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Abstract

A global optimization technique is introduced for statistical
classifier design to minimize the probability of classification error.
The method, which is based on ideas from information theory and
analogies to statistical physics, is inherently probabilistic. During
the design phase, data are assigned to classes in probability, with
the probability distributions chosen to maximize entropy subject
to a constraint on the expected classification error. This entropy
maximization problem is seen to be equivalent to a free energy
minimization, motivating a deterministic annealing approach to
minimize the misclassification cost. Our method is applicable to
a variety of classifier structures, including nearest prototype, ra-
dial basis function, and multilayer perceptron-based classifiers.
On standard benchmark examples, the method applied to near-
est prototype classifier design achieves performance improvements
over both the learning vector quantizer, as well as over multilayer
perceptron classifiers designed by the standard back-propagation
algorithm. Remarkably substantial performance gains over learn-
ing vector quantization are achieved for complicated mixture ex-
amples where there is significant class overlap.
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1 Introduction

In recent years, the tremendous growth in neural networks research has stim-
ulated renewed interest in statistical classification. Structures such as the
multilayer perceptron (MLP) have the capability of implementing complex
decision boundaries, and have been demonstrated to perform well in com-
parison with conventional classifiers, both for engineering applications such
as speech recognition [8], as well as in the context of scientific inquiry [14].
However, several researchers have observed that MLPs and other structures
trained to minimize the distance to output classification levels ({0, 1} for
the two-class case) do not directly minimize the classification error rate. In-
stead, these networks approximate the Bayes-optimal discriminant function,
or equivalently the a posterior: probabilities that observations belong to a
given class, e.g. [13]. (Similar observations have been made for linear classi-
fiers [2]). Clearly, very large networks may be able, in principle, to accurately
implement the Bayes rule, and thus provide minimum classification error.
However, practical classifiers have restricted size to avoid high complexity
and overfitting of limited training data. Thus, in practice, approximating the
optimal discriminant function may result in significantly greater classification
error than alternative solutions.

Rather than choosing to approximate the discriminant function, a num-
ber of researchers have proposed alternative cost objectives and learning al-
gorithms which better match the goal of minimizing misclassification error
(or minizing risk, if errors are not weighed equally), e.g. [7],[4],[6],[11]. Typ-
ically, these methods descend on an energy surface, using either a batch or
a sequential optimization technique. While these approaches optimize MLPs
and other network models to effectively minimize classification error, a legit-
imate concern is the potential to fall into poor local minimum traps, which
often riddle the energy surface. In fact, the problem of local optima in neural
networks has been acknowledged in a number of papers, e.g. [14]. While
some smart heuristics have been employed for initializing parameters, typi-
cally one is forced to generate solutions based on a large number of random
initializations, and then choose the best result.

We propose a new deterministic learning algorithm for statistical classi-
fier design with a demonstrated potential for avoiding local optima of the
cost. Several deterministic, annealing-based techniques have been proposed
for avoiding nonglobal optima in computer vision [18],[3], combinatorial op-
timization [1], and elsewhere. Our approach is derived based on ideas from
information theory and statistical physics, and builds on the framework of
the deterministic annealing (DA) approach to clustering and related prob-
lems [16][15][17]. DA’s probabilistic framework for clustering was derived by
applying the maximum entropy principle to determine the underlying dis-
tributions. In recent work [9], we have shown that the maximum eniropy
approach unifies a larger class of optimization methods than was originally
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conceived, and moreover, can be used to develop new, effective optimization
methods for a number of challenging problems in source coding and statistics
[12]. The maximum entropy formulation is useful because it precisely charac-
terizes the annealing process in these methods as a gradual lowering of both
the entropy and cost of the system with decreasing “temperature”, where the
temperature parameter is a Lagrange multiplier used to control the level of
average cost.

Here, this DA approach is extended to minimize the cost of misclassifica-
tion. We thus provide an approach for designing statistical classifiers based
on training data which avoids many local minima that trap other known
methods. In the next section, the method 1s derived and interpreted, and
then we present some simulation comparisons with classifiers designed using
conventional techniques. While in the sequel we assume a nearest prototype
classifier structure for concreteness, we emphasize here that our approach is,
in fact, generally applicable to optimize a variety of classification structures,
including MLPs. A more general derivation and vesults for other structures
can be found in [10].

2 Derivation and Algorithm

Let 7 = {(x,¢)} be a training set of NV labelled vectors, where x € R" is a
feature vector and ¢ € 7 is its class label from an index set Z. A classifier
is a mapping C' : R” — T, which assigns a class label in 7 to each vector in
R™. A training pair (x,¢) € 7 1s misclassified if C(x) # c. The performance
measure of the classifier is the probability of error, i.e. the fraction of the
training set that it misclassifies. Our ultimate objective is to design a classifier
to minimize this cost. In this paper, we restrict C to be a nearest prototype
classifier, representable by a set of vectors {x;;} C R", where x;; is the kth
prototype associated with class j € Z. The classifier maps a vector in R" to
the class associated with the nearest prototype, defining a partition of R™ into
regions R; = |JCjr where Cjp = {x € R" : d(x,x;%) < d(x,%x1m) VI, m}.
k

Here, d(-,-) is the “distance measure” used for classification.

Due to the challenging nature of the classifier design problem, we adopt a
DA approach for its solution. Unlike simulated annealing, which implements
a sequence of stochastic “moves” on the cost surface, DA is a determinis-
tic learning algorithm that replaces stochastic operations with expectations
over the distribution. Accordingly, we cast the problem in a probabilistic
framework and consider a “random” classifier characterized by a probabilis-
tic assignment of features to classes. We define the probability of association
between a feature x and subregion Cji, P[x € Cji], as well as the proba-
bility of association with a class region, P[x € R;] = Y. P[x € Cj;]. As

%
our method will optimize over these probabilities in choosing the classifier,
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the distributions must be consistent with the formation of a nearest proto-
type classification rule. This structural restriction may be enforced via a
well-chosen parametrization of the distribution. An appropriate choice is the
Gibbs distribution,

e~ YA(X X k)
P[XECjk]:W’ M
im

which depends on the prototype vectors and on a scale parameter v which
controls the fuzziness of the distribution. As ¥ — oo, the association proba-
bilities revert to hard classifications equivalent to application of the nearest
prototype rule. Note that this choice can be directly obtained using the
principle of maximum entropy, which provides stronger justification for the
resulting optimization method [10]. However, for conciseness we omit this
derivation.

In our approach, we simultaneously control the probability of error and
the randomness of the classifier. We start with a highly random classifier
with a high expected classification error rate and then gradually reduce both
the randomness and the expected probability of error. A natural measure
of randomness is Shannon’s entropy. In fact, Jaynes [5] showed that while
there may be infinitely many distributions which satisfy expected value con-
straints, the least biased distribution is that which maximizes entropy. For
the classification problem, the expected value of interest is the average classi-
fication error < P, >. Thus, the maximum entropy distribution { P[x € Cj;]}
associated with the classification problem is obtained by solving

1
max H = max {—— Plx € R;llog Plx € R; 2
{X;},y {X;k}ﬂ{ N(xCZ)eTZJ: [ ]] & Pl ]]} @

subject to

< P.>= % > D Plxe Rjlp(e, ).

(Xic)eT j

Here the cost of misclassification is p(c,j) = 1 if ¢ # j and 0 otherwise.
Effectively, entropy maximization over the distribution is achieved through
optimization over its parameter set. Solving this problem is equivalent to
solving the unconstrained minimization of the Lagrangian:

min L= min f< P.>—-H, (3)

{Xau} v {Xsrty
where 3 is the Lagrange multiplier used to enforce a constraint on < P, >.
For 8 = 0, the sole objective is entropy maximization, which is achieved by the
uniform distribution, choosing the prototype vectors to be non-distinct. For
B — oo, minimizing L is equivalent to minimizing the probability of error P,
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leading to a non-random (i.e. H — 0) classifier. This solution can be obtained
within our probabilistic framework by choosing all prototype vectors to be
distinct and sending ¥ — oo. Thus, we observe that an annealing approach
is naturally obtained by minimizing the Lagrangian starting from 8 = 0 and
tracking the solution while increasing § towards infinity. In this way, we
obtain a sequence of solutions of decreasing entropy and cost, leading to a
“hard” classifier at the limit. The annealing process can avoid local optima
of the cost, and is motivated by the physical interpretation of the Lagrangian
as a Helmholtz free energy [9]. We can rewrite the Lagrangian explicitly as:

(X,c)eT j

Here, parentheses identify L;;, the contribution to the cost when the feature
x is assigned to class j, and L., the average contribution for this feature. The
necessary conditions for minimizing L at any 3 are :

oL ad(x, x;)

2y .
= %7 L:v' - L j =Y 3
= W > (Lej — La)Plx € Gy i 0, Vi,k (5
J (X,c)eT I
and ol 1
. = N Zij(P[XE Rjlug —vgj) = 0. (6)
7 (X,0)eT

Here v, is the average distance from x to a prototype, i.e. v, =Y. P[x &
F
C;r)d(x,x;1), and vg; is the contribution to this average from the prototypes
of RJ', l.e. Ugj = ZP[X S C]'k]d(x,x]‘k).
k

These conditions can be interpreted, appropriately, within the context of
supervised learning. The condition for a prototype vector suggests moving it
away from (towards) vectors that it “owns” probabilistically through Pfx €
Cj1] and for which the cost Lg; incurred by classifying to region R; is greater
than (less than) the average cost. The optimality condition for the scale
parameter v leads to a similar interpretation. Essentially, v is either increased
to solidify ownership of a point by a region if the cost is small, or is decreased
to weaken ownership of a point if the cost is large. The optimization at each 3
can be implemented by gradient descent or any other function minimization
technique. For 8 — oo, H — 0 and < P, >— P,. At this limit, our method
terminates satisfying the necessary optimality conditions.

62



3 Results

We have performed experimental comparisons of our nearest-prototype method
with the learning vector quantizer (LVQ) [7]. As an example, consider the
two-class data of Figure 4. Each class consists of a Gaussian mixture with
three components. We designed prototype-based classifiers with three pro-
totypes per class, using both the LVQ and DA optimization methods. LVQ
solutions were generated using the public domain LVQ-pak software, running
both an optimized LVQ (OLVQ) learning phase, as well as a fine-tuning phase
with 500,000 iterations. The learning parameter p was set to 0.03. Ten LVQ
solutions were generated based on random initialization and in all cases the
method was unable to discriminate the class 0 “minority” component in the
upper right of Figure 4a (which retains only 5 % of the training set mass).
Apparently, the initialization did not select a prototype from the class 0 mi-
nority component, and LVQ is unable to move class 0 prototypes through the
“wall” of class 1 data which separates them from this component. The best
LVQ solution, which is shown in Figure 4a, achieved P, = 7.7%. Increasing
the number of prototypes, we found that LVQ was only able to discriminate
the minority component when 21 prototypes per class were introduced, and
in this case the method achieved P, = 3.4%. The extremity of this sub-
optimality does suggest that the LVQ-pak initialization could be improved.
For example, if an initialization of prototypes based on Isodata clustering
followed by allocation of prototypes to the majority class of the cluster were
used, much fewer than 42 prototypes (but greater than six) would suffice to
find good solutions. However, this example does demonstrate LVQ’s suscep-
tibility to finding poor solutions. In fact, we also performed gradient descent
on < P, > and found that poor solutions were obtained in this case as well -
excepting omuisicient initialization in the vicinity of the optimal solution, the
best performance obtained for six prototypes was P, = 7.0%. It thus appears
that strict descent methods will fail on this example unless given an excel-
lent nitialization. By contrast, the DA method using only five prototypes
achieved the solution shown in Figure 1b, with P, = 2.7%. Note that the DA
method is independent of the initialization, placing all prototypes together at
the global data centroid (marked by X) at § = 0 so as to maximize entropy.
(Such an initialization is in fact “fatal” for a strict descent-based approach,
as the associated learning rule will not permit a class 0 prototype to pass
through the “wall” of class 1 data.) Then, as § is increased, the prototypes
separate, reducing the entropy as well as < P, >. This example demonstrates
the ability of the method to avoid local optima, since the DA optimization
does succeed in moving a class 0 prototype from X directly through the class
1 data “wall” to correctly classify the minority class 0 component and achieve
what appears to be the optimal piece-wise linear result. (Here, two of the class
0 prototypes are non-distinct, so the solution effectively uses five prototypes.)

In addition to this example, we have tested our approach on the “syn-
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thetic” example from [14], as well as on some other complicated syntheti-
cally generated mixture examples. On the example from [14], our approach
achieved P, = 8.9% on the test set using eight prototypes and P, = 8.6%
using twelve prototypes, in comparison to LVQ’s P, = 9.5% based on twelve
prototypes. For general reference, an MLP with six hidden units achieved
P, = 9.4%. For complicated mixture examples, with possibly twenty or more
overlapping mixture components and multiple classes, we have found our
method to consistently achieve substantial peformance gains over LVQ. As
an example, we generated training data for a four-class problem involving
twenty-four overlapping, non-isotropic mixture components in two dimen-
sions. We designed nearest prototype classifiers with 16 prototypes (four
per class} using both LVQ and DA. The best LVQ solution based on ten
random initializations achieved P, = 31%. By contrast the single DA solu-
tion achieved P, = 23%. This comparison is typical of what we have seen
through extensive experimentation. Similar performance gains are achieved
for higher-dimensional data sets, but we have restriced these examples to two
dimensions for visual illustration. While for certain problems other structures
such as MLPs or RBFs may be inherently superior to the prototype-based
structure discussed here, our results demonstrate the potential of the opti-
mization technique. Moreover, as we describe in [10], our method achieves
similar performance gains in optimizing the RBF and MLP classifier struc-
tures.
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Figure 1: A two-class example, with a 3-component Gaussian mixture in each
class: a) The LVQ solution, using three prototypes per class, with P, = 7.7%.
b) The DA solution, using three prototypes per class, with P, = 2.7%. Note
that since the solution at § = 0 placed all prototypes at the global centroid
(X), the DA optimization has allowed a prototype for class 0 to “pass through
a wall” of class 1 data in order to correctly classify the minority “0” mixture
component.
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