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Abstract

We present the problem of designing a classifier system
based on hidden Markov models (HMMs) from a labeled
training set with the objective of minimizing the rate of mis-
classification. The traditional design approach divides the
training set into subsets of identically labeled training vectors
and independently designs the HMM corresponding to each
subset of the training data using a maximum likelihood crite-
rion. However, this approach does not achieve the minimum
mis-classification objective. To design the globally optimal
recognizer, all the HMMs must be jointly optimized to mini-
mize the number of mis-classified training patterns. This is a
difficult design problem which we attack using the technique
of deterministic annealing (DA). In the DA approach, we in-
troduce randomness in the classification rule and minimize the
expected mis-classification rate of the random classifier while
controlling the level of randomness in its decision via a con-
straint on the Shannon entropy. The effective cost function
is smooth and converges to the mis-classification cost at the
limit of zero entropy (non-random classification rule). The
DA approach can be implemented via an efficient forward-
backward algorithm for recomputing the model parameters.
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This algorithm significantly outperforms the standard maxi-
mum likelihood algorithin for a moderate increase in design
complexity.

1 Introduction

The hidden Markov model (HMM) is commonly used as a stochastic model for
time sequences. HMMs were originally applied within main-stream statistics,
but the discovery of their applicability to modeling speech utterances [3, 6]
has led to extensive research activity in HMMs over the last three decades. An
overwhelming number of conventional speech recognition systems are based
on the use of the HMM to model various speech utterances within the context
of traditional discriminant-based pattern classification.

In this paper, we address the problem of recognition of time sequences
modeled by HMMs. It is formally defined as the design of a recognizer based
on a labeled training set (i.e., supervised learning). This problem has been
extensively treated in the speech recognition literature. The most commonly
used approach is to divide the training set into subsets of identically labeled
training vectors and independently design HMMs for each subset of training
data via maximum likelihood estimation of model parameters. After design,
the system is used for recognizing new sequences through competition between
the designed HMMs. The input sequence is declared to belong to the winner
(the most likely model).

The starting point of our work is the realization that the above recog-
nition problem is fundamentally a pattern classification problem. Further,
the quality of the recognizer is most appropriately measured by its rate of
classification error. This leads to two major observations: First, the glob-
ally optimal recognizer must be designed through joint optimization of all
models. It is important to emphasize that the ultimate objective is not to
model the sequences belonging to each class as accurately as possible, but
rather, to distinguish between the classes while making as few errors as possi-
ble. As classification is performed by competition between models, it is clear
that we must optimize all the model parameters simultaneously to minimize
classification errors.

This also connects to the second observation, namely, that maximum like-
lihood is a mismatched cost for optimizing the classifier. The direct measure
of success is simply the empirical rate of correct classification. It should be
noted in passing that the Bayesian classifier which is optimal in the sense
of minimum classification error, is a close relative of the maximum likeli-
hood approach above. However its success depends on the availability of the
precise probability distributions, including the assumption that the model
structure is in complete agreement with the source. If one has only access
to a reasonably short training set, the performance of maximum likelihood
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may differ significantly from that of minimum classification error, as will be
demonstrated in this work. We note that the shortcomings of the maximum
likelihood method have been previously recognized (e.g. [1, 2, 4, 7]) and joint
optimization approaches have been suggested.

There are several important difficulties in approaching the design problem
directly, that is, by joint optimization of all model parameters so as to min-
imize the rate of classification error. One difficulty is that unlike maximum
likelihood, this cost function is piecewise constant and all gradients with re-
spect to parameters vanish almost everywhere (an infinitesimal change in pa-
rameter values will not change the classification of any sequence in the training
set). Thus, one cannot simply use a gradient based optimization method. An
important approach to address this problem appeared in [7] where the cost
surface was smoothed to allow the application of gradient methods (A few
weeks ago, a paper appeared [5], where this method was extended to HMM
classification.). Another important difficulty is that even if the cost surface
is smoothed, the optimization process tends to suffer from numerous shallow
local minima that riddle this complex cost surface. Finally, one must keep
in mind the difficulties associated with the computational complexity of such
joint optimization.

The main contribution of this paper is a novel method for designing HMM-
based recognizers. The new method is based on the deterministic annealing
approach to clustering [14, 13] and in particular to its recent extension to
classification [8]. By introducing randomness that is controlled by impos-
ing the level of Shannon entropy, we obtain an effective cost function that
is smooth and converges to the original classification error cost at the limit
of zero entropy. Further, this process is analogous to physical annealing and
hence has the capability to avoid many shallow minima that trap standard
local optimization methods. It is also important to note that unlike the .
stochastic procedure of simulated annealing, the process here is determin-
istic and all randomization is taken into account by taking the expectation
of the various qudntities. Another important result is the development of
a forward-backward algorithm (similar to Baum-Welch re-optimization) for
recomputing the parameters of all models in our joint optimization frame-
work. (Note that here we do not use maximum likelihood as our ultimate
objective). This algorithm is instrumental in keeping the computational com-
plexity manageable. The approach is shown to substantially outperform the
standard maximum likelihood method at the cost of moderate increase in
design complexity with respect to separate design of HMM per class.

2 The HMM classifier and its design

We address the supervised learning problem of designing a recognition system
from a labeled training set, 7 = {(y1,¢1), (¥2,¢2), ..(yn,cn)}. Each train-
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ing patlern, y;, is a vector of I; observations, y; = (yi(1),yi(2), - -yi(5i))-
Further, each observation, y;(t), is a discrete quantity, i.e. y;(t) € A =
{1,2,---, K}. Despite this restriction to the case of discrete observations, we
note that the design methods can be easily be extended to handle continuous
valued observations also. The training pattern, y;, belongs to class, ¢;, which
may be one of M classes, i.e. ; € C={1,2,---M}.

The HMM recognition system consists of a set of hidden Markov models,
{Hj, j=1,2,---, M}, one per class index. The model, H; has Sj states and
is fully specified by the parameter set A; = (4;, B, II;), where following the
usual convention, A; is the (S; x Sj) state transition probability matrix, B;
is the (S; x K) emission probability matrix and II; is the (length S;) initial
state probability vector.

The classifier works as follows : Given a training pattern, y;, for each
HMM, H;, and for each sequence (length ;) of states, s = (s(1), 5(2), - - -, s(&))
in the trellis of H;, we determine the log likelihood, l(y;, s, Hj), that the ob-
servation y; is generated via the state sequence, s. Hence,

;-1 l;

Uyi,s, Hy) = logTj(s(1)) + Y log Aj(s(t), s(t + 1) + ) _ log B; (s(t), yi(2)).

t=1 t=1
(1)
Here, A;(m,n) is the (m,n) element of the matrix, A;. Similarly, B;(m, k)
is the (m, k) element of matrix, B;j, and II;{m) is the mth component of the
vector, II;.

Next, we maximize the log likelihood over all state sequences in the trellis

of HMM, H;, and determine

dj(yi) = Segi’éj)l()'usa Hj). (2)
Here, Si(H;) is the set of all state sequences of length ! in the trellis of
HMM, H;. The quantity, d;(y;) thus represents the log likelihood of the
state sequence in model H;, that most likely generated y;. Interpreting d;(-)
as the discriminant for class j, we adopt the traditional discriminant-based
classification approach to define the classifier operation as :

C(y;) =arg mjaxdj (y:). 3)

We refer to this definition as the “best path” discriminant 1. This classifica-
tion system can be viewed as a competition between paths. The observation
is ultimately labeled by the class index of the HMM to which the winning
path belongs. One advantage of the “best path” discriminant classifier is
that the search for the most likely path (choosing a state sequence, s, that
maximizes (2)) can be reduced to a sequential optimization problem that can
be solved via an efficient dynamic programming algorithm (Viterbi search).

10ur design method can be easily modified to the case where the discriminant is obtained
by appropriate averaging of the likelihood over all paths in the class model.
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2.1 HMM classifier design

The problem of HMM classifier design can be stated as the joint optimiza-
tion of the HMM parameters, {A;}, to minimize the empirical probability of
misclassification measured over the training set,

1

N
31\111}1 P.=1- N ;5(0()&‘),&') (4)

where § is the error indication function: é(u,v) = 1 if u = v and 0 otherwise.

The most important difficulty in this optimization is that the cost, P,,
1s a piecewise constant function of the optimization variables. As a result,
we cannot use traditional gradient descent based optimization methods - the
gradients are zero almost everywhere. One approach [7] to circumvent this
difficulty is to replace the piecewise cost function by a smooth approxima-
tion to it. While the modified cost function is amenable to descent-based
optimization, in practice, there are numerous shallow local minima on the
complex cost surface that can easily trap optimization methods based on
simple descent. In the next section, we present a novel approach based on
deterministic annealing to simultaneously tackle the piecewise nature of the
cost function and the problem of shallow local minima traps.

3 Deterministic Annealing approach

We take as our starting point, the deterministic annealing approach to clus-
tering, vector quantization [14] and related optimization problems [13] and its
extension to structurally-constrained clustering problems [8]. The extended
method can handle problems involving structural constraints on the cluster-
ing rule e.g. tree structured vector quantization, pattern classifiers based
on parametric discriminant functions etc. We have recently applied the ex-
tended DA method successfully to the design of standard pattern classifiers
[8], regression functions [9, 12, 11] and source coding systems [10]. The work
presented in this paper represents an important extension of the method to
handle time sequences that are modeled by HMMs.

We cast the optimization problem within a probabilistic framework and
maintain that, during design, it is useful to consider a randomized HMM
classifier system. In the randomized classifier, given an observation, a win-
ning state sequence is randomly chosen from among all state sequences in
all the HMMs. This (random) choice of the winning state sequence is based
on a probability distribution - we replace the best-path discriminant rule
which associates a pattern to a unique winning state sequence by a ran-
domized best-path discriminant rule that associates each pattern, y;, to
every state sequence, s, in the trellis of every model, H;, with a proba-
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ility, P(yi,s, H;). Naturally, these probabilities are normalized such that
E Z P(y,:,s,Hj):L
i 8€5i,(H;)

The probabilities, P(y;,s, H;), are obtained in a systematic manner: We
irst note that the non-random best-path discriminant rule may be expressed

1s minimization over s; € | J &, (H;) of the cost function,
J

D= -]—t’—;l(yi,si,Hj). (5)

After randomness is introduced, this cost function is replaced by the expected
cost,
1
<D>= —]\—]-ZZ Z P(yi,s,Hj)l(yi,s,Hj), (6)
i SES(H;)

which is minimized, while simultaneously enforcing a level of randomness
though a constraint on the Shannon entropy,

H=—o S5 Y Plyos H)logPos ). (1)

i sesi(Hj)

In particular, we optimize < D > subject to H = H. The probability dis-
tribution obtained via this constrained optimization problem is the Gibbs
distribution,
e'yl(ynsij)

Y 8 H)'

i’ S’E&,(H]-')

P(yi,s,Hj): (8)

The value of Shannon entropy, H, corresponding to this Gibbs distribution
is determined by the positive scale parameter, v. This parameter also controls
the “randomness” of the distribution. For ¥ = 0, the distribution over paths
is uniform. For finite, positive values of v, the Gibbs distribution indicates
that we assign higher probabilities of winning to state sequences with higher
log likelihoods. In the limiting case of ¥ — oo, the random classification rule
reverts to the non-random “best path” classifier, which assigns a non-zero
probability of winning only to the path with the highest log likelihood as in

(2).
The random classifier’s expected rate of misclassification (over the training
set) can be calculated as

N

<P >=1- %Z Y P(yis, Hy) (9)

i=1 SES!;(HC,')
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Next, we pose the problem of optimizing this random HMM classifier |

(choosing {A;} and ) to minimize the expected mis-classification probability
of (9). However, simply minimizing (9) over all Gibbs distributions chooses
one that is non-random (y — o0). While such a non-random, best-path
classifier is the eventual goal of this design method, we wish to enforce the

“non-randomness” gradually during the optimization, to avoid shallow local ,

minima traps.

As such, we follow the philosophy underlying the deterministic annealing
approach and pose the problem of minimizing < P, > while maintaining a

level of randomness in the classifier through a constraint on the entropy, H =
H. This constrained optimization problem is equivalently, the minimization |

of the unconstrained Lagrangian cost function,

min L =< P, > -TH, (10)
{A53y

where T' is the Lagrange parameter that we refer to as the “temperature”
because of an interesting analogy in statistical physics.

3.1 Analogy to statistical physics

The Lagrangian minimization of (10) reminds us of the definition of ther-
mal equilibrium in statistical physics. The quantity, L, is analogous to

the Helmholtz free energy of a thermodynamic system with average energy
< P, >, entropy over energy states, H and temperature, T. This free en- '

ergy 1s the quantity that is minimized when this thermodynamic system is at
thermal equilibrium at temperature, T

From the optimization viewpoint, we are particularly interested in thermal
equilibrium at 7" = 0 which corresponds to direct minimization of < P, >, our
ultimate objective. The analogy to physical systems suggests that to minimize
< P, >, it is useful to implement an annealing process, that is, gradually
lower the temperature while maintaining the system at thermal equilibrium.
We start with a very high value of T', where the sole objective is entropy

maximization, which is achievable by the uniform distribution. Reducing T

gradually from this high value, we repeat the process of minimizing L until
T = 0, where the sole objective is optimizing {A;} and ¥ to minimize P,.

After this annealing process, we also include as a final step, a “quench- .

ing” mechanism - we optimize {A;} to minimize P,, while increasing v from
its optimal value at 7" = 0, in gradual steps, to a very high value. When

v is sufficiently high, the classifier reduces to the non-random “best-path” "

classifier.

The annealing process yields a sequence of solutions at decreasing levels
of entropy and P. leading to the “best-path” classifier in the limit. The DA

method is not a stochastic method like simulated annealing, but instead based |
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on the optimization of the deterministically computed expectation, L, at each
temperature. This minimization is achieved by a series of gradient descent
steps with the following expressions for the gradients :

oL
0A;
FL X Llyi,s, Hy)Pyi,s, Hy){ S8 o 208000 5 ;)
4 SGSI'(H])
and
or _
oy ~
%ZZ Z L(thvH])P(yz;S)H]){l(ylvst])—<l(yzyS,H]) :>}
i j se&i,(Hj)

Here, L(yi,s, H;) = Tyl(yi,s, H;) — 6(j,¢;). The operation, < f(-) >;,
represents an expectation of the (state-sequence dependent) f(-) function over
the state sequences in the trellis of HMM, H;. Hence,

Oly;,s, H; ol(y;,s, H;
< (yzaAs ]) >;= Z P(yi, s, H]) (YéA ]) (11)
J SESI,'(HJ) J

Similarly, < f(-) > represents the expectation of the f(-) function over all
state sequences in the trellises of all the HMMs. Hence,

<lyi,s, H;) >= Z Z P(yi,s, Hj)l(yi, s, Hy). (12)

J 8€S&, (Hj)

An important aspect of the proposed method is the discovery of an efficient
forward-backward algorithm to determine these gradient parameters. Note
that the summations in the gradient expressions are over all state sequences
in the trellis of HMMs. The number of paths depends exponentially on the
number of states in the HMM. However, these summations can be efficiently
computed via a forward-backward algorithm which reduces the number of
computations substantially (proportional to square of the number of states
in the HMM) thus cutting down on computational complexity and memory
requirements. The complexity of the DA method scales similarly to the max-
imum likelihood method with respect to the number of states and training
vectors.

4 Experimental Results

We have performed preliminary simulations to determine the usefulness of
our new design method. We experimented on designing simple (2,3 and 4
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class) classifier systems for eight different data sets of 2000 vectors each. Al-
lowing three to six states in each Markov model, we designed HMM classifier
systems using the maximum likelihood and deterministic annealing methods.
We observe that the proposed DA approach improved the classification per-
formance consistently and considerably. Over the experiment’s data sets, the
rate of misclassification was reduced by factors of 1.2 to 3. Table 1 details
the results.

We are currently investigating the effectiveness of the design method on
real-world speech data to demonstrate its advantages for the speech recogni-
tion problem.

Dataset 1 2 3 4
No. of Classes 2 2 2 3
P, (ML) 17.4% | 31.6% | 26.5% | 28.7%
P. (DA) 6.5% | 21.7% | 18.7% | 20.9%
Dataset 5 6 7 8
No. of Classes 3 3 3 4
P. (ML) 27.0% 1325% | 249% | 423 %
P. (DA) 21.0% | 27.3% | 17.4% | 31.7%

Table 1: A comparison of the mis-classification rates obtained for HMM clas-
sifiers designed from eight classified training sets of 2000 patterns each. Each
set consists of data from 2,3 or 4 classes. ML represents a Max. likelihood
design algorithm and DA represents the deterministic annealing algorithm.

5 Conclusion

In this paper we propose a novel training method for HMM classifier systems
that jointly optimizes all the models to minimize the true cost, namely, the
rate of mis-classification. At the cost of moderate increase in complexity,
considerable improvements in recognition rates are obtained.
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