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ABSTRACT

Automated segmentation of electron microcope (EM) images is a
challenging problem, but the presence of related images of a dif-
ferent modality can be a valuable resource. This paper describes a
method to effectively utilize complementary information, if avail-
able, in EM segmentation. Images of both modalities are overseg-
mented into superpixels. A 2D hidden Markov model (HMM) is
set up on the superpixel graph to determine the optimal superpixel
mapping between images. This mapping is used to transfer labels
and generate preliminary segmentations in the EM domain, whose
boundaries are then refined, to eliminate imprecisions due to the su-
perpixel grid, using a 1D HMM based contour refinement method.
The performance of the proposed approach is demonstrated on a
challenging dataset, and significant improvement is observed over
related techniques.

Index Terms— Segmentation, Multimodal, Electron Microscopy

1. INTRODUCTION

Connectomics [1] is a sub-field of bioinformatics which aims at com-
prehensively mapping neural connections at various scales. Ana-
lyzing this map of connections is essential in understanding the the
architecture and dynamics of the nervous system. To assist in the
understanding and interpretation of connectomes, tissues are often
imaged with two or different modalities, resulting in complemen-
tary types of information (eg., structural and functional). The task of
building the underlying network of connections from this image data
relies on accurate segmentation of electron microscopy images. In
this paper, we consider the problem of segmentation of EM images
by transferring learned segmentations from a complementary source
of information.

We test our algorithm on the RC1 connectome [2], an open ac-
cess volume obtained from a 0.25 mm diameter column of the inner
plexiform layer (IPL) of rabbit retina. The entire volume consists
of 370 layers of image data, each one corresponding to a physical
slice. Each slice is imaged either using Computational Molecular
Phenotyping (CMP), a form of multi-marker light microscopy, or au-
tomated transmission electron microscopy (ATEM). The “capstone”
region in the initial layers of this dataset consists of 6 CMP layers
(each probed using a unique marker) followed an ATEM layer. Seg-
mentation of cells in the ATEM images in RC1 is particularly diffi-
cult, due to considerable variation in appearance of cells, cluttered
background, and, in some cases, low contrast between cell interiors
and boundaries. On the other hand, cells in the CMP image can be
segmented and classified by performing multivariate analysis on 6
layers taken together [3]. This observation led us to explore meth-
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Fig. 1: An example of a region in an ATEM image. We observe considerable
variation in appearance within and across cells, low contrast between cells
and cell boundaries and background clutter.

ods that utilize the information, available from the CMP modality, to
achieve reliable EM segmentation.

1.1. Related work

In the recent past, there has been considerable interest in develop-
ing reliable segmentation algorithms for electron microscope (EM)
images [4, 5, 6, 7, 8, 9]. In [4], membrane detection is performed us-
ing a random forest classifier followed by gap completion. A neural
network approach to predict membranes is described in [6]. In [5]
and [7], the authors use support vector machines (SVMs) to learn
shape-based and context-based features respectively, which are used
to segment mitochondria in EM images. Recently introduced meth-
ods have used hierarchical clustering with active learning [8] and
merge trees [9] to perform EM segmentation. However, most ex-
isting EM segmentation algorithms are unable to reliably segment
ATEM images from RC1 due to the variation in cell appearance
through the image and lack of a clearly defined membrane in some
cells. Further, due to background clutter and variation of cell char-
acteristics through the image, traditional region-based segmentation
approaches such as graph cuts [10, 11, 12] require careful initializa-
tion on each cell to perform well on such data.

Since the CMP data is available as an additional source of infor-
mation, an alternative approach is to apply multimodal registration
to deform CMP segments to the ATEM. There are many recent meth-
ods that aim at solving the multimodal alignment problem. In [13],
the deformation is pursued using a Markov random field with a mu-
tual information (MI) based matching criterion. The method in [14]
maximizes multivariate α-MI between the two images to perform
registration. In [15] and [16], the deformation is found by matching
modality independent descriptors across images. Modality-specific
parameters are learned and embedded in a probabilistic graphical
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model in the multimodal fusion technique proposed in [17]. The
drawback of using such methods is that they attempt to optimize a
criterion that measures the quality of the mapping itself, which may
be mismatched with out ultimate objective of optimal EM segmen-
tation.

In this paper, we propose a multi-stage technique for segmenta-
tion of EM images. Information from automatically labeled and seg-
mented CMP images is transferred to corresponding ATEM images
by finding the optimal mapping between the two images. The initial
contours obtained in the ATEM image as a result of this mapping are
then further processed to get improved segmentation. The described
system has the added advantage of transferring cell type information
(which is difficult to determine using ATEM images alone) to each
segment. While the discussions in this paper are in the context of
the two modalities of the RC1 connectome, the described method is
fairly general and may be easily adapted and applied in other multi-
modal settings.

2. BACKGROUND: HIDDEN MARKOV MODELS

Conventional (1D) hidden Markov models [18] have been widely
and succesfully used in diverse domains. A major reason for their
popularity is that optimal and computationally efficient techniques
exist for parameter estimation and inference of state sequences in
HMMs. The direct extension of these algorithms to 2D results in ex-
ponential growth in complexity and is usually intractable in practical
applications. In our work, we use the “turbo-HMM” (T-HMM) [19],
a reduced complexity variant of the 2D HMM which has been shown
to perform well in optimization. In this framework, each row and
column is a separately decoded 1D HMM. Rows and columns “com-
municate” by inducing priors on each other, and typically reach a
high level of agreement within a few iterations.

Both 1D and 2D HMMs are used for optimization in the pro-
posed approach, and are applied at different stages in the segmenta-
tion process.

3. PROPOSED METHOD

The proposed method aims at segmenting cells in ATEM images
by leveraging information transferred from CMP to ATEM. We use
a multi-stage technique to perform segmentation. The first step in-
volves segmenting and labeling cells in CMP using a superpixel grid.
Supersegmentation is then applied to the ATEM image, and a 2D
HMM is used to find the optimal mapping between the two images.
The cell segmentations are then transferred from CMP to ATEM,
and an HMM-based contour refinement method is used to further
improve the quality of segmentation.

3.1. CMP Segmentation

Segmentation and labeling of the CMP images, a prerequisite for the
mapping step, is done using the probabilistic framework described
in [3]. For N cell types, we consider an M = (N + 1) class la-
beling problem, where the additional “non-cell” class provides for
background points in the image which lie between cells. The input
images are oversegmented via the SLIC [20] algorithm, using the
implementation provided in [21] with a spatial regularization of 1.
This results in a regular lattice of superpixels with high boundary
recall. Labeling of each superpixel and cell segmentation are per-
formed using a graphical model. This result is used in subsequent
steps in out method.

CMP ATEM

Fig. 2: Mapping a label from a SLIC superpixel in CMP to a SLIC superpixel
in ATEM, using a mapping ∆

3.2. Multimodal Segmentation Transfer

Cell segmentations from the CMP image are transferred to the
ATEM image using a 2D HMM framework built on a superpixel
lattice. Using superpixels rather than a sliding window results in a
reduced run time, while at the same time operating on a meaningful
neighborhood of similar pixels. We oversegment the ATEM image
using SLIC superpixels, in a similar setting to that used for CMP
oversegmentation.

We construct a 2D HMM over a first order Markov mesh random
field of sizeX×Y , whereX and Y are, respectively, the number of
superpixels per row and column in the CMP image. Each superpixel
in the CMP image corresponds to a node at a location (x, y) in the
2D HMM, and is denoted by Cx,y . The label of Cx,y is denoted by
ωx,y . Similarly, Ax,y denotes a superpixel at a location (x, y) in the
ATEM superpixel lattice.

Each state q of the 2D HMM corresponds to a unique map-
ping ∆ from a superpixel Cx,y in CMP to Ax+∆x,y+∆y in ATEM.
Our aim is to find the optimal state sequence, Q∗ = {q∗x,y, x =
1, 2, . . . X, y = 1, 2, . . . Y }, which describes a deformation of the
superpixel lattice. A pixel-level deformation is estimated by inter-
polating the superpixel-level result. This deformation is used to map
labels from superpixels in CMP to superpixels in ATEM.

3.2.1. Data Matching Costs

The cost of matching a superpixel from the CMP image to a super-
pixel from the ATEM is captured by the emission probabilities of the
2D HMM. The emission probability b∆x,y represents the probability
of matching Cx,y to Ax+∆x,y+∆y (see Fig. 2).

b∆x,y = P (Ax+∆x,y+∆y |Cx,y) (1)

We extract two features from every superpixel Ax,y in the ATEM
image, the average and median intensity in the superpixel, and com-
bine them into a single feature vector fx,y . Given the label ωx,y from
Cx,y , emission probability can be rewritten as

b∆x,y = P (fx+∆x,y+∆y |ωx,y) (2)

We model P (fx+∆x,y+∆y |ωm) for the class ωm with a mixture of
K Gaussians.

P (fx+∆x,y+∆y |ωx,y) =

K∑
k=1

wkmP (fx+∆x,y+∆y |ω
k
x,y) (3)

where the set of mixture component weights for each class must sat-

isfy
K∑
k=1

wkm = 1 ∀m ∈ {1, 2, . . .M}. Each individual component
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density is a Gaussian of dimension 2.

P (fx+∆x,y+∆y |ω
k
m) =

exp{− 1
2
(fx+∆x,y+∆y − µkm)

T
Σk
m
−1

(fx+∆x,y+∆y − µkm)}

(2π)|Σk
m|

1
2

(4)

where µkm and Σk
m are the mean and covariance, respectively.

3.2.2. Neighborhood Consistency

Consistency between translations of neighboring superpixels is en-
sured by the transition probabilities of the 2D HMM. In a first order
2D HMM, the state of a node depends on the state of its immediate
neighbors. In our experiments, we define a spatially varying transi-
tion probability matrix which depends on the centroids of superpix-
els in both images.

A state corresponding to a mapping ∆ maps the superpixel Cx,y

in CMP to Ax+∆x,y+∆y in ATEM. Let D∆
x,y be a 2D vector repre-

senting the distance between the centroids of superpixels Cx,y and
Ax+∆x,y+∆y . Each element of the horizontal transition probability
matrix, aH∆′,∆(x, y), represents the probability of moving from state
∆ at a location (x− 1, y) to the state ∆′ at (x, y) in the 2D HMM,
and is modeled by a Gaussian given by

aH∆′,∆(x, y) ∝ exp

{
−1

2

(
‖D∆′

x,y −D∆
x−1,y‖2

σ2

)}
(5)

where ‖·‖ denotes Euclidean distance. This model ensures
smoothness in the resulting deformation by encouraging neighbor-
ing superpixels to take similar translations. The T-HMM framework
allows for different translation probability matrices to be used for
horizontal and vertical component HMMs. However, since cellu-
lar microscopy images do not typically exhibit different behavior
in different directions, we assume a similar model for the vertical
transition probability matrix.

3.2.3. Parameter Estimation and Inference

The parameters of the 2D HMM are learned using Baum-Welch
training [22], which is an efficient implementation of maximum like-
lihood estimation. The optimal state sequence is inferred using the
Viterbi decoding algorithm with modified forward-backward itera-
tions, as described in [23].

3.3. Contour Refinement

We apply a basic version of the tracking algorithm from [24] to re-
fine the obtained segmentation. Each segmented cell is taken indi-
vidually, and an initial contour is set up on perimeter of the cell.
Nodes for the HMM are initialized by sampling points at constant
spacing along this contour, resulting in Nφ total nodes. A normal
line is constructed at each node, andNψ equally spaced points (each
corresponding to a state) are placed symmetrically along the normal
(see Fig.3(a)), resulting in a deformable trellis. A given sequence of
states, Q = {qφ, φ = 1, 2, . . . Nφ}, corresponds to a path through
the trellis, which forms a contour (see Fig.3(b)). Our aim is to esti-
mate the optimal cell boundary by deforming the initial contour.

(a) (b)

Fig. 3: (Best in color) (a) Construction of a deformable trellis around the
initial contour. The black curve is the initial contour, the dashed lines are the
constructed normals, and each black dot corresponds to a state. (b) An exam-
ple of an estimated contour (in red) obtained by joining a given sequence of
states (red dots).

3.3.1. Emission Probability

The emission probabilities of the HMM represent the cost of the
contour passing through a given point on the trellis. We extract three
features to measure the emission probability bψφ for a state ψ at a
location φ on the contour - one region-based feature which captures
local object characteristics around the point of interest and two edge
features which involve the first and second order average gradients
along the normal line. The three features are concatenated into a
single feature vector fψφ , and the emission probability is modeled
with a 3-dimensional Gaussian with mean µc and variance Σc.

bψφ =
exp{− 1

2
(fψφ − µc)

T
Σc
−1(fψφ − µc)}

(2π)
3
2 |Σc|

1
2

(6)

3.3.2. Transition Probability

The transition probabilities of the HMM ensure smoothness in the
estimated contour, and are modeled with a tilted Gibbs distribution.
Each element of the transition probability matrix, aψ′,ψ , is the prob-
ability of moving to state ψ′ from state ψ, and is given by

aψ′,ψ ∝ exp

{
− (ψ − ψ′)2

2θ2
1

}
· exp

{
− (ψ′ − ψ0)2

2θ2
2

}
(7)

where ψ0 is the middle state, which corresponds to the initial con-
tour. The term containing θ1 ensures consistency between consecu-
tive points on the contour, whereas the term containing θ2 penalizes
large deviations from the initial contour.

3.3.3. Parameter Estimation and Inference

The emission parameters for the HMM used for contour refinement
are learned using a support vector machine (SVM) [25] on labeled
training data. Transition parameters are trained using maximum like-
lihood (Baum-Welch) on the training dataset. The optimal sequence
is inferred using the Viterbi algorithm, and the resulting contour
forms the refined segmentation boundary of the cell.

4. EXPERIMENTAL VALIDATION

We test the performance of several methods on images obtained from
the RC1 connectome [2]. The capstone section consists of 6 chan-
nels of CMP data and a single channel of ATEM data and contains
a total of 581 cells of 7 major types. The data is divided into train-
ing (90%) and testing (10%) portions. The test portion of the data
consists of 85 total cells. To evaluate the accuracy of segmentation

105



(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 4: (Best in color) Visual results of cell segmentation in a challenging scenario. (a) Region of interest in the ATEM image (b) Ground truth of the cell
overlaid in red (c-i) Image with overlaid segmentation results from (c) the membrane detection method in [4] (d) DROP (e) α-MI (f) MIND (g) SSC (h) Graph
cuts (i) the multimodal fusion method from [17] (j) the proposed approach

of each method, we compare the result with manually guided ex-
pert annotated ground truth. Segmented cells are optimally matched
with ground truth cells using magnitude of overlap. The F-measure
F is used as a measure of similarity between each ground truth cell
(SGT ) and its corresponding segmentation (SSEG).

F =
2 · PR ·RC
PR+RC

(8)

where the precision PR is given by PR = |SGT ∩ SSEG|
|SSEG|

and recall

RC is given by RC = |SGT ∩ SSEG|
|SGT |

. The operator |·| denotes
number of pixels. The area (in pixels) of each ground truth cell is
used as weight in the calculation of F-measure statistics.

We compare the performance of the proposed approach with
related approaches that fall in two categories, direct segmentation
methods and segmentation transfer via multimodal registration. The
methods are listed below along with their respective optimal setting
(each empirically found).

Direct ATEM Segmentation Methods: (i) Membrane detection
using random forest classification followed by gap completion [4]
with manually selected cells (since only contours are detected) (ii)
Graph cut segmentation [10] in a multiple object setting, with pa-
rameters learned via manual seeding of a small subset of cells.

Label transfer-based Methods: (i) Graph cut segmentation [10],
seeded with the results of CMP segmentation (ii) DROP [13], with
λ = 0.1 (iii) α-MI-based registration [14], with α = 0.99 and k = 7
(iv) MIND [15], with α = 0.1 (v) SSC [16], with α = 0.1 (vi)
Our recent approach for multimodal fusion [17] (vii) the proposed
method.

A comparison of quantitative results is provided in Table 1. We
see that the proposed approach shows considerable improvement
over competing methods in terms of segmentation accuracy. Visual
results for a challenging scenario (touching cells without a well-
defined membrane separating them) are shown in Fig. 4. We ob-
serve that direct EM segmentation methods are unable to separate
the cell of interest from the visually similar adjoining cell, while
registration-based methods utilize the label information from CMP
to mitigate this problem. The additional contour refinement step of
the proposed method results in further improved cell segmentation.

Method Mean Std Dev

Membrane detection [4] 0.7016 0.2732

Graph Cuts [10] (automatic) 0.6765 0.2889

DROP [13] 0.7412 0.1674

α-MI [14] 0.7288 0.1620

MIND [15] 0.7537 0.1688

SSC [16] 0.7523 0.1696

Graph Cuts [10] (seeded from CMP) 0.7808 0.2014

Multimodal fusion [17] 0.7978 0.1480

Proposed method 0.8651 0.1287

Table 1: F-measure statistics of segmentation results from various methods.

5. CONCLUSION

This paper presents a novel approach to segment objects in a mul-
timodal setting, where information from a supplementary source is
used to facilitate the segmentation of a challenging dataset. The la-
bels from segmented cells in light microscopy images are transferred
to electron micrographs using a 2D HMM-based mechanism built
over a superpixel lattice. The obtained cell segmentations are refined
using a HMM-based contour refinement technique. Experimental
results show the capability of the proposed approach to effectively
segment cells in ATEM images.

6. REFERENCES

[1] T.E.J. Behrens and O. Sporns, “Human connectomics,” Cur-
rent opinion in neurobiology, vol. 22, no. 1, pp. 144–153, 2012.

[2] J.R. Anderson, B.W. Jones, C.B. Watt, M.V. Shaw, J.-H. Yang,
D. DeMill, J.S. Lauritzen, Y. Lin, K.D. Rapp, D. Mastronarde,
et al., “Exploring the retinal connectome,” Molecular vision,
vol. 17, pp. 355, 2011.

[3] R. Shenoy, M.-C. Shih, and K. Rose, “A probabilistic frame-
work for simultaneous segmentation and classification of mul-
tiple cells in multi-marker microscopy systems,” in IEEE In-
ternational Symposium on Biomedical Imaging, 2015.

106



[4] V. Kaynig, T. Fuchs, and J.M. Buhmann, “Neuron geome-
try extraction by perceptual grouping in sstem images,” in
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2010, pp. 2902–2909.

[5] A. Lucchi, K. Smith, R. Achanta, G. Knott, and P. Fua,
“Supervoxel-based segmentation of mitochondria in em im-
age stacks with learned shape features,” IEEE Transactions
on Medical Imaging, vol. 31, no. 2, pp. 474–486, 2012.

[6] D. Ciresan, A. Giusti, L.M. Gambardella, and J. Schmidhuber,
“Deep neural networks segment neuronal membranes in elec-
tron microscopy images,” in Advances in neural information
processing systems, 2012, pp. 2843–2851.

[7] A. Lucchi, C.J. Becker, P. Marquez Neila, and P. Fua, “Exploit-
ing enclosing membranes and contextual cues for mitochondria
segmentation,” in Medical Image Computing and Computer
Assisted Intervention, 2014, number 199450.

[8] J. Nunez-Iglesias, R. Kennedy, T. Parag, J. Shi, and D.B.
Chklovskii, “Machine learning of hierarchical clustering to
segment 2d and 3d images,” PloS one, vol. 8, no. 8, pp. e71715,
2013.

[9] T. Liu, C. Jones, M. Seyedhosseini, and T. Tasdizen, “A modu-
lar hierarchical approach to 3d electron microscopy image seg-
mentation,” Journal of Neuroscience Methods, vol. 226, pp.
88–102, 2014.

[10] Y. Boykov and G. Funka-Lea, “Graph cuts and efficient nd im-
age segmentation,” International journal of computer vision,
vol. 70, no. 2, pp. 109–131, 2006.

[11] Y. Boykov and V. Kolmogorov, “An experimental comparison
of min-cut/max-flow algorithms for energy minimization in vi-
sion,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 26, no. 9, pp. 1124–1137, 2004.

[12] V. Kolmogorov and R. Zabin, “What energy functions can be
minimized via graph cuts?,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 26, no. 2, pp. 147–159,
2004.

[13] B. Glocker, A. Sotiras, N. Komodakis, and N. Paragios, “De-
formable medical image registration: Setting the state of the
art with discrete methods,” Annual review of biomedical engi-
neering, vol. 13, pp. 219–244, 2011.

[14] M. Staring, U.A. van der Heide, S. Klein, M.A. Viergever, and
J. Pluim, “Registration of cervical mri using multifeature mu-
tual information,” IEEE Transactions on Medical Imaging, vol.
28, no. 9, pp. 1412–1421, 2009.

[15] M.P. Heinrich, M. Jenkinson, M. Bhushan, T. Matin, F.V. Glee-
son, Sir M. Brady, and J.A. Schnabel, “Mind: Modality inde-
pendent neighbourhood descriptor for multi-modal deformable
registration,” Medical Image Analysis, vol. 16, no. 7, pp. 1423–
1435, 2012.

[16] M.P. Heinrich, M. Jenkinson, B.W. Papież, M. Brady, and J.A.
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