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Abstract— A global optimization method is introduced for the
design of statistical classifiers that minimize the rate of misclas-
sification. We first derive the theoretical basis for the method,
on which . we base the development of a novel design algorithm
and demonstrate its effectiveness and superior performance in
the design of practical classifiers for some of the most popular
structures currently in use. The method, grounded in ideas from
statistical physics and information theory, extends the determin-
istic annealing approach for optimization, both te incorporate
structural constraints on data assignments to classes and to
minimize the probability of error as the cost objective. During
the design, data are assigned to classes in probability so as to
minimize the expected classification error given a specified level of
randomness, as measured by Shannon’s entropy. The constrained
optimization is equivalent to a free-energy minimization, motivat-
ing a deterministic annealing approach in which the entropy and

expected misclassification cost are reduced with the temperature

while enforcing the classifier’s structure. In the limit, a hard
classifier is obtained. This approach is applicable to a variety of
classifier structures, including the widely used prototype-based,
radial basis function, and multilayer perceptron classifiers. The
method is compared with learning vector guantization, back
propagation (BP), several radial basis function design techniques,
as well as with paradigms for more directly optimizing all
these structures to minimize probability of error. The annealing
method achieves significant performance gains over other design
methods on a number of benchmark examples from the literature,
while often retaining design complexity comparable with or
only moderately greater than that of strict descent methods.
Substantial gains, both inside and outside the training set, are
achieved for complicated examples involving high-dimensional
data and large class overlap.

1. INTRODUCTION

HE problem of designing a statistical classifier to mini-

mize the probability of misclassification or a more general

risk measure has been a topic of continuing interest since
the 1950°s. Much of the early, classical work focused on
linear classifiers [40], [14], [46] and parametric classifiers,
-e.g., [9]. More recently, with the increase in power of serial
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and parallel computing resources, a number of more complex
classifier structures have been proposed, along with associated
learning algorithms to design them. The most prominent
research has focused on several structures: decision trees
[3], [32] and extensions thereof [5], [12]; nearest-prototype
(NP) classifiers with the learning vector quantizer (LVQ)
design [21]; radial basis function (RBF) classifiers [29]; and
multilayer perceptrons (MLP’s) [42]. Several review articles
discuss the tradeoffs in performance, memory, implementation
complexity, and design complexity for the wvarious classifi-
cation schemes as well as recent developments relating to
these approaches [24], [16]. Much attention has focused on
MLP’s, primarily due to the increasing interest in neural
network models and in their applicability for a variety of

“signal processing applications. MLP’s and other neural net-

work models have been investigated as alternatives to more
traditional classifiers for engineering applications such as
speech recognition [23], [13], [1] as well as in the contexts of
statistical and scientific inquiry [35]. MLP’s can form complex
decision boundaries [25], with the associated classification rule
efficiently implementable via parallel processing. While neural
networks offer powerful structures for classification, their
potential cannot be fully realized without effective learning
procedures well-matched to the minimum classification-error
objective.

A. Limitations of Conventional Methods

The standard back propagation (BP) Iearning algorithm for
MLP’s [42] uses as its design objective the minimization of
the distance between the continuous network output and a
target output associated with the discrete class label (which
is binary for the two-class case). Essentially, this approach
views the learning problem for classification as the design
of a regression model to fit to the class targets. Recently,
several researchers have recognized that this objective is not
equivalent to minimizing the probability of misclassification.
Rather, BP learning for MLP’s, as well as corresponding

‘techniques for other classifiers, effectively train the networks

to approximate the Bayes-optimal discriminant function or,
equivalently, to estimate the a posteriori probabilities that
data belong to a given class [34], [41], [52], [9]. While large
networks can in principle provide a close fit to the Bayes
discriminant function, in practice, the network size must be
constrained to avoid high  complexity and the problem of
overfitting the network to the (finite-length) training set. Thus,
networks trained by BP or related learning algorithms might

1053-587X/96$05.00 © 1996 IEEE
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achieve substantially poorer classification performance than
networks trained by alternative methods.

A number of researchers have proposed modified cost
objectives and/or learning algorithms that better match the
goal of minimizing classification error (or minimizing risk,
if errors are not weighed equally) [8], [21], [13], [47], [19],
[49], [31]. Many of these methods implement descent tech-
niques such as gradient descent or related approaches, either
of a sequential or batch nature, on a cost surface that is
a “smoothed” approximation to the misclassification error
cost surface. “Smoothing” the classification cost is necessary
because it is a piecewise constant surface whose zero gradients
are useless for a descent procedure [8], [19], [31]. This basic
design approach has been described as discriminative learn-
ing [19]. Discriminative learning techniques have a potential
advantage over regression-based approaches for classification
(e.g., BP) in the following important sense: The regression
approach weights all errors in the estimates of a posteriori
probabilities equally, whereas implementation of the Bayes

decision rule really only requires accurate estimation of the

largest class a posteriori probabilities. Thus, in the regression
approach, parameters of the model are effectively required
to learn “more” than what is necessary to achieve accurate
. classification, which may limit the performance achievable
given a fixed model size. By contrast, discriminative learning
essentially trains the model parameters solely to move the
resulting classifier decision boundaries to directly reduce the
error rate.

While this general paradigm optimizes MLP’s and other
classifiers to effectively minimize classification error, a serious
concern is the potential to fall into poor local minimum traps,
which often riddle the energy surface. Several researchers have
noted problems of local optima in neural networks [47], [49],
[53], [35], as well as related difficulties in optimizing the full
complement of model parameters (see [48] for a study on

. RBF’s). Moreover, some studies have also reported on the
complex nature of the energy surface, which can cause slow
convergence of descent techniques [15]. Nevertheless, much
of the work in the literature appears to ignore these problems,
and there have been few practical approaches addressing them.
Typically, efforts to avoid poor local optima of the cost have
been limited to the practice of generating numerous solutions
based on random initialization and then choosing the best

result [35]. Since it is not well understood how the number and

quality of local optima may depend on the data distributions,
the network model, and its size, there are no guarantees that
this “sampling” approach to classifier design will yield good
solutions. Moreover, while stochastic optimization approaches
such as simulated annealing (SA) [20] can be applied at least
in principle, the computational complexity of such methods is
often prohibitive.

B. Structurally Constrained Deterministic
Annealing for Classifier Design

As an alternative to strict descent-based procedures, we
propose a new deterministic learning algorithm for statistical
classifier design with a demonstrated potential for avoiding
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local optima of the cost. Several deterministic annealing-based

- techniques have been proposed for avoiding nonglobal optima

in computer vision and image processing [54], [10], [2], in
combinatorial optimization [51], [45], and elsewhere. Our ap-
proach is derived based on ideas from information theory and
statistical physics and builds on the probabilistic framework
of the deterministic annealing (DA) approach to clustering
and related problems [37]-[39]. In the DA approach for data
clustering, the maximum entropy principle [17] was invoked
to obtain the distributions at a given level of expected cost.
In recent work [26], [27], we have extended this formulation
to attack a larger class of optimization problems than was
originally conceived. The new formulation emphasizes the
quantity in statistical physics known as the Helmholtz free
energy [4] as the effective cost function. This formulation
explicitly characterizes the deterministic annealing process
as a gradual reduction in both the entropy. and cost of the

" system with decreasing “temperature,” where the temperature

parameter is a Lagrange multiplier controlling the system’s
cost and entropy. While equivalent to .other formulations of
deterministic annealing, the approach based on the Helmholtz
free energy is found to be especially useful in extending
DA-based optimization techniques to incorporate structural
constraints on data assignments.

It is noted that prior work on deterministic annealing, e.g.,
[38], [54], [44], [10], [2], [51] addressed data association
problems of a combinatorial nature such as data clustering,
graph partitioning, and matching problems for which the cost
can be expressed explicitly through binary (0-1) assignment
variables. In these problems, the “data” of the problem is freely
assigned to “classes” or “groups” via the binary assignment
variables. The novel contribution of this work relative to
prior work on deterministic annealing is its extension of the
annealing framework to incorporate structural constraints on
the assignments of data to classes. By structurally constrained
data assignments, it is meant that the data assignments are
constrained to agree with a parameterized classification rule,
such as that of a nearest prototype classifier, a decision
tree, or a neural network model. Examples of structurally
constrained data association problems include fundamental
statistical learning problems such- as statistical classification,
piecewise regression, and structured (e.g., tree-structured) vec-
tor quantization. . :

Appropriately, the extension of DA methods to incorporate
structure is best seen within the learning context. We note
that recent work has related techniques from statistical physics
to the learning problem via a connection with likelihood
estimation [36], [55], [28]. In [55], it was noted that the
binary assignment variables in the combinatorial optimization
problem can be related to the unknown or “hidden” data
in methods for maximum likelihood estimation such as the
expectation/maximization (EM) algorithm [7]. From this point
of view, the cost associated with the combinatorial optimiza-
tion problem is interpreted as the complete data likelihood
of a corresponding estimation problem. Similar observations
were made for problems specifically involving images, e.g.,
[56]. This connection between statistical physics and statistical
estimation suggested that deterministic annealing could be
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applied to the learning problem when the learning objective

is maximum likelihood estimation (MLE) [55], [28]. MLE

techniques have long been applied to unsupervised learning
[9], and supervised learning problems such as regression

- have also recently been posed as likelihood estimation [18].
However, while likelihood estimation is an important learning
objective, maximizing the model’s likelihood is not equivalent
to optimizing parameters of a classifier to directly minimize
probability of error if the goal is classification nor to choosing
model parameters to directly minimize mean-squared error
if the goal is regression. These are often the desired super-
vised learning objectives. In the classification context, we
have already pointed out the potential advantage of directly
minimizing probability of error, which has been exploited
by discriminative learning techniques. Previous physics-based
approaches do not anneal over models to directly minimize
desired supervised learning objectives such as probability of
error, but-as will be seen in the sequel, the formulation sug-
gested here based on the Helmholtz free energy incorporates
both the model’s structure and its cost directly within the
optimization framework and anneals over the structure to
directly minimize the supervised learning objective. In this
work, we develop a structurally constrained extension of DA,
specialized for the problem of designing statistical classifiers
to minimize probability of error. In addition to its relation
to prior work on deterministic annealing, we will also point
out the connection between our method and discriminative
learning techniques.

Whereas most design methods have been developed for
specific classifier structures, e.g. [21], [29], [42] (an exception
is the approach in [19]), the method we develop can be applied
generally to optimize a variety of structures. In this work, we

~will develop algorithms and demonstrate results for three of
the most widely used structures: nearest-prototype classifiers,
radial basis function classifiers, and multilayer perceptrons.
Our method will be demonstrated to provide substantial per-
formance gains over conventional design techniques for all of
these structures while retaining design complexity in many
cases comparable to the strict descent methods. Our ap-
proach often designs small networks to achieve training set
performance that can only be obtained by a much larger
network- designed in a conventional way. The design of
smaller networks may translate to more robust solutions and
superior performance outside the training set as we will note

- in particular for MLP and RBF networks. We thus provide a
general approach for designing statistical classifiers based on
training data that avoids many local minima that trap other
known methods and achieves classifier designs superior to
those obtained by other methods.

-C. Outline of This Paper

In the next section, we first state the problem, introduce
mathematical notation, and briefly review the commonly used
NP, RBF, and MLP classifier structures. We then develop
our probabilistic framework for optimization, which leads to
a general classifier design method. The formulation is next
specialized for the different structures, yielding separate DA
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learning algorithms for each structure. In Section IIT, we pro-
vide performance comparisons between classifiers designed by
the DA approaches and by conventional techniques, drawing
on several sources of benchmark data from the literature. We
then conclude with some discussion and suggestions for future
work.

II. CLASSIFIER DESIGN FORMULATION

A. Problem Statement

Let 7 = {(x,c)} be a training set of N labeled vectors,
where x € R" is a feature vector, and ¢ € I is its
class label from an index set 7. A classifier is a mapping
C : R™ — I, which assigns a class label in 7 to. each
vector in R™. Typically, the classifier is represented by a
set of model parameters A = {Az}. The classifier specifies
a partitioning of the feature space into regions R; = {x €
R™ : C(x) = j}, where (JR; = R™ and R; = 0. It

J

also induces a corresponding partitioning of thje training set
into subsets 7; = {(x,¢) € 7 : C(x) = j}. A training pair
(x,¢) € T is misclassified if C(x) # c. The performance
measure of primary interest is the empitical error fraction
P, of the classifier, i.e., the fraction of the training set (for
generalization purposes, the fraction of the test set), which is
misclassified

Pezj%f— > p(c,O(x»:jl\;Z S opled) M

(T JE€T (x,00€T;

where p(c,j) = 1 if ¢ # j and 0 otherwise. Our goal is to
optimize statistical classifiers for this performance measure.
Although the approach we will develop addresses a variety
of structures, for concreteness, we will focus on three of
the most commonly used classifiers: the NP, RBF, and MLP
classifiers. We now briefly review these network models and
their associated classification rules.

1) Nearest-Prototype (NP) Classification: The NP classi-
fier structure is shown in Fig. 1. The classifier is specified
by the parameter set A = {x;.}, where x;;, € R™ is the
kth prototype associated with class j € Z. The NP classifier
maps a vector in R™ to the class associated with the nearest
prototype, specifying a partition of R™ into the regions

er = USjk with
k

Sik = {x e R™ rd(x,x;5) < d(x, %1, )Y, m} )

i.e., each region R; is the union of Voronoi cells S;,. Here,
d(-,-) is the “distance measure” used for classification. For
consistency with the neural network models to follow, which
classify based on the largest output of the network (“winner
takes all”), we note trivially that the classification rule can
also be written as ‘

Rj = U S]‘k with
k.
Sik ={x € R": Fj(x) > Fi,(x)Vl,m} 3)

by choosing Fjx(x) = —d(x, %)
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Fig. 1. Prototype-based architecture for classification.
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Fig. 2. RBF architecture for classification.

One weakness of prototype-based classification is the need
to specify the allocation of model parameters (the prototypes)
to the respective classes. Typically, this allocation is heuristic,
leading to a suboptimal distribution of parameters, with some
classes deficient and others maintaining a surplus of proto-
types. The RBF and MLP models we next examine eliminate
this problem, as all parameters (excepting weights to the output
layer) contribute to each class output. :

2) Radial Basis Function (RBF) Classification: The RBF
classifier structure is shown in Fig. 2. The classifier is spgeciﬁed

lx~p

, _ |
by a set of Gaussian receptive field functions {e =+ } and"

by a set of scalar weights {)\;} that connect each of the
receptive fields to the class outputs of the network. Thus,
A= {{ur}, {ox2}, {\k;}}. The parameter py, is the “center”
vector for the receptive field, and o2 is its “width.” In the
“normalized” representation for RBF’s [29], which we will
adopt here, the network output for each class is written in

the form
Fj(x) =) Aejdn(x) O]
: k
where
_lxopgl?
e
¢i(x) = g2 )
et .

l

Since ¢ (+) can be viewed as a probability mass function, each
network output is effectively an average of weights emanating
from each of the receptive fields. The classifier maps the vector
x to the class with the largest output

R; = {x € R": Fj(x) > Fi.(x)Vk € T}. (6)
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Fig. 3.

- 3) Multilayer Perceptron (MLP) Classification: The MLP
classifier structure is shown in Fig. 3. We restrict ourselves to
the MLP structure with a binary output unit per class.! The
classification rule for MLP’s is the same as that for RBF’s (6),
but the output functions {F;(-)} are parametrized differently.

The input x passes through K layers with M} neurons in
layer k. We define uy; to be the output of hidden unit 7 in layer
k, with the convention that layer 0 is the input layer ug; = z;
and layer K is the output layer ug; = F;(x). To avoid special
notation for thresholds, we define the augmented output vector
of layer k as @1y = [ugitss ... ugar, 1]7. This is a standard
notation allowing us to replace thresholds by synaptic weights
that multiply a fixed input value of unity. The weight matrix
W, connects the augmented outputs of layer £ — 1 and the
neurons of layer k. The activation function of the kth layer
is the vector valued function f, : R — RMetldefined

as fu(v) = [fe(v1) fr(v2)... fu(var, )1]%, where fi(-) is the .

scalar activation function used by all neurons in the kth layer.
In our experiments, we used the logistic activation function
(fe(v) = ﬁij) for the hidden layers £ =1,..., K — 1, and
the linear activation function (fx (v) = v) for the output layer.
The activity level at the input of the kth layer is given by

v = Wil @)

Thus, the network’s operation can be described by the follow-
ing recursion formula:

G = B (vi) = £ (Witle-1) k= 1,2,... K. (8)

B. Approach to Classifier Design

Although we have described three distinct classifier struc-
tures, the operation of each is consistent with that of a general
network model: Given a feature x, the network produces com-
peting class outputs { F};(x)}, and then, classification decisions
are made based on the largest, “winning” output. Note that this
model is identical to the standard (or canonical) representation
of classifiers via maximization over a set of discriminant func-
tions [9], where the discriminant functions are given here by

INote that other architectures for classification are also possible, e.g., MLP
or RBF architectures with a binary output code, wherein the number of output
units is logarithmically related to the number of classes. For this classifier

model, individual binary classification decisions are made for each output
unit, and the resulting bits specify the class.
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MLP architecture for classification.

F;(x). Any (hard) classifier can be represented by this model,
albeit possibly with complicated discriminant functions. We
now use this convenient representation to develop a general
optimization approach for statistical classifier design.

1) Maximum Entropy and Equivalent Principles: Our
probabilistic design approach can be motivated by several
different points of view, which are practically equivalent
(since they lead to the same optimization method) but which
are - philosophically distinct. One perspective is that of the
maximum entropy principle. According to [17], the least
biased distribution is that which maximizes entropy subject to
constraints which incorporate what is known about a system.
Often, the constraints are expectation constraints, specifying
quantities such as “energy,” using the physical analogy. In
the context of the optimization problem, constraints on en-
tropy maximization can be used to introduce the expected
cost. The maximum entropy principle was used to develop
a DA method for clustering [37] and related optimization
problems [38], [39]. However, this principle is not universally
accepted.” An equivalent, alternative approach that may at
least have more intuitive appeal for optimization is to find
the distribution that minimizes the expected cost given a
constrained level of randomness in the solution. A natural,
information-theoretic measure of randomness or uncertainty

-is the Shannon entropy. Thus, we can state the problem of

finding the best distribution in the sense of minimum expected

“cost given a constrained level of entropy. The equivalence

between these two methods—i) maximizing entropy given a
constraint on expected cost and ii} minimizing expected cost
given constrained entropy—is easily seen through the (uncon-
strained) Lagrangian cost objective, which both approaches
share. In the derivation that follows, the minimum expected
cost formulation is chosen. Both methods can be connected
with statistical physics by noting that the Lagrangian cost
objective can be interpreted as the Helmholtz free energy [4]
of a simulated system. From this perspective, the expected
cost is the “energy” of the system and the Lagrange multiplier
is the “temperatare.” This connection with statistical physics
will be made more concrete in the sequel.

2The maximum entropy principle was given an axiomatic basis in [43] and
was shown to be a consequence of conditional probability theory in [50] and

[6].
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2) Randomized Classifier Partition: Whereas  statistical
classifiers that minimize probability of error almost invari-
ably implement a deterministic function, producing “hard”
classification decisions®, it may still be useful in the context
of the classifier design to allow points to be assigned to
classes in probability. As in the original DA approach for
data clustering [37], we cast the optimization problem in
such a  probabilistic framework, considering a “random”
classifier characterized by a probabilistic assignment of data to
classes. Accordingly, we define the probabilities of association
between a feature x and the class regions, i.e.,{ P[x € R;]}. As
our design method, which optimizes over these probabilities,
must ultimately form a classifier that makes “hard” decisions
based on a specified network model, the distributions must be
_chosen to be consistent with the decision rule of the model.
In other words, we need to introduce randomness into the
classifier’s partition. Clearly, there are many ways one could
define probability distributions that are consistent with the
hard partition at some limit. We use an information-theoretic
approach. We measure the randomness or uncertainty by the
Shannon entropy and determine the distribution for a given
level of entropy. At the limit of zero ‘entropy, we should
recover a hard partition. For now, suppose that the values of
the model parameters A = {A;} have been fixed. We can then
write an objective function whose maximization determines
the hard partition for a given A:

= ]_{]—Z Y. Eix. ©9)
J€T (x,c)€T;

Note that the winner-take-all rule (6) is optimal in the sense
of Fj,. Specifically, maximizing (9) over all possible partitions
captures the decision rule of (6). The probabilistic generaliza-

tion of (9) is
Z ZPxeR

(x c)eT j

3(x) (10)

where the partition is now represented by association proba-
“bilities, and the corresponding entropy is

H~—— D ZPXGR]IogP[xeR]
(xc)ET J

an

It is emphasized that H measures the average level of un-
certainty in the classification decisions. We determine our
" assignment distribution at a given level of randomness as the
one that maximizes ¥ while mamtamlng H at the prescribed
level H:

max (12)

F subject to H = ﬁ.
{P[xeR;]} T

The result is the best probabilistic partition in the sense of the
structural objective F at the specified level of randomness. For
H = 0, we get back the hard partition, maximizing (9) and

3We note that fuzzy or multivalued decisions may sometimes be useful
when there is uncertainty in the class labels' or when the data is not
well-represented by “crisp” categories or classes [22]. Otherwise, however,
classifier systems designed to minimize probability of error may introduce
fuzziness at intermediate stages of the data processing but ultimately make
hard decisions.
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thus satisfying the winner-take-all classifier structure. At any
H, the solution of (12) is the Gibbs distribution

e’ij (x)

PxeRj]= e = (13)
e’YFk(x)
;

where v is the Lagrange multiplier controlling the level of
entropy. For v+ — 0, the associations become increasingly
uniform, whereas for v — .00, they revert to hard classi-
fications, which are equivalent to application of the rule in
(6). Thus, (13) is a probabilistic generalization of the winner-
take-all classifier that satisfies its structural constraint, which
is specified by (6), for the choice v — oo. Note that the
probabilities depend on A through the network outputs. Here,
we - have emphasized this dependence through our choice
of concise notation. Equation (13) applies as is for MLP’s
and RBF’s. However, for prototype-based classification, we
randomize over the subregions S;;, leading to

‘ eYFir(%)
Plx € Sjk] = Pjpo(A) = S ) (14)
I m
and since R; = |JS;x, we have
%
Py (A Z e (A (15)

This distribution reduces to the decision rule of (3) for vy — 0.
In the next section, we will describe an optimization technique
that gradually introduces the objective of maximizing F,
ultimately yielding a hard classifier that maximizes Fj and
thus achieves the winner-take-all structure.

3) Design by Deterministic Annealing: Until now, we for-
mulated a controlled way of introducing randomness into the
classifier’s partition while enforcing its structural constraint.
However, the derivation assumed that the model parameters
were given, and thus produced only the form of the distribution
P} (A), without actually prescribing how to choose the values
of its parameter set. Moreover, the derivation did not consider
the ultimate goal of minimizing the probability of error. Here,
we remedy both shortcomings.

The method we suggest gradually enforces formation of
a hard classifier minimizing the probability of error. We
start with a highly random classifier and a high expected
misclassification cost. We then gradually reduce both the
randomness and the cost in a deterministic learning process
that enforces formation of a hard classifier with the requisite
structure. While the motivation behind this basic approach
remains as yet unclear, in the sequel, we will relate this
process to annealing methods from statistical physics and
show the method to be useful for avoiding poor local optima
of the cost. As before, we need to introduce randomness
into the partition while enforcing the classifier’s structure.
Now, however, we are also interested in minimizing the
expected misclassification cost. While satisfying these multiple
objectives may appear to be a formidable task, the problem
is greatly simplified by restricting the choice of random
classifiers to the set of distributions {P;,(A)} as given in
(13) or (15). These random classifiers naturally enforce the
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structural constraint of (3) or (6) through -, as we explained
earlier. Thus, from the parametrized set {F;,(A)}, we seek
that distribution that minimizes the average misclassification
cost while constraining the entropy

) o1 ,
min < P, >= min - Z Z Pjo(Mp(e,5)  (16)
(X>C)ET J :
subject to
H=H.

The distribution is chosen by optimization over its parameter
set. The solution yields the best random classifier in the sense
of minimum < P, > for given H. At the limit of zero entropy,
we should get the best hard classifier in the sense of P. with
the desired structure, which is specified by (3) or (6).

The constrained minimization (16) is equivalent to the

unconstrained minimization of the Lagrangian

an

minL =minf < P, > —H
Ay Ay

where § is a Lagrange multiplier controlling the tradeoff

between H and < P, >. For # = 0, the sole objective -

is entropy maximization, which is achieved by the uniform
distribution. - This solution, which is the global minimum for
L at 8 = 0, can be obtained by choosing v = 0. At the
other extreme, for § — oo, the sole objective is to minimize
< P, > and is achieved by choosing a nonrandom (hard)
classifier (hence minimizing F.). The hard solution satisfies
the classification rule ((3) or (6)) and is obtained for v — 0.

Motivation for minimizing the Lagrangian can be obtained
from a physical perspective by noting that.L is the Helmholtz
free energy of a simulated system, with

< P, > “the energy of the system”
H its entropy
% the “temperature.”

Thus, from this physical view, we can suggest a deterministic
annealing (DA) process, which involves minimizing I starting
at the global minimum for § = 0 (high temperature) and
tracking the solution while increasing g toward infinity (zero
temperature). In this way, we obtain a sequence of solutions of
decreasing entropy and expected misclassification cost. Each
such solution is the best random classifier in the sense of
< P. > for a given level of randomness. The annealing
process is useful for avoiding local optima of the cost <
P, > and minimizes < P, > directly at low temperature.
The approach we suggest is an extension of previous DA
methods, which considers the probability of error as the
cost objective. However, the approach that we suggest also
extends DA-based methods in a more fundamental way as
well, as it allows annealing to occur in the structural objective,
as well as in the system’s expected cost and entropy. To
clarify this. statement, we observe that while the annealing
process suggested here ostensibly involves the quantities H
and < P, >, the restriction to {P;,(A)} from (13) ensures
that the process also enforces the structural constraint on
. the classifier in a controlled way, through the objective F.
Note, in particular, that v has not lost its interpretation as
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a Lagrange multiplier determining F. Thus, v = 0 means
that F' is unconstrained; we are free to choose the uniform
distribution. Similarly, sending v — oo requires maximizing F'
(see (12) and (13)), hence, the hard solution, which maximizes
Fy, and satisfies (6). Since « is chosen to minimize L, this
parameter effectively determines the level of F—which is
the level of structural constraint—which is consistent with A
and < P, > for a given (. As ( is increased, the entropy
constraint is relaxed, allowing greater satisfaction of both the
minimum < P, > and maximum F objectives. At the limit of
B — oo, v is also driven to infinity; therefore, a hard classifier
results, maximizing F} and, hence, achieving‘the winner-take-
all structure, as well as directly minimizing the probability of
error objective. Thus, annealing in 3 gradually enforces both
the structural objective F' (via ) and the minimum < P, >
objective.* ,

The physical interpretation of the Lagrangian makes the
connection with stochastic annealing methods clear: Rather
than generating a stochastic solution process, which spends
a long time at each temperature in order to reach thermal
equilibrium, the DA approach performs a direct, deterministic
optimization of the quantity that is stochastically optimized
by SA at equilibrium—the free energy.’ In addition to the
connection with SA, our formulation also clearly identifies the
relationship between the DA and discriminative learning (DL)
methods. Note that the DA method performs a randomization
at a given temperature, which achieves cost smoothing in much
the same way as discriminative learning techniques. Thus, DL
can be interpreted from the perspective of our DA framework
as essentially minimizing the smoothed cost < P, > directly

~over the classifier parameters without controlling the entropy

of the data assignments along the way. DL must choose the
initial classifier parameters and the initial amount of cost
smoothness. These choices may have significant bearing on
the achieved solution quality. By contrast, the DA approach
controls the level of cost smoothness (now characterized by
the entropy of the random classifier) as well as £ and < P, >.
These quantities are gradually varied through incremental
temperature reduction, starting from a high entropy state, with
the ultimate objective a global minimum energy configuration
(error count) and a desired classifier structure at low temper-
ature. As we will experimentally verify through simulations,
our annealing approach outperforms design based on directly
minimizing < P. >. '

C. Necessary Optimality Conditions

Minimization of the Lagrangian at a given (3 can be realized
by gradient descent or any other local function minimization
technique. Here, we derive necessary optimality conditions,
presenting them in a convenient form to aid interpretation.
For concreteness, in this section, we will assume a model

4Note, too, that while our method varies 3 and optimizes v, an alternative
annealing approach that will not be discussed here could possibly involve
varying 7, 1.e., introducing an increasing constraint on the classifier’s structure,
and optimizing a parameter that determines the tradeoff between < P. > and
H. The feasibility of such an approach will not be investigated in this paper.

S>However, whereas SA has been shown to converge in distribution to.a
uniform distribution over the set of globally optimal solutions, no similar
proof exists for DA.
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consistent with the RBF and MLP classifiers. We first rewrite
the Lagrangian of (17) explicitly as

v Y Y Pu){ale) +log P(A)}  (18)
(xc)e’T J
1 1
=% 2 Y Py =5 Y L. (19
(x,0)e7 | J (x,0)eT

The braces in (18) identify L,;, which is the contribution to
the cost when the feature x is assigned to class j, and the
braces in (19) identify L, =< L,; >, which is the average
contribution for this feature.® Noting that the contributions to
the derivative of L are additive over the data and applying the
chain rule, we may write

OL, _ OL, OPj(A) 0
OAy, OPj(A)  OAr
and
oL 1 oL,
oAy ~ N 2- 3k, oD
Setting 3 BL = 0 and simplifying, we obtain the necessary

optlmahty condition

ZZLM le( 31\(:)— <

(Note that in (22), we have dropped explicit representation
of the distribution’s dependence on A for convenience.) In a
similar fashion, the condition 2 _'y = 0 yields

Z Zszlex(Fj(X)_

We have obtained the mathematical conditions for optimal-
ity. In what follows, we give some intuitive interpretation. In
particular, conditions (22) and (23) can be viewed, appropri-
ately, within the context of supervised learning. Toward this
end, note that L can be interpreted as a generalized “risk”
function, where L.;P;, is the contribution associated with
classifying x to class j. From this perspective, (22) and (23)
specify the optimal parameters as those providing the best risk
tradeoff over the entire training set. The influence an individual
classification decision has on the learning is proportional to
its associated risk L,;P;|,. Moreover, for a given parameter,
this influence also depends on the “tuning” of the parameter
for the class output, i.e., the degree to which the parameter
can affect the class output (and hence the ownership of the
point). In (22), this “tuning” is measured by the sensitivity
3F ( ) relative to its average value over all classes. In (23),
smce ~ linearly weights all class outputs, this sensitivity is
simply the class output F};(x) relative to the average over all
classes. Risk minimization normally involves making “hard”
decisions. However, the entropy constraint, which is explicit
in the “risk” through the terms log P;|,, guarantees that P;,

OFi(x)
dAy

>,) =0,Vk. (22)

<F(x)>)=0 (23)

. %Here, we have used < A, ; > to denote the average of a random quantity
Ay over the distribution {P;|,.}, Le., < Az; >;= Z
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remains “soft” at intermediate 8 to-achieve a specified level
of H while minimizing < P, >.

We can easily relate these interpretations of our des1gn
procedure to a method that performs direct descent on < P, >.
Note that the necessary conditions for minimizing < P, >
have the same form as (22) and (23) if we replace L,;
with §(c,7). In this case, since there is no entropy term,
minimization of the cost should be achieved by making the
probabilities “hard.” By contrast, in our approach a “hard”
solution is only obtained for § — o, i.e., when the Lagrangian
is. equivalent to < P, >. At this limit, v — oo, {Pjj, —
{0,1}}, < P. >—» P.,'F — Fj, and for the “winning”
output class j, we have L,; = L, Fj(x) =< Fi(x) >y,
and agA(:c) =< agj\(:) >;. Thus, it is readily seen that for
B — oo, the hard cost P, is minimized, and the necessary
optimality conditions are satisfied by sending v — oo so that
the annealing method converges at the limit, maximizing [},
and achieving the structure (6).

D. Algorithm Description

Our annealing-based optimization method is a continuation
method that tracks the parameters {A,~} that minimize the
Lagrangian L for a sequence of increasing values of 3 (de-
creasing temperatures). The method starts at high temperature
(6 = 0) for which the Lagrangian cost is convex. Thus, the
global minimum is found at high temperature, independent
of initialization. The .optimal parameters {A*,v*} found at a =
given (3 are then used as initialization for the optimization
at the next (larger) (5. At each 3, L can be minimized by a
gradient descent technique or any other function minimization
technique. The partial derivatives in (22) and (23) can be
used as the basis for a gradient descent procedure. The
conditions (22) and (23) also specify a convergence condition
for the optimization at given 5. Alternatively, the convergence
condition at given § may be based on diminishing values of
the drop in L, i.e., the opt1mlzat1on stops at g if AL < e
for specified €. The annealing method terminates for a value
of J at which the entropy H has dropped below a specified
threshold level é. At this point, the parameters A are used to
specify a hard classification rule, as described in Section II-A.
Thus, v is not used by the final (hard) classifier.

E. Specialization to Different Structures

In this section, we specialize our general approach for
three major classifier structures, deriving necessary optimality
conditions for each structure. This will provide the basis for
the corresponding algorithms used in our simulations.

1) Optimality Conditions for Nearest-Prototype Classifiers:
The probabilistic associations have the form

z e—vd(x.%;1)
k

. P j

jle = 2 Z e—7d(XXim ) 24
[

which reduce to the rule of (2) for v+ — oo. Necessary
conditions for minimizing L at any (§ are derived in a
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straightforward fashion and are found to be

OL ' ad(x,x1,) )
=0= (LE_LQ?)ka_'“—]:()?va
(9Xjk (x,éc‘_—:)ET J 7k| ank
(25)
and
_0:> ) sz e(dog — de) = 0. (26)

(x,0)€T 7

Here, d,; is the average distance from x to a prototype from
class j, i.e., dy; =< d(x,X;x) >k, and d, is the average
-distance to any prototype, ie., d, =< d(x,X;r) >;&. The
condition for a prototype vector suggests moving it away from
(or toward) the feature vectors that it “owns” probabilistically
through Pjg|,, and for which L,; is greater than (less than)
the average L,. The condition for -y suggests finding the
value that achieves the best tradeoff between the (potentially)
conflicting goals for individual data seeking to “harden” or
“soften” ownership based on the associated risk. -

2) Optimality Conditions for Radial Basis Functions: The
probabilistic associations are those based on (13), using (4).
‘Since the network outputs are linear in the weights {Ag;},
~ is implicitly defined through the weight magnitudes. Prior
to writing down necessary optimality conditions, it is helpful
to first define several quantities: the difference Ag;(x) =
Axj — F;(x) and this difference averaged over all classes, i.e.,
< Apj(x) >;= Ag(x). Then, as a function of these quantities,
the necessary optimality conditions are found to be

=3 O (x

Z 1o Lo (B () = A (x0)

a/J‘k 8uk
=0,vk (27)
oL O, (x '
aa-k2 =0= 80_ 2 Z |m zj Akj ) Ak(x))
= O,Vk (28)
oL _ P (L L) =0Vk,j 2
Dr; —0=>;¢k(x> jte( Ly — La) = Ok, j. (29)

" As before, these conditions can be seen to specify a type of
supervised learning rule that matches intuition. In (27) and
(28), the influence an individual classification decision has on
the learning is a function of the associated risk L, ; P; |z> 88 well

as the sensitivity of the class output to the given parameter. In’

this cage, the sensitivity of class output F;(x) to changes in a

parameter from receptive field k is (Ag;(x) — Ag(x)) ag,;x(:)
where Aj is either the receptive field center or its width.
Equation. (29) is also directly interpretable; effectively, the
weight from receptive field k to class 7 is increased (decreased)
if L,; is smaller (larger) than the average L.

3) Optimality Conditions for Multilayer Perceptrons: Using
the probabilistic associations of (13) and the MLP recursion

of (8), the optimality condition of (22) specializes to

§ § ][Q:Lacjuk 1 aj~(X)_ l( ) >I)Tfk (Vk)
Ug

8uk
:mgkgK (30)
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where f; (v), which is the derivative of layer &’s outputs with
respect to its activation level is a diagonal matrix with diagonal
elements agf}”z) The optimality condition for -y remains as in
(23). The only elements of (30) that are not readily available
are the terms 853(?, which describe the network output
sensitivity to hidden layer outputs. However, these can be
conveniently computed using a backward recursion similar in

“spirit to standard backpropagation:

I f 1<k K Vg 31
5t (Vi)W 6 e < 7 (B
with the initialization
OF;(x) .
=e; 2
Big =e; V] (32)

where e; is the jth natural basis vector of R***1 (the unit
vector having value one at the jth component).

IIL. -EXPERIMENTAL COMPARISONS

In this section, we demonstrate the performance of our
design approach both on synthetic examples we have generated
and on benchmark data obtained from the literature. Since
our main focus is on comparing design methods, rather than
classifier structures, we have performed separate experiments
for each of the classifier structures. In each case, two types
of comparisons may be indicated. The first relates to the per-
formance achieved inside the training set, which demonstrates
the ability of our method to optimize its design criterion and
illustrates the problems of local optima for conventional design
techniques as well. The second comparison involves the test
set performance, which gives an indication of how well the
methods generalize to new data. In addition to discussing
the solution quality of the various designs, we will also
consider other issues such as the design complexity. For all
the DA algorithms that follow, steepest descent was used
to minimize L at a sequence of exponentially increasing
given by 8(n + 1) = af(n) for o between 1.05 and 1.1. We
have found that especially for RBF and MLP design, much
of the optimization occurs at or near a critical temperature
in the solution process. Beyond this critical temperature, the
annealing process can often be “quenched” to zero temperature
by sending v — oo without incurring significant performance
loss and with substantial reduction in design complexity.
Quenching the process often makes the design complexity of
our method comparable to (and in some cases smaller than)
that of descent-based methods such as BP or gradient descent
on < P, >.InFig. 4, we illustrate the basic annealing process,
showing that with increasing inverse temperature 3, H and
< P, > are reduced, while I increases, eventually reaching
the maximum value of £3,. The structure in this case was an

‘RBF classifier trained on simulated data.

A: Prototype Examples

We have performed experimental comparisons of our
nearest-prototype method with the learning vector quantizer
(LVQ) [21]. As an example, consider the two-class data
of Fig. 5. Each class consists of a Gaussian mixture with
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Fig. 4. Variation of entropy H, probability of error < FP. >, and the
winner-take-all objective I with J during the training of an RBF classifier.

Fig. 5. Two-class example for prototype-based classifier design. Each class
is a Gaussian mixture consisting of three components: (a) The best LVQ
solution, using six prototypes, with P. = 7.7%. (b) The DA solution, using
five prototypes, with P. = 2.7%. Note that since the solution at 8 = 0 placed
all prototypes at the global centroid (X), the DA optimization has allowed
a prototype for class 0 to “pass through a wall” of class 1 data in order to
, correctly classify the minority “0” mixture component.

three components. We designed prototype-based classifiers
with three prototypes per class using both the LVQ and DA
optimization methods. LVQ solutions were generated based
on the public domain LVQ-pak software (version 2.1) running
both an optimized LVQ (OLVQ) learning phase with 500000
iterations, as well as a fine-tuning phase using LVQ1 with
the learning parameter o set to 0.03. Ten LVQ solutions were
generated based on. different initializations produced by the
LVQ-pak’s eveninit routine. In all cases, the method was
unable to discriminate the class 0 “minority” component in
the upper right.of Fig. 5(a) (which retains only 5% of the
training set mass). Apparently, the initialization did not select
a prototype from the class 0 minority component, and LVQ is
unable to move class 0 prototypes through the “wall” of class
1 data that separates them from this component. The best LVQ
solution, which is shown in Fig. 5(a), achieved P, = 7.7%.
Increasing the number of prototypes, we found that LVQ
was only able to discriminate the minority component when
21 prototypes per class were introduced, and in this case,
the method achieved P, = 3.4%. While the extremity of
this suboptimality suggests that the LVQ-pak initialization
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could be improved,’ this example does demonstrate LVQ’s
susceptibility to finding poor solutions. In fact, we also
performed gradient descent on < F. > and found that
poor solutions were obtained in this case as well; except
for omniscient initialization in the vicinity of the optimal
solution, the best performance obtained for six prototypes was
P, = 7.0%. It thus appears that strict descent methods will fail
on this example unless given an excellent initialization. By
contrast, the DA method using only five prototypes achieved
the solution shown in Fig. 5(b), with P. = 2.7%. Note that
the DA method is independent of the initialization, placing all
prototypes together at the global data centroid (marked by X)
at #.= 0 to maximize entropy.8 Then, as 3 is increased, the
prototypes separate, reducing the entropy as well as < P, >.
This example demonstrates the ability of the method to avoid
local optima since the DA optimization does succeed in
moving a class O prototype from X directly through the

"class 1 data “wall” to correctly classify the minority class

0 component and achieve what appears to be the optimal
piecewise linear result for the given number of prototypes.
(Here, two of the class O prototypes are nondistinct; therefore,
the solution effectively uses five prototypes.) The main point
of this 2-D example is to visually illustrate the problem of
local minima and the potential that DA has for avoiding them.
For experiments involving high dimensional data sets (to be
described shortly), visual illustration is not possible, but our
results will likewise demonstrate that local minimum problems
do exist and that the DA method can be applied to provide
significant performance improvement. v
We also tested our approach on the “synthetic” example
from [35], as well as on some other complicated synthetically
generated mixture examples. On the example from [35], our
approach achieved P, = 8.9% on the test set using eight
prototypes and P, = 8.6% using 12 prototypes, in compatison
to LVQ’s P. = 9.5% based on 12 prototypes. For general
reference, an MLP with six hidden units achieved P, = 9.4%.
For complicated mixture examples, with possibly 20 or more
overlapping mixture components and multiple classes, we
have found our method to consistently achieve substantial
performance gains over LVQ. As an example, consider the
training data for a four-class problem involving 24 overlap- -
ping, nonisotropic mixture components in two dimensions as
shown in Figs. 6 and 7. We designed NP-classifiers with 16
prototypes (four per class) using both LVQ and DA. Figs. 6(a)
and 7(a) display the data and partitions formed by the two

solutions. Figs. 6(b) and 7(b) display the prototype locations '

along with the partitions. The best LVQ solution based on
10 random initializations, which is shown in Fig. 6, achieved
P, = 31%. Note that the method has failed to distinguish a
component of class 0 in the upper left of Fig. 6(a), as well as
a component of class 1 near the lower right of the figure.

7For example, if an initialization of prototypes based on isodata clustering
followed by allocation of prototypes to the majority class of the cluster were
used, much fewer than 42 prototypes (but greater than six) would suffice to
find good solutions.

8Such an initialization is, in fact, “fatal” for a strict descent-based approach,
as the associated learning rule will not permit a class O prototype to pass
through the “wall” of class 1 data.
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Fig. 6. (a) Four-class Gaussian mixture training set for a prototype-based
classifier design and the partition produced by LVQ. (b) LVQ solution with
the location of the 16 class prototypes shown. The error rate is Pe = 31%.

Fig. 7. (a) Four-class Gaussian mixture training set for a prototype-based
classifier design and the partition produced by DA. (b) The DA partition with
the 16 class prototypes shown. The error rate is Pe = 23%.

By contrast, the DA solution shown in Fig. 7 succeeds in
discriminating these components and achieves P, = 23%.

In addition to the above experiments, we tested our design

approach on the Finnish phoneme data set that accompanies
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TABLE I
COMPARISON OF THE DA AND LVQ METHODS FOR DESIGNING
PROTOTYPE-BASED CLASSIFIERS ON THE 20-DIMENSIONAL, 20 CLASS
FINNISH PHONEME DATA SET THAT ACCOMPANIES THE STANDARD LVQ
PACKAGE. M REPRESENTS THE TOTAL NUMBER OF PROTOTYPES

M (# ofunits) | 20 | 30 | 40 | 50 | 80 | 100 | 200
P (IVQ) | 13.25 | 12.44 | 1147 | 10.96 | 10.09 | 8.17 | 6.78
P, (DA) 11167 | 999 | 836 | 555 | 4.83 |4.23 | 3.26

the standard LVQ package. The training set consists. of 1962
vectors of 20 dimensions each. Each vector represents speech
attributes extracted from a short segment of continuous Finnish
speech. These vectors are labeled according to the phoneme
uttered by the speaker during the corresponding segment.
There are 20 classes of phonemes in the training set. In both
LVQ and DA approaches, we set the number of prototypes
associated with a particular class to.be proportional to the
relative population of that class in the training set. This is
referred to as the propinit initialization in the standard LVQ
package. We compared the performance of the DA and LVQ
approaches over a range of values for the total number of
prototypes. It was observed that the DA method consistently
outperformed LVQ over the entire range. The experimental
results are shown in Table 1. This comparison is typical of
what we have seen through extensive experimentation.

B. RBF Examples

We have compared our RBF design approach with the
method of Moody and Darken [29] (MD-RBF) with a method
described by Tarassenko and Roberts [48] (TR-RBF) and with
steepest descent. on < P, > (G-RBF). MD-RBF combines
unsupervised learning of receptive field parameters with su-
pervised learning of {)\kj} to minimize the squared distance
to target class outputs. The primary advantage of this approach
is its modest design complexity. However, the receptive fields
are not optimized in a supervised fashion, which can cause
performance degradation. TR-RBF, which is one of the meth-
ods described in [48], optimizes all of the RBF parameters
to approximate target class outputs in a squared error sense.
This design is more complex than MD-RBF and achieves
better performance for a given model size (the number of

' receptive fields the classifier uses). However, as discussed
previously, the TR-RBF design objective is not equivalent to

minimizing. P, but, as in the case of BP, effectively aims
to approximate the Bayes-optimal discriminant. While direct
descent on < P. > may minimize the “right” objective,
problems of local optima may be quite severe. In fact, we
have found that the performance of all of these methods can
be quite poor without a judicious initialization. For all of these
methods, we have employed the unsupervised learning phase
described in [29] (based on isodata clustering and variance
estimation) as model initialization. Then, steepest descent was
performed on the respective cost surface. We have found that
the complexity of our design is typically 1-5 times that of TR-
RBF or G-RBF (though, occasionally, our design is actually
faster than G-RBF). Accordingly, we have chosen the best
results based on five random initializations for these techniques
and compared with the single DA design run:
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Fig. 8. (a) RBF classifier solution with three receptive fields, produced by
the method from ([38]. The error rate is P, = 7.0%. (b) The DA solution with
three receptive fields, which yields P. = 2.7%. In each case, the receptive
field “centers” are indicated with an X . Note that in (a), one of the “centers”
lies outside the boxed area.

As a first example, we used the same training data of
Fig. 5 (previously used to test the NP structure) to test RBF
performance. In Fig. 8, X’s are used to denote RBF centers.
The best solution with M = 3 receptive fields achieved by TR-
RBF is shown in Fig. 8(a), with P. = 7%. The DA solution
for M = 3 is shown in Fig. 8(b), with P, = 2.7%. G-RBF
with M = 6 obtained P, = 7.2%. While TR-RBF :and G-
RBF achieved good solutions by moderately increasing M (to
M = 4 and 8 units, respectively), MD-RBF only obtained
P, = 2.9% by increasing M to 30.

To illustrate that increasing M may not help to improve
performance on the fest set, we compared our design with the
results reported in [30] for 2-D and 8-D mixture examples.
For the 2-D example, our method achieved P, = 6.0% for
a 400-point training set and P, , = 6.1% on a 20000 point
test set, using M = 3 units. (These results are near-optimal,
based on the Bayes rate.) By contrast, the method in [30] used
86 receptive fields and achieved P.,_, = 9.26%. For the 8-D
example and M = 5, our method achieved P,, . = 8% and
P..... = 9.4% (again near-optimal), whereas the method in
[30] achieved P.,., = 12.0% using M = 128. ,
More comprehensive tests on higher-dimensional data have
also been performed. Two examples reported here are the 21-
D waveform data and the 40-D “noisy” waveform data used in
[3] (which was obtained from the UC-Irvine machine learning
database repository.) Rather than duplicate the experiments
conducted in [3], we split the 5000 vectors into equal size
training and test sets. Our results in Tables II and III demon-
strate quite substantial performance gains over all the other
methods and performance quite close to the estimated Bayes
rate of 14% [3]. Note, in particular, that the other methods
perform quite poorly for small M and need to increase M to
achieve training set performance comparable to our approach.
However, performance on the test set does not necessarily
improve and may degrade for increasing M. '

C. MLP Examples

We have compared the performance of our DA approach
for designing MLP’s with two other approaches: the standard
BP algorithm of [42] and gradient descent on the < P, > cost
surface (G-MLP). In our implementation of BP, we initialized
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TABLE II
COMPARISON OF DA wITH KNOWN DESIGN TECHNIQUES FOR RBF
CLASSIFICATION, ON THE 21-D WAVEFORM DATA FROM [3]. M Is THE NUMBER
OF RECEPTIVE FIELDS. WE COMPARE OUR DA APPROACH WITH THE METHOD
DESCRIBED IN [38] (TR-RBF), THE METHOD IN [22] (MD-RBF,) AND WITH
GRADIENT DESCENT ON < P, > (G-RBF). THE TEST SET PERFORMANCES
HAVE A MAXIMUM 95% CONFIDENCE INTERVAL OF HALF-LENGTH 2%

Method DA TR-RBF MD-RBF G-RBF
M (# of units) 3 3 5 15 | 25 | 10 | 30 5 10 15
P. (training set) | 14.0 | 38.0 | 15.0 | 14.0 | 10.0 | 25.0 | 18.0 | 48.0 | 21.0 | 14.0
P, (test set) 16.0 | 38.0 | 22.0 ; 18.0 [ 17.0 | 26.0 | 19.0 | 47.0 | 19.0°| 16.0

TABLE III
CoMPARISON OF DA wrtH KNowN DESIGN TECHNIQUES FOR
RBF CLASSIFICATION ON THE 40-D NoisY WAVEFORM DATA
FROM [3]. THE TEST SET PERFORMANCES HAVE A MAXIMUM
95% CONFIDENCE INTERVAL OF HALF-LENGTH ABOUT 3.0%

Method DA TR-RBY MD-RBF | G-RBF
M (# of units) 4 30 4 10 | 30 | 50 | 10 | 50 w0 |
P, (training set) [ 11.0 | 2.8 [33.0 | 16.2 [ 145 | 12.9130.0| 19.0 | 18.0
P, (testset) |13.0 | 16.7[35.0|16.5|16.8|17.937.0|18.0| 20.0

the weights to uniform random numbers between +0.01. Next,

we used 50000 epochs of a batch gradient descent algorithm
to minimize the mean-squared error between the desired and
actual outputs of the MLP. As discussed previously, BP
descends on a cost surface mismatched to the minimum P,
objective. Further, its performance is heavily influenced by the
choice of initial weights. In G-MLP, we attempted to improve
the performance of BP by initializing the weights with the
BP solution and then descending on < P. >. However, in
practice, we have found that the gains achieved by. G-MLP
over BP are only marginal as the optimization performance
sensitively depends on the choice of initialization.

We have experimented on several 2-D examples and some-
examples with features of larger dimension. In all cases,
the DA design approach produced significant performance
improvements. First, we revisit the 2-D example used to
test the other structures. We designed a sequence of neural
networks for this example, each with a single layer of hidden
neurons. Fig. 9(a) and (b) show partitionings of the input
space generated by BP and DA, respectively. Fig. 9(a) is the
BP solution using four hidden units, which failed to separate
the small cluster of Os in the top-right corner, achieving
P, = 7.4%. Fig. 9(b) shows the partition generated by a DA
solution with three hidden units, giving P. = 2.4%. Using the
G-MLP design approach slightly improved on the performance
of BP, reducing P, to 7.2%. Although it is conceivable that BP
or G-MLP would obtain the optimal solution with a fortuitous
initialization, in our experiments, they required 10 hidden
units to approach the performance of DA. Table IV shows
the performance of the three methods for a variety of network
sizes. o )

Another example we chose was the 19-D, seven-class im-
age segmentation data from the UC-Irvine machine learning .
database. The training set contains 210 vectors, and the test
set contains 2100 vectors, where. each are 19-D. The features
represent various attributes of a 3 x 3 block of pixels. The
classes correspond to textures (brickface, sky, foliage, cement,
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TABLE 1V
MISCLASSIFICATION PERFORMANCE P FOR THE DA, BP, AND G-MLP DESIGN
APPROACHES ON THE 2-D MIXTURE EXAMPLE. THE PERFORMANCE IS SHOWN
FOR A VARYING HIbDEN LAYER Sizg (M). THE TEST SET PERFORMANCES
HAvE A MAXIMUM 95% CONFIDENCE INTERVAL OF HALF-LENGTH ABOUT 0.3%

DA BP G-MLP

M 34|34 ]8lw|3]|4a]|s8]10
P, (training set) | 2.4 | 24 | 7.8 | 74 | 7.4 | 3.0 74| 74| 7430
P, (testset). |38124174172|68|42(72|7.0|72|44

Fig. 9. (a) MLP solution with four hidden units found by BP, with
P. = 7.4%. (b) The DA solution with three hidden units and P. = 2.4%.

TABLE V
MISCLASSIFICATION PERFORMANCE P FOR THE DA, BP, aND
G-MLP DESIGN APPROACHES ON THE 19-D SEVEN-CLASS
SEGMENTATION DATA EXAMPLE. THE TEST SET PERFORMANCES HAVE
A MAXIMUM 95% CONFIDENCE INTERVAL OF HALE-LENGTH 2.1%

DA BP G-MLP
M 4 6 8 4 6 8 10 4 6 8 10
P, (training set) | 19.1 | 8.1 | 6.2 [ 45.7 {319 | 20.0] 6.1 | 45.7{31.4} 19.6 | 6.0
F. (tést set) 201 | 11.2] 10.5 | 48.1 [ 31.7 | 256.3 | 13.3 [ 47.2 [ 34.4 | 23.2 | 13.0

. window, path, grass). We designed a sequence of single hidden
layer neural networks for this data set. Table V summarizes
the results we obtained for various hidden layer sizes (M).
Networks designed by DA significantly outperformed the other
approaches over the entire range of network sizes.

An important concern is the issue of design complexity. In
our experiments, we have found the DA learning complexity
to be roughly 4-8 times higher than that of BP and roughly
the same as that of G-MLP. This suggests that the potential
for performance improvement would, in typical applications,
greatly outweigh the somewhat higher design complexity of
the DA approach.

IV. CONCLUSIONS

In this paper, we introduced a new design method for
statistical classifiers aimed at minimizing the cost of misclassi-
fication. The method is based on ideas from statistical physics
and information theory and extends the deterministic annealing
method both to incorporate structural constraints as well as
to minimize the probability of error as the cost. The design
methodology is general and applicable to a variety of classifier
structures. We have specialized the general approach to obtain
specific design algorithms for three distinct, commonly used
classifier structures—NP, MLP, and RBF classifiers. For each
structure, our design approach yielded better classifiers than
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those obtained by other known methods. For some problems in
pattern classification, where the NP, MLP, and RBF classifiers
are used, the design methods presented here are immediately
applicable. For other application areas, in particular, speech
recognition and character recognition, more powerful classifier
structures such as hidden Markov models are typically needed
to exploit the dependence (either in time or space) between
class labels of “neighboring” features. More work is needed to
apply the design philosophy presented here to such structures.
Optimization of these structures may be pursued in future
work. Another potential area of investigation is the extension
of the ideas we have developed here to address related
optimization problems in source coding and statistics that
involve “embedded” classifiers. These include the design of
structured vector quantizers and generalized vector quantizers
[11], as well as the problem of piecewise regression. Some
promising work has already been done in the source coding
context [33].
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