iteratively decoding
the columns and rows, and the computational complexity of turbo

1453



2D-HMM is O(n|S|?), where n is the number of nodes and |S| the
number of all possible labels.

4. PROPOSED METHOD

4.1. 2D-HMM with Spatially Adaptive States

A “standard” 2D-HMM is spatially invariant, i.e., the set of states
S ={1,2,---, L} is fixed for all nodes. The proposed 2D-HMM
framework, on the other hand, allows each node to have its own la-
bel candidates, i.e., the set of allowable states for each node is varied
adaptively accounting for the available prior information on each lo-
cation, as shown in Fig. 2, where the prior could be extracted from
temporal, spatial, or other source of information. We will show that,
with the appropriate prior, the state-space at each node could be re-
duced to a small subset of the full set S. The idea of SASS could
be utilized in many different pixel labeling problems in computer vi-
sion, such as optic flow, scene analysis, and video tracking. Specifi-
cally, it is suitable for the problem of multiple cell tracing in biologi-
cal images, which has very high resolution (a few nanometers per
pixel), and a large number of objects of interest.

A typical 8192 x 8192 image frame in the electron microscopy
(EM) image sequence of our dataset [21] contains around 100 neu-
ronal processes. For each node, we could naively use all 100 unique
labels to form the state-space. However, with the temporal prior of
the locations of all cells in the previous frame and an assumption
that the maximum displacement of any cell is within dp,q pixels,
the size of the state-space could be reduced to less than 3 on an aver-
age. The necessary cell label candidates of pixel (i, 7, t) in frame ¢
are the set of unique labels of those in a (2dmaz +1) X (2dmaz +1)
bounding box centered at (,7,¢ — 1). We illustrate how the label
candidates are extracted at each pixel with Fig. 3 (a). Let n be the
number of pixels and S be the set of all labels, the computational
complexity of turbo HMM is O(n|S|?), while that of 2D-HMM-
SASS is approximately O(nC?), where Cj, is the average number
of unique label candidates in a bounding box. Since the cardinality
of S is proportional to n and C} is a constant, the proposed algorithm
essentially reduces the complexity from O(n?) to O(n). Note that
the efficiency gain increases with the cardinality of the full label set.
In addition to the reduction in computational complexity, the pixel
labeling precision also benefits from the proposed SASS idea, since
only the necessary subset of labels is considered at every pixel and
there is less risk of confusion, compared to the original framework.
Given all the above features of 2D-HMM-SASS, it is suitable for the
problem of multiple cell tracing in biological images.

4.2. Observation Probabilities

The observation probabilities in a hidden Markov model are analo-
gous to the unary potentials in a MRF model. In our proposed frame-
work, we extract three local features at every pixel, the histogram of
pixel intensity, local binary patterns, and distance transform. Given
the segmentation in frame ¢ — 1 (manual initialization of the pixel-
wise labels of all cells in the first frame), we compute H ;i_l (1), the
histograms of pixel intensity of cell [ in frame ¢t — 1, and similarly
H, fb;l(l) for local binary patterns. The histograms are normalized
so that they all sum to one, hence representing probability distribu-
tions. We extract local histograms of pixel intensity szi(z', j) and
local binary patterns Ffb],,(i7 j) with a bounding box of size B x B
at pixel (¢,7) in frame ¢t. Let Dxr(P||Q) = >, P(i) ln%
be the asymmetric KullbackLeibler (KL) divergence of two prob-
ability distributions P and ). To compute the “distance” between

(b)

Fig. 3. (Best in color) (a) an illustration of how label candidates
are extracted at each pixel, (b) an illustration of how the transition
probabilities from pixel (7, j) to (¢, j + 1) is computed, we consider
the regional difference of both sides..

each pixel and a label [, we employ a symmetric version of the
KL divergence between the local feature and the histogram of
the target label, i.e., dp;(i,5) = D3y (Fi(i, j HHt (1)) and
diny (i, 5) = Dip" (Floy (i, )| Hjy,' (1)), where DR (P|Q) =
Dk (P||Q) + Drr(Q||P) is the symmetric KL divergence. Also,
we compute dilt(i, 7), the minimum distance from point (i,j) to
the target cell [ in the previous frame using the efficient distance
transform algorithm [22]. Each feature is assumed to be drawn
from an independent exponential distribution, and the observation
probability is P(oijlg = 1) = Pi (dbi(i,5)) - P2 (diyp(3,5)) -
Ps (diyy (4, ) , where P;(d) = Xiexp (—Aid) is the exponential
probability density function.

4.3. Transition Probabilities

The transition probabilities, which are analogous to the binary po-
tentials, control the smoothness of the result. For each pixel (i, j)
and its immediate horizontal neighbor (7,j + 1), we compute the
regional difference of both sides, as shown in Fig. 3 (b). Let d" h
be the horizontal regional difference between the left and right k X k
pixels, where we forge the simplistic measures, such as the differ-
ence of average pixel intensities or the weighted directional deriva-
tives, and use a refined distribution-based measure. Let H};°” and
HE; %" be the normalized histograms of the pixel intensities on both
51des and we compute d;";" = D3¢ (HWE” Hp’”t) Since we
assume the pixel labeling result should be piecewise constant and
drastic changes are allowed on the boundaries, the Potts model is
applied to the transition probabilities in our framework, i.e.

P P 0 Sqigtl = Gy

Boretl@3) =\ exp (—)\”’hT(d?}h)) DQig1 F i
where A" is the parameter of an exponential distribution, and
r(d) = —log (1 — exp( d)) is a reciprocal-like function. In this
setting, a large d; T’ , which shows strong difference of the two re-
gions, will result 1n a high transition probability from g; ; to g;.j+1
if gij # qij+1.

5. EXPERIMENTAL VALIDATION

5.1. Datasets and Implementation Details

In this section we demonstrate the capability of the proposed 2D-
HMM-SASS for tracing neuronal cells in a challenging electron mi-
croscopy image dataset [21], which is in the inner nuclear layer of
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Table 1. 2D-HMM Run-time with Multi-threading
No. threads 1 2 4 8
Run time 233 | 1.78 | 1.39 | 1.13

Table 2. F-measure and Run-time Comparison

Method ‘ Median ‘ Mean ‘ Std ‘ Time(sec.) ‘
Level Set Tracking [23] 0.55 0.53 0.25 1080
HGraph [5] 0.71 0.78 | 0.22 34
Graph Cuts [25] 0.67 0.77 | 0.28 1320
2D-HMM-SASS 0.83 0.81 | 0.12 9.3 (4.5)
2D-HMM-SASS (refine) 0.87 0.84 | 0.12 32

a rabbit retina. The original imaging resolution is 2.17 nanometers
per pixel, and there are 95 neuronal processes to be traced in an
8192 x 8192 image. The proposed pixel-labeling-based algorithm is
tailored for this kind of dataset where the cell profiles, which includ-
ing brightness intensities and textures, are distinct. We down-sample
the image to 512 x 512 and compare the performance of the proposed
framework with the sparse field level set method [23] with the im-
plementation of [24], Graph Cuts-based with higher order potentials
[25], and a recent hypergraph-based method [5], where the runtime
and pixel labeling accuracy performance of these methods are re-
ported in [S]. With the temporal prior and the assumption that the
maximum displacement of a cell d,,q. is 30 pixels, the maximum
and average number of states of each node is only 6 and 2.12 re-
spectively. Since the computational complexity of the original turbo
2D-HMM is O(n|S|?), compared with the original 95 labels, the
proposed method reduce the computations by a factor of over 2000.

5.2. Parallel Computing for speed-up

Our proposed 2D-HMM-SASS is based on the turbo 2D-HMM,
where the decoding of each column and row is independent. We im-
plemented a C++ code with parallel computation supported by STL
multi-threading. With an Intel 17-930 2.8GHz CPU with 4 cores and
8 threads, the run time for computing a 1024 x 1024 image reduces
more than 50%. The run time comparison is shown in Table 1.

5.3. Parameter Learning

An advantage of utilizing a hidden Markov model-based method
is its ability to learn the model parameters automatically for both
the observation probabilities and transition probabilities. Let us use
the notation listed in Table 4. The parameters update by the re-
estimation formulas can be derived by maximizing the Baum’s aux-
iliary function Q(\, \) over X, where

QAN =>_ P(Q|O, ))log[P(0,Q[)]. 3)
Q

This re-estimation procedure can be interpreted as an implementa-
tion of the Expectation-Maximization (EM) algorithm, and it can
be proved that the likelihood function monotonically increases with
the parameter updates. From (1), (2) and (3), we have Q(\,\) =
Q(Xp, b) + Q(Xa,a), where

Q(As,b) => > 7i,(gi.5) 10g [ba, , (04,5)]

Q 4J

Q(Xa,a) = Z Zf;/” log (a;,j’qi%’j) + §gd log (ag.j"ﬁ,j—l) .
Q i,j

Table 3. Rand Index Comparison

Method\ Frame ‘ 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘
Level Set [23] 0.82 | 0.78 | 0.75 | 0.72 | 0.69
HGraph [5] 0.88 | 0.86 | 0.85 | 0.83 | 0.80
Graph Cuts [25] - 0.81 | 0.85 | 0.84 | 0.80
2D-HMM-SASS - 0.93 | 091 | 0.89 | 0.87
2D-HMM-SASS (refine) - 0.94 | 093 | 0.92 | 0.92

Table 4. 2D-HMM notation summary

by, ;(0i,5) P(oi,jlqi,5)
%4 trv
aqi,j,qifl,j P(qi,j qi—17j7)‘ )
v (gi5) Y P(gi,; sz’ Ab)
%',jg%,j) (v (@i5) +7i,5(4i.5))/2
gqi j P(Qi,j,Qi,j—1‘07 )\)

We can apply maximum likelihood estimation on Q(Xs,b) to

obtain the updated parameters Ap;, Aipp and Age, €.8., A\pi =
% > i, (ai,5)
5]

o+, and similarly Q(\4, ) for A" and A'™?.
) M',j(qz',j)dp,,'] (4,5)
1,7

>
Q

5.4. Experimental Comparisons

We consider the publicly available dataset [21] and compare the re-
sults of the proposed framework with other recently published meth-
ods, particularly a hypergraph-based method [5] that reported the
best performance in this dataset. Two standard metrics, F-measure
and Rand Index, are commonly used for measuring the segmentation
performance, and the comparisons are shown in Table 2 and 3. While
the pixel labeling result by the proposed method, which is shown as
“2D-HMM-SASS?”, is sometime not smooth on the boundary of the
cells, we use simple morphological operations, including dilation,
filling, and erosion, to refine the output, where the results is shown
as “2D-HMM-SASS (refine)”. Compared with other recently pub-
lished methods, our proposed framework provides a 7% improve-
ment in terms of segmentation accuracy in the mean F-measure and
a 10% improvement in the average rand index. Also, the run-time for
solving the pixel labeling problem by the proposed 2D-HMM-SASS
is 140 times faster than using the graph cuts method with higher or-
der potentials (P™ model). It is clear that the proposed framework
significantly outperforms the competitor. For visual inspection, we
provide the segmentation result of 2D-HMM-SASS (refine) of the
second frame in the image sequence in Fig. 1, and note that most
neuronal processes are well segmented.

6. CONCLUSION

In this paper we proposed a two-dimensional hidden Markov model-
based framework with spatially adaptive states for the cell tracing
problem in a biological image sequence, which is posed as a pixel la-
beling problem. Exploiting available prior information, the concept
of spatially adaptive states reduces the state-space to only a small
subset of the full label set, which reduces not only the computational
complexity but also the risk of label confusion. We compare the pro-
posed framework with other recently published methods on a pub-
licly available and highly challenging dataset of electron microscopy
images of the rabbit retina. The experimental validation shows that
the proposed framework significantly outperforms the competitors.
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