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ABSTRACT

Segmentation and classification of cells in biological data are impor-
tant problems in bio-medical image analysis. This paper outlines a
novel probabilistic approach to simultaneously classify and segment
multiple cells of different classes in a multi-variate setting. Super-
pixels are extracted from the input vector-valued image, and a 2D
hidden Markov model (HMM) is set up on the superpixel graph.
HMM emission probabilities are used to ensure high confidence in
local class selection based on superpixel feature vectors. Spatial con-
sistency of labels is enforced by proper choice of transition proba-
bilities, which are conditioned on the feature vectors of neighboring
superpixels at each location. Optimal superpixel-level class labels
are inferred using the HMM, and are aggregated to obtain global
multiple object segmentation. The performance is demonstrated on
a challenging microscopy dataset. Experiments show, both quan-
titatively and qualitatively, that the proposed approach effectively
segments and classifies cells, outperforming related techniques.

Index Terms— Cell segmentation, cell classification, molecular
marker, microscopy, multi-variate

1. INTRODUCTION

Multi-variate analysis is an active area of research in bioinformatics,
with applications in sub-fields as diverse as genetic studies [1], hy-
perspectral imaging [2] and analysis of microscopy data [3]. Multi-
variate methods offer many advantages over traditional methods.
Jointly analyzing data provided by several markers can provide in-
sight into correlation between phenotypes. Further, while traditional
univariate methods require specialized markers for each class, mul-
tivariate methods can target multiple classes via different combina-
tions of a small number of probes. It is also possible to discover
new classes without explicitly probing for them. Finally, as multi-
variate methods take into account the response of multiple markers,
they are more robust to variations that may be encountered over large
volumes of data.

An example of a multi-marker microscopy modality is compu-
tational molecular phenotyping or CMP [3]. Consecutive tissue sec-
tions are probed for unique micromolecular markers, and each cell
class can be distinguished by its multidimensional micromolecular
signature. The RC1 connectome dataset [4] contains 6 capstone
sections of CMP data followed by 341 sections of electron micro-
graphs. Segmentation and classification of CMP is a critical step in
the analysis of RC1 since cell types, their molecular phenotypes and
their response to stimuli form an important source of supplementary
information to neuronal connectivity data. Fig. 2 highlights some
challenging aspects of CMP data. These include sudden spurious
presence (Fig. 2 (a)) or absence (Fig. 2 (b)) of a marker within a cell,
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Fig. 1: (Best in color)(a) CMP data (from the RC1 connectome) consisting
of 6 channels, each corresponding to a unique marker (b) RGB visualization
CMP data channels taken three at a time.

cell classes that are difficult to detect due to low background contrast
(Fig. 2 (c¢)) and large changes in intra-class feature variance across
classes (Fig. 2 (d-e)).

A popular multi-variate segmentation algorithm is mean shift [5].
In this method, spatial coordinates are used in conjunction with fea-
ture vectors to determine local clusters, using user-defined spatial
and feature bandwidths and minimum segment size parameters.
However, there is often no set of parameters that results in accurate
segmentation over the large range of cell sizes and class variances
present in CMP data. There have been several papers that use
random field formulations for classification and segmentation of
objects. A superpixel-based technique was proposed in [6], in which
a classifier is constructed on the histogram of local features and
a conditional random field (CRF) is used to refine classification.
In [7], a random forest classifier was used with hierarchical CRF to
segment and classify images at multiple scales. The authors of [8]
use a global bag of features model to combine top-down and bottom-
up potentials to solve to segment multiple classes of objects. The
drawback of the described methods is that they are not equipped to
handle problems frequently occurring in microscopy data, such as
varying contrasts and imaging artifacts.

The proposed segmentation algorithm addresses these issues in
its formulation. Rather than pixels, we use superpixels as our atomic
unit. This offers two major advantages over a sliding window ap-
proach: (i) we exploit redundancies in neighboring pixels to achieve
a significant reduction in the number of computations (ii) local re-
gion statistics are calculated on a meaningful neighborhood rather
than a window of fixed size. The major drawback of superpixel ap-
proaches is that the final segmentation result relies on the preser-
vation of true boundaries in the initial oversegmentation. We mit-
igate this issue by using a state-of-the-art superpixel generation al-
gorithm [9] which has high boundary recall. The parameters im-
plementing spatial label consistency and local classification confi-
dence are embedded in a two dimensional hidden Markov model (2D
HMM) framework, and learned in a principled manner from training
data. Cells are segmented by grouping contiguous regions with the
same label.
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Fig. 2: (Best in color) Challenges in segmenting CMP images (a) Molecular
marker artifact (b) “Hole” inside a cell (c) Cell having low contrast with
background (d-e) Change in intra-cell feature variance - low variance in (d),
high variance in (e)

We note that though experimental results in this paper are pro-
vided on CMP data from the RC1 connectome, the method can easily
be applied to a wide variety of multivariate datasets as the formula-
tion is general and system parameters are automatically learned from
data.

2. PROPOSED METHOD

For data consisting of N cell types, we consider an M -class clas-
sification problem, where M = N + 1 (the additional “non-cell”
class provides for background points in the image which lie between
cells). We operate in the D-dimensional vector space, where D is the
number of channels in the multi-marker image. Directly predicting
the class label of each superpixel from its feature vector often results
in incorrect labeling due to imaging artifacts or noise, or when even
the label with the highest posterior probability has low confidence.
Utilizing information from adjacent superpixels can help overcome
this problem as there is typically a high probability of label agree-
ment between neighboring regions. The trade-off between maintain-
ing spatial label consistency and ensuring local selection of classes
having high likelihood can be naturally modeled by embedding the
system in a 2D HMM. The confidence of local classification in each
superpixel is quantified by the emission probabilities of the HMM,
while label coherence across neighboring superpixels is maintained
by its transition probabilities.

Parameters of the HMM are learned, in a principled manner,
from training data and the optimal label sequence is inferred using an
efficient decoding algorithm. Finally, groups of superpixels bearing
the same label are aggregated to obtain cell segmentation.

2.1. Superpixel Extraction

Superpixels are extracted using the SLIC (Simple Linear Iterative
Clustering) algorithm [9], with the implementation provided in [10].
SLIC superpixels are computed on the vector-valued input image
with a spatial regularization of 1 to ensure a regular lattice structure
in the extracted oversegmentation.

2.2. Constructing the HMM

We construct a 2D HMM over a first order Markov mesh random
field of size X X Y, where X and Y are, respectively, the number of
superpixels per row and column of the oversegmentation. Each su-
perpixel S corresponds to a node at location (z, y) in the 2D HMM,
and is denoted by S, . Each state ¢ of the HMM corresponds to one
of M classes {wm, m = 1,2,... M}. Our aim is to find the optimal
state sequence, Q" = {¢; ., = 1,2,... X,y = 1,2,... Y}, and
hence, segment the image.

Direct 2D extension of standard learning and inference algo-
rithms for 1D HMMs is intractable in most practical applications due
to exponential increase in complexity. Consequently, many approx-
imations have been suggested. The “turbo-HMM?” [11, 12] consists
of horizontal and vertical 1D HMMs that are decoded separately but
“communicate” by iteratively inducing priors on each other. The
turbo-HMM (T-HMM) framework is used in this work since it of-
fers efficient approximations for learning and inference while out-
performing alternative approaches.

2.3. Local Class Probabilities

Some classes are tightly packed in feature space (Fig. 2 (d)) while
other classes have feature vectors that are more spread out (Fig. 2
(e)). In order to account for the difference in intra-class variance
across classes while maintaining low complexity, we employ a
quadratic discriminant analysis (QDA) classifier. Class likelihood
functions at pixel p area calculated from it’s D-dimensional feature

vector fy: . . .
_exp{—5(fk — pm) Bn T (f — pm)}
p(filwm) = 5 T (1)
(2m) 2 [Zm|?

The parameters of the Gaussian likelihood functions, { st } and
{3m}, are estimated from data labeled at pixel resolution. The
emission probability b;’, represents the probability of superpixel
S,y being emitted by class w,,, without taking neighborhood in-
formation into consideration. The emission probability at each su-
perpixel is obtained by combining contributions from its constituent
pixels, by taking the geometric mean of all pixel-level likelihoods.
In practice, by, is computed by taking the exponential of average
log-likelihood within the superpixel, to improve numerical stability.
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2.4. Neighborhood Label Consistency

Each element of the transition probability matrix a,, ,, is the prob-
ability of moving to state m’ from state m. We define a spatially
varying transition probability matrix, conditioned on local feature
characteristics at each node.

cs m =m
!
a/yHn/’m (z,y) = 0511 Rf,y = M 3)
mexp ( - ﬂm/,‘ ) otherwise
where RY y = # and K1 is the symmetric Kullback-
- 1+ KEH, Y

Leibler (KL) divergence between the D-dimensional histogram of
superpixel S; 4, given by hg ., and that of its horizontally neighbor-
ing superpixel, Sy+1,y, given by ha41,y.

Kfy = Zhwy(z) log () +

ha1,y(i)
; hat1,y(4)
E a1,y (i) log 0)

C# represents the probability of self transition for each class
Wm. A high value of C* indicates a higher probability of neighbor-
ing pixels taking on the same label. C2 represents the probability of
transitioning from class w,, to the background. This model favors
state transitions (i.e., cell label changes) across neighboring super-
pixels with abrupt changes in their histograms, as quantified by the

“
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exponential distribution with parameter 3, ,,. We define a unique
parameter 3,7, for each pair of classes {wp,,w;, } to account for
the variation in contrast between different pairs of classes.

We use a model similar to (3) for the transition probability ma-
trix in the vertical direction. Since cellular microscopy images typ-
ically do not exhibit directionality along the coordinate axes, we
make the simplifying (but removable) assumption that the parame-
ters of the transition probability matrix, {Cs }, {C5} and { B,/ .m }
are identical in the vertical and horizontal 1D HMMs.

2.5. Estimation of the Transition Probability Matrix

The parameters of the transition probability matrix are learned
using the Baum-Welch algorithm [13], an implementation of the
expectation-maximization (EM) algorithm. Re-estimation formulas
for the parameters are derived by maximizing Baum’s auxiliary
function, given by:

QX)) = P(Q.1,8sp|\)log P(Q,1,Ssp[X) (5
Q

with respect to \’, where \ denotes the current estimate of HMM
parameters, \ the model re-estimate and @, a sequence of states
Q = {qz,y}. I denotes the input image and Sgp, its superpixel
oversegmentation.

During the E-step, the modified forward-backward algorithm of
the T-HMM is used to estimate the occupancy probabilities (6) and
ancillary training variables (7) in the horizontal and vertical direc-
tions.

'Y:c,y (Qz,y =7|I,Ssp,A) ©6)
’Yzy P(qry _T|I SSPv)‘)
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During the M-step, Q(\, \’) is maximized with respect to each
parameter to obtain the following re-estimation formulas:
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Transition probability matrices are uniformly initialized, and pa-
rameters are re-estimated using iterative passes of the Baum-Welch
algorithm until the likelihood of the training set converges.

2.6. Inference

The optimal label sequence is inferred using the Viterbi decoding
procedure with modified forward-backward iterations [11].

3. EXPERIMENTAL RESULTS

We present the performance of the proposed approach on the CMP
data in the capstone region of the RC1 connectome [4]. This region
consists of 6 channels of data, each an intensity image obtained by
probing for a unique molecular marker and captured at a resolution
of 70 nm. The resulting data is a vector-valued image constituted

Mean + Std Classificn. | Running
Method .

of F-measure Accuracy | Time (s)
Mean shift [5] 0.7424 +0.1793 - 30.51
FVS [6] 0.8093 + 0.1515 77.04% 21.30
Proposed 0.8372+0.1305 | 85.97% 23.04

Table 1: Comparison of results on CMP data from the RC1 connectome.
Classification accuracy is not reported for mean shift segmentation as the
algorithm does not directly provide classification output.

of six channels. The data consists of 581 total cells belonging to
7 major types. Manual segmentation of all cells, along with expert
annotated cell labels, is used as ground truth in evaluating quality of
both segmentation and classification.

We compare our method with two well known algorithms - mean
shift segmentation [5] and the algorithm proposed by Fulkerson,
Vedaldi and Soatto (FVS) in [6]. The optimal parameters for mean
shift were found to be (hs, hr, M) = (20,8, 5000). We use 4-fold
cross validation to train and test FVS as well as the proposed method.
While running FVS, we set K = 25 as increasing beyond this value
resulted in overfitting the data. SLIC was used to produce super-
pixels with an average size of 250 pixels for the proposed method.
Segmentation results were obtained by aggregating contiguous su-
perpixels having the same label. For all three methods, clumped
cells of the same class were separated using the method described
in [14].

The accuracy of segmentation is measured by comparing with
ground truth. Using magnitude of pixel overlap, each ground truth
cell is associated with at most one cell in the segmentation output. F-
measure (F) is used as a measure of similarity between each ground
truth cell (Sq¢) and its corresponding segmented cell (Sseg).

2[S4eq N St

F= 279 Zat
|Sseg| + |Sgt|

1)

where |-| denotes number of pixels. The area (in pixels) of
each cell in the ground truth is used to weight the corresponding F-
measure in calculation of F-measure statistics. The weighted mean
and standard deviation of the F-measure across all cells is used to
compare the accuracy of segmentation results obtained from the
three methods.

Classification accuracy is evaluated at the pixel level. The label
of each superpixel is assigned to all the pixels within it. The re-
sulting pixel-level labeling is compared with ground truth labeling.
Accuracy is calculated as the percentage of pixels that are correctly
classified.

Numerical results comparing the performance of the proposed
approach to related methods are provided in Table 1, along with
average run time for a 1024 x1024 pixel region for each method.
We observe significant improvement over the competing methods in
both segmentation and classification accuracy.

Visual results on some example cells, along with the correspond-
ing F-measure of each segmentation, are presented in Fig. 3. The
proposed approach demonstrates the ability to handle challenging
scenarios such as the presence of “holes” within cells (see Fig. 3
(a)), having large intra-cell variance (see Fig. 3 (b)) and cells hav-
ing low contrast with background and surrounding cells (see Fig. 3
(e)), whereas competing methods are unable to accurately capture
cell boundaries in these cases.
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Fig. 3: (Best in color) Examples of segmentation results showing challenging as well as easy cases. Each column (a) - (g) shows results on a specific cell. The
first row shows the ground truth segmentation, with the boundary outlined in white. The second, third and fourth rows show results obtained from mean shift
segmentation [S], FVS [6] and the proposed method respectively, along with the F-measure F of the resulting segmentation. (An F-measure of 0 indicates a
missed detection.) To visualize each result, we choose the three channels exhibiting the highest contrast between the given cell and background.

4. CONCLUSION

This paper presents a novel probabilistic algorithm for simultane-
ous segmentation and classification of cells in multi-marker images.
Costs associated with neighborhood label coherence and local class
membership probabilities are embedded in a 2D HMM framework.
The T-HMM approximation is used to learn parameters of the HMM
and to infer the optimal solution. We provide experimental valida-
tion on cellular microscopy data. The proposed method overcomes
some of the main pitfalls of segmentation of such challenging data.
As a result, we observe in significant gains over competing methods
in terms of both segmentation performance and classification accu-
racy.
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