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ABSTRACT

In vector quantization, one approximates an input random
vector, Y, by choosing from a finite set of values known as
the codebook. We consider a more general problem where
one may not have direct access to Y but only to some statis-
tically related random vector X. We observe X and would
like to generate an approximation to Y from a codebook
of candidate vectors. This operation, called generalized vec-
tor quantization (GVQ), is essentially that of quantized esti-
mation. An important special case of GVQ is the problem
of noisy source coding wherein a quantized approximation
of a vector, Y, is obtained from observation of its noise-
corrupted version, X. The optimal GVQ encoder has high
complexity. We overcome the complexity barrier by optimiz-
ing a structurally-constrained encoder. This challenging op-
timization task is solved via a probabilistic approach, based
on deterministic annealing (DA), which overcomes problems
of shallow local minima that trap simpler descent methods.
We demonstrate the successful application of our method to
the coding of noisy sources.

1. GENERALIZED VECTOR QUANTIZATION

Consider the problem of estimating a random vector, Y from
a statistically related vector, X. If the estimate V(X) is con-
strained to take on values from a finite set of N “estimation
vectors”, the mapping from X to Y is called generalized vec-
tor quantization (GVQ). Note that GVQ reduces to ordinary
VQ in the special case where X =Y.

A wide range of applications in source coding can be
formulated as GVQ problems, including: (a) noisy source
coding problems where Y is the signal of interest, but only
a noise-corrupted version, X, is available to the encoder; (b)
complexity-constrained source coding problems wherein Y
has a large dimensionality and must be replaced by lower
dimensional “feature” vectors X that are extracted from Y
prior to quantization.
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Figure 1: Block diagram of a Generalized Vector Quantizer

While a quantized estimator is mandated for data com-
pression problems by the rate constraint, for other estima-
tion problems, quantization may also be usefully employed
to limit complexity and to facilitate implementability of the
estimator, as the optimal estimator may be difficult to evalu-
ate and may require a large complexity of specification. For
N sufficiently large, a quantized estimator will closely ap-
proximate the optimal estimator, while achieving a practical
implementation.

Formulation

We treat the mapping of a feature vector, X, to a finite-
valued estimate of a vector Y as a single operation, called
generalized vector quantization (GVQ). Mathematically, a
generalized vector quantizer V with input dimension k, out-
put dimension m, and size N is a mapping V : R* — (,
where C = {y1,y2, -+, ¥~} C R™ is the codebook with size
|C] = N. The clements of C are the estimation vectors.
We also define the corresponding set of codevector indexes
Z=1{1,2,---,N}. Effectively, the GVQ defines a partition
of the input space, R* into N regions, R; for i € Z. The
partition regions are defined as:

Ri={x¢€ R : V(x)=yi}. (1)

The GVQ performance is measured in terms of the expected
distortion

D = E[d(Y,V(X))], (2
where the distortion measure d(y,¥) is the cost of approxi-
mating y by ¥. In principle, a GVQ is fully characterized by
specifying (a) the feature space partition and (b) the code-
book C. Correspondingly, the GVQ system, as shown in Fig-
ure 1, can be viewed as the composition of two operations, an
encoder, £, which assigns an index 1 € Z to each input vector
x, and a decoder, D, which is a table-lookup operation that
produces the estimation vector, y; corresponding to the in-
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dex generated by the encoder. However, unlike ordinary VQ
where X = Y, in the general case of GVQ, X and Y may
have different dimensionalities and only a partially known
statistical relationship. Consequently, the encoder does not
try to minimize a distortion with respect to X, but instead
functions as a classifier whose performance measure is the
distortion in Y induced by the classification.

The optimal GVQ must satisfy necessary conditions sim-
ilar to those satisfied by optimal VQ.

(a) Encoder:
R, = {x :
x],Vj € I},

(b) Decoder:

i= in {E[d(Y,y)|X € R]}.
y argylgglm{ [d(Y,y)|X € Ri]}

E[d(Y,y:)|X = x] < E[d(Y,y,)|X =

In the case of the squared error distortion measure, these
conditions specialize to :

(a) Encoder:

Ri C {x:|G(x) —yill* < IG(x) - y;II*,Vi € T}.
(b) Decoder:

vi = E[G(X)|X € R:].

where G(x) = E[Y|X = x] is the conditional estimator of Y
given X. For the squared-error distance, optimal GVQ can
be implemented as the cascade of the conditional estimator,
G(x) with the optimal vector quantization of this estimate.
While this result is elegant conceptually and has been sug-
gested by several authors including [2], [3], [4], [5], [6], it
assumes knowledge of the optimal estimator, G, which may
be either unavailable or too complex to represent. More-
over, the optimality of estimation followed by quantization
was only obtained for the special case of squared error dis-
tortion. In the more general case, one must revert to the
encoder-decoder structure of Figure 1, where significant im-
plementation difficulty comes from the complex nature of
the encoder partition cells. Unlike the case of VQ, the GVQ
encoding rule does not enforce a Voronoi partition of the
feature space, but rather allows general, highly complex de-
cision regions which imply concomitant high encoder search
complexity. Evidently, we must limit the complexity of the
encoder to obtain an implementable solution. We do this
by imposing structural constraints on the partition regions.
In practice, the encoder can be implemented by any of the
well-known pattern classifier structures. We propose to use
a multiple-prototype classifier structure which we next de-
scribe.

2. MULTIPLE-PROTOTYPE CLASSIFIER

In a multiple-prototype classifier, each of the N encoder re-
gions, R; “owns” a set of prototypes, X € R* for k =
1,2,...,M;. The input, x is compared to all prototypes using
a distance measure,d.(-), and the class index of the nearest
prototype is selected :

t = arg m]in{mkin[de()(, xjk)]}y (3)

The prototypes define Voronoi (nearest-neighbor) cells C;x
in the input space and provide the support for the encoder

partition. The encoder partition region R; is the union of
M; Voronoi cells:

M;
R; = . (4)
k=1

One may interpret this approach as trying to approximate
the optimal non-convex partition region by a union of Voronoi
cells. We refer to a GVQ system based on such an encoder as
multiple-prototype generalized vector quantizer (MP-GVQ).

By imposing the MP-GVQ structure, we have simplified
the implementation problem, with some loss of optimality.
However, the design is a hard optimization problem. In the
next section, we look into MP-GVQ design and propose the
use of deterministic annealing to overcome the challenging
nature of the optimization problem.

3. MP-GVQ DESIGN

The MP-GVQ design problem is that of jointly optimizing
the prototypes {x;x} and code vectors {y;} to minimize the
MP-GVQ distortion. More precisely, given a training set
T = {(x,y)}, we must find the optimal sets of prototypes
{x;x} and code vectors {y;} to minimize the overall distor-

tion :
> Ay, V), ()

(X.Y)eT

Here, V is the GVQ function, V(x) = y;, where ¢ is the
encoder index satisfying (3).

min
{X; 1Y 5)

It is easy to implement optimality condition (b) and di-
rectly optimize the decoder for a fixed encoder. The main
difficulty lies in optimizing the encoder given a fixed decoder.
There is no direct way to apply the encoder optimality condi-
tion while satisfying the MP-GVQ structural constraint. We
first describe a simple suboptimal design procedure and then
motivate and introduce the deterministic annealing method
for design.

Extended Nonlinear Interpolative VQ (ENLIVQ)

Nonlinear interpolative vector quantization (NLIVQ) was
introduced as a quantized estimation technique in [7] and has
since found several applications in speech and image coding.
In the Extended NLIVQ approach, we generalize these ideas
by allowing multiple prototypes per encoder partition region.
The locations of the prototypes are initially chosen using a
judicious heuristic. This defines Voronoi cells that form the
basis for the encoder partition. Next, an iterative design of
the decoder and the mapping function between the Voronoi
cells and the outputs is carried out. This second step is guar-
anteed to descend in the GVQ cost and forms the encoder
partition regions as unions of the Voromnoi cells. However,
one cannot re-optimize the locations of the prototypes (and
hence the Voronoi cells) once they have been initially cho-
sen. Improved performance can only be obtained by allow-
ing more prototypes, which increases the complexity of the
GVQ and also makes it less robust. Thus, there is strong
motivation to directly attack the ultimate problem of jointly
optimizing the encoder partition and the decoder. In the
next section, we develop a method which not only performs
a joint optimization but also attempts to avoid non-global

2033



optima via a deterministic approximation to an annealing
process.

Deterministic Annealing

We adopt an approach inspired by ideas from informa-
tion theory and statistical physics. This work is based on
the deterministic annealing (DA) approach to VQ design [8]
and extends it for GVQ design. The main extension is in
imposing structural constraints as will be explained below.
This leads to a powerful optimization method which is robust
to local minima. In a related work in pattern recognition,
we have recently applied the structurally constrained DA
approach to the problem of statistical classifier design and
obtained consistent, substantial improvements over standard
methods [9].

We cast the problem within a probabilistic framework,
where we consider a “random” GVQ encoder, character-
ized by a probabilistic assignment of the input data to the
Voronoi cells of the encoder. Accordingly, we define the prob-
abilities of “association” { P[x € Cji]}, where we emphasize
that x is the observable data available to the encoder. The
probabilistic associations of data with the encoder regions
are then {P[x € R;]} = > P[x € Cji). TFurther, we im-

k

pose the structural constraint on the encoder partition by
appropriately choosing a parametrization of the association
probabilities. (A similar “trick” was used earlier in the con-
text of tree-structured clustering [10].) For the problem at
hand, an appropriate choice is the Gibbs distribution

e—‘Yde(xvxjk)
Plx € Cjx] = S e rdeXXim)’ ®
l,m

which is parameterized to enforce the MP-GVQ structure.
This choice can also be shown to follow directly from the
maximum entropy principle. Here, v is a positive “scale”
parameter which controls the fuzziness of the distribution.
For finite values of v, the distribution represents a proba-
bilistic association of an input x with the cells Cji, based
on the distance to the corresponding prototypes. Closer pro-
totypes have higher likelihood of association. For vy — oo,
{P[] — {0,1}}, i.e., the “random” GVQ becomes a deter-
ministic quantizer, using the encoding rule of (3).

The expected distortion of a “random” GVQ based on
the Gibbs encoder above is :

D= 3 Y PlxeR]y.v,) (M

(X,Y)eT

The entropy of this distribution,

H=_ Z ZZ P[x € Cjxllog P[x € Cjx], (8)

(XY)eT 5k

characterizes the degree of randomness of the solution. The
information-theoretic approach suggests that while the final
GVQ solution that we expect is non-random, it is advanta-
geous for avoiding shallow local optima, to impose this deter-
minism gradually. The idea is to control the randomness by
gradually reducing entropy while minimizing the expected
GVQ distortion. Note that the minimization is performed

with respect to the decoder reproductions {y;}, as well as
the distribution parameters v and {X;x}.

Solving the constrained optimization problem is equiv-
alent to solving the unconstrained minimization of the La-
grangian, i.e.

p-1inm, (9)

L= min
X3 },1Y5} B

min
{Xx b7 Y5}

where 3 is the Lagrange multiplier used to enforce the en-
tropy constraint. For # = 0, the sole objective is entropy
maximization, which is achieved by the uniform distribution,
i.e. by choosing the prototype vectors to be non-distinct. For
B — oo, minimizing L is equivalent to minimizing the dis-
tortion, leading to a non-random (i.e. H — 0) generalized
vector quantizer. This solution is obtained within our prob-
abilistic framework by choosing all prototype vectors to be
distinct and sending ¥ — oco. Further, the Lagrangian de-
scribed in (9) is analogous to the Helmholtz free energy of
a physical system in thermal equilibrium. For such a sys-
tem, D represents the energy and H the macroscopic en-
tropy of the system in thermal equilibrium at temperature
%. This analogy and the other observations made about the
cost function motivate us to use an annealing approach to
minimize the Lagrangian, L, starting from § = 0 and track-
ing the solution while increasing § towards infinity. In this
way, we obtain a sequence of solutions of decreasing entropy
and distortion, leading to a “hard” MP-GVQ in the limit.
The annealing process can help to avoid local optima of the
cost.

4. GVQ DESIGN FOR NOISY SOURCES

The objective of the noisy source coding problem is to design
a quantizer for a random vector Y, given a noise-corrupted
form of the vector, X. Ephraim and Gray have proposed a
“modified distortion measure” approach, using the fact that
(for certain distortion measures) the optimal noisy source
quantizer can be implemented by cascading the optimal es-
timator, G(X), with the optimal quantizer for the estimator
[2]. However, their approach assumes that the optimal es-
timator is a simple, known function. In our approach, we
do not assume knowledge of the optimal estimator since the
function may be unknown or may be too complex for direct
modeling. Instead, we design a noisy source coder given only
the knowledge embodied in a training set of (x4,y¢) pairs.
One could use the entire training set as a look-up table to
approximate the optimal estimator. However, such an esti-
mate would have unmanageable complexity, and would likely
not generalize well outside the training set. This motivated
us to use a lower complexity MP-GVQ solution designed via
the DA method. As will be demonstrated, our approach has
the added advantage of robustness.

We experimented with two different noisy sources. It is
important to note that, although we specify how the sources
were generated, this information was not made available to
the GVQ design method. In the first example we chose a
first-order Gauss-Markov source as the clean signal, and cor-
rupted it by additive Laplacian noise with the same variance.
In the second example, we chose the same Gauss-Markov
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source as the clean signal, but corrupted it with a multiplica-
tive noise process. In this case, the noisy source is given by
the equation

(10)

where both w(n) and v(n) are Gaussian noise processes with
zero mean and unity variance. In both examples, y(n) and
z(n) were grouped into non-overlapping four-dimensional vec-
tors to form the training set. For each example, we used
the DA method to generate two GVQ solutions, one with
a decoder codebook of size N=16 and the other with size
N=64. The training set (TRS) consisted of 5000 vectors.
The performance of the GVQ was also tested on a test set
(TSS) of 50000 vectors not used during the design process.
A low-complexity, single prototype per decoder reproduction
was used for all the DA solutions. The solutions were com-
pared with MP-GVQs designed using the ENLIVQ method
described earlier, wherein a larger number of prototypes were
allowed per reproduction.

Our results in Table 1 and Table 2 show that the EN-
LIVQ method required a significant increase in encoder com-
plexity to achieve the same training set performance as the
MP-GVQs designed via the DA approach. Moreover, on the
test set, the ENLIVQ solutions, using a significantly larger
number of prototypes, did not perform as well as DA so-
lutions that used substantially fewer prototypes. In fact,
the performance dropped with increasing complexity, as one
would expect. In the limiting case where the entire training
set was used as a look-up table encoder, there was a dra-
matic difference between training and test set performance,
and the test set performance was particularly poor.

y(n) = [1 + ew(n)]z(n) + v(n),

5. CONCLUSIONS

In conclusion, the GVQ method that we have suggested
achieved considerable improvements over existing methods
for the compression of noisy sources. The method holds par-
ticular promise for the compression of noisy images.
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Method DA ENLIVQ
M 16 16 32 64 96 112
SNR(TRS) [ 499 [ 440 | 454 | 479 | 4.99 | 5.03
SNR(TSS) | 4.44 | 4.26 | 4.39 | 4.55 | 4.58 | 4.63
(a) N=16
Method | DA ENLIVQ
M 64 64 128 192 | 256 320 384
SNR(TRS) | 6.05 [ 4.99 | 534 | 548 | 5.69 | 5.79 | 6.08
SNR(TSS) | 4.98 | 470 | 4.78 | 4.77 | 4.77 | 4.74 | 4.68
(b) N=64

Table 1: SNR comparisons of the ENLIVQ and DA methods
for a Gauss-Markov source corrupted by Laplacian noise. N
is the size of the codebook, M is the number of prototypes
used, TRS represents the training set and T'SS represents
the test set.

Method DA ENLIVQ
M 16 16 32 64 128 256 5000
SNR(TRS) | 8.07 [ 7.38 [ 7.18 [ 7.32 | 7.44 | 7.72 | 10.17
SNR(TSS) | 7.78 | 7.45 [ 7.22 | 7.28 | 7.36 | 7.53 6.39
(a) N=16
Method DA ENLIVQ
M 64 64 128 256 512 768 960
SNR(TRS) | 5.82 | 8.37 | 8.39 | 8.59 | 8.82 | 9.06 | 6.2
SNR(TSS) 8.21 | 8.15 | 8.17 | 8.19 | 8.19 | 8.13 | 8.06
(b) N=64

Table 2: SNR comparisons of the ENLIVQ and DA methods
for a Gauss-Markov source corrupted by maltiplicative noise.
N is the size of the codebook, M is the number of prototypes
used, TRS represents the training set and T'SS represents
the test set.
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