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Mixture of Experts Regression
Modeling by Deterministic Annealing
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Abstract—\We propose a new learning algorithm for regression basis functions [28]. We will refer to this class generally as
modeling. The method is especially suitable for optimizing neural mixture of expert{ME) models. ME’s have been suggested
network structures that are amenable to a statistical description for a variety of problems, including classification [13], [16]

as mixture models. These include mixture of experts, hierarchical .
mixture of experts (HME), and normalized radial basis functions control [15], [17], and regression tasks [17], [39], [40].

(NRBF). Unlike recent maximum likelihood (ML) approaches, we The main focus of this paper is the regression problem:
directly minimize the (squared) regression error. We use the prob- Given a training set of input—output paid = {(x;, y:)}.
abilistic framework as means to define an optimization method where x; € R™, y; € R™ are drawn from an unknown
that avoids many shallow local minima on the complex cost underlying distribution, design a mapping R™ — R" that

surface. Our method is based on deterministic annealing (DA), . . . th ted . hich. in th
where the entropy of the system is gradually reduced, with the minimizes the expected regression error, which, in the case

expected regression cost (energy) minimized at each entropy level.Of squared error, is given b¥[|ly — g(x)||*]. To formulate
The corresponding Lagrangian is the system's “free-energy,” the ME model for regression problems, we define the “local
and this annealing process is controlled by variation of the expert” regression functiorf(x, A;), whereA; is the set of
Lagrange multiplier, which acts as a “temperature” parameter. model parameters for local modgl Here, f(x, Aj) may be

The new method consistently and substantially outperformed - . . .
the competing methods for training NRBF and HME regression constant, linear, polynomial, or some other simple nonlinear

functions over a variety of benchmark regression examples. function of x. The ME regression function is defined as
Index Terms—Beterministic annealing, mixture of experts, neu- x) = Plilx] f(x. A 1
ral networks, regression. 9(x) zJ: (%, A4) (@)

where P[j|x] is a nonnegative weight of association between
input x and expertj that effectively determines the degree
N RECENT years, the study of neural networks has bee# which expert;j contributes to the overall model output. In
enriched by an infusion of ideas from diverse fields, inhe literature, these weights are often caligding units[16].
cluding statistics and probability theory, information theorye further imposé_; P[j|x] = 1, which leads to the natural
physics, and biology. These ideas have led to reinterpretatigferpretation of the weight of association or gating unit as a
of existing network structures; proposals of new network strugrobability of association. We restrict ourselves to the impor-
tures; and novel learning algorithms based on optimizatigant case where’[j|x] is a parametric function determined by
techniques, principles, and criteria from these fields. A prime parameter se®. We then obtain the following statistical
example, which is the focus of the present paper, is th}ﬂerpretation of the model. Input-output paix;, y;) is
development of neural network models that are inSpired I@%nerated by first random|y Samphng according to some
mixture models from statistics [26], [38]. This class includeﬁlput density and then randomly selecting a local model
the structures known as “mixture of experts” [16] and “hieraccording to the probability mass functigiP[4|x;]}. For the
archical mixture of eXpertS" [17], as well as normalized radi%hosen modek, the Output is then generated as a random
variable whose mean if(x;, Ay). From this viewpointg(x)
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space. In addition to partitioning the input space, the modelThe rest of this paper is organized as follows. Section I
parameter set is partitioned into submodels that are onmbgviews and discusses the basic learning approaches for ME
“active” for a particular local input region. By contrast, indesign, with emphasis on the central issues related to the
global models such as MLP’s, there is a single regressiohoice of learning criterion. In Section Ill, we derive the
function that must fit the data well everywhere with no explicipproposed optimization method for the general ME model and
partitioning of the input space nor subdivision of the parametgpecialize it for the NRBF and HME structures. Experimental
set. One advantage of piecewise solutions lies in the edsseults presented in Section IV demonstrate the substantial
of their interpretation—in particular, the role of individualimprovements in performance of the DA method over existing
parameters and individual submodels is easily discerned. Thigthods on real-world and synthetic data sets.
is not the case for global models, where it is more difficult to
ascertain the role of individual parameters.

The connection between ME models and local piecewise Il. ML VERSUS SQUARED ERROR

models such as CART is easily seen by noting that piecewis@n the last section, it was noted that for the ME structures
models are the special case of (1), whétig|x] is restricted in [16] and [17], an ML training criterion was chosen, even
to the valueg0, 1}, i.e., the limiting case of zero randomnesshough the possibility of training based on the squared-error
Like the pure piecewise models, the ME structure effectiveost was recognized [16]. We note that while several different
decomposes the regression problem into learning a setc@teria may be appropriate, depending on the particular ap-
(expert) models, each of which fits the data well in some locglication, the most common, ultimate objective for regression
region. However, none has exclusive ownership of a regids.to minimize the expected squared error between the true
In this (somewhat fuzzified) “divide-and-conquer” sense [17gutput and the output of the approximating function, i.e.,
these structures simplify the learning and modeling problerE.[Hy — g(x)||?], where the expectation is over the joint pdf
Moreover, this type of regression fitting generally yieldsf input—output pairg(x, y). In practice, joint statistics are
parsimonious solutions, with parameters added only when theyt directly available, and we must instead use finite-length
are required to improve the fit in a local region. Parsimoniougining and test sets that may not fully characterize the joint
models are known to yield improved generalization. statistics.

Although ME models bear similarity to the piecewise mod- Given a training se? = {(x;, yi),i =1, 2, ---, N}, the
els, there are also important differences. Unlike strictly piecequared-error objective is restated as the minimization of
wise regression, which produces a function that is discon-
tinuous at region boundaries, the mixture of expert func- . 2
tions is smooth everywhere due to the averaging in (1). 1 L il AL
Furthermore, the learning methods employed for piecewise N Z Vi Z Plixilf (i, A7) @
regression function design are typically greedy and suboptimal

because of the difficulty of jointly optimizing all the modelover the set of model parametefs= {A,} and assignment

arameters. Learning for mixture of experts, on the other
Eand does naturall g|nvolve oint o t|m|fat|on of the entir robab|I|ty parameter®. The ML training criterion [16], [17]
y J P onsists of maximizing

model. In this sense, the ME model is closer to global models
such as multilayer perceptrons, where learning is based on i
backpropagation [37] or other descent methods over the entire Z log Z JQX:L/Q —[ly:—f(xi,A)|7 /207] (3)
parameter set. (2m0

The natural learning criterion for regression is the squared-
error cost, which is commonly referred to as the regressiower A, ©, and the variance parametef. The choice of
error. However in [16] and [17], a maximum likelihood (ML)the ML objective for training was justified from several
criterion was preferred. This choice was justified by improvestandpoints in [16]. The authors made a surprising but valid
performance (even in the sense of squared-error), easeob$ervation that ML training led to better performance in the
optimization, certain desirable properties of the solution, asgnse of the squared-error criterion. They further noted that
by the applicability of the popular expectation-maximizatioML training was faster than squared-error training. Finally,
(EM) algorithm [5] to the design. In this paper, we reason thit was observed that ML training yielded ME models that
the superiority of ML methods is mainly due to the complexitgould be qualitatively categorized as “competitive,” whereas
of the squared-error cost “surface,” which requires momsguared-error training led to solutions that were more “cooper-
powerful optimization methods than direct gradient desceative.” Competitive models can be understood as ME solutions
to ensure good results. Thus, rather than abandon the squalined more closely resemble local piecewise models than global
regression error training criterion, we propose a better methotdels. In these, only a few experts are strongly activated for
for its minimization. Like the ML-based approach, our methodny given input. In cooperative models, on the other hand,
capitalizes on a probabilistic description of the ME modethe representation is far more distributed, with many experts
However, we only use this probabilistic framework to developotentially contributing to a given output. In [16], competitive
a powerful optimization method for minimizing the originalmodels were favored based on the advantages of a localized
objective. This method is based on the deterministic annealirgpresentation. In addition to the justification given in [16],
approach to clustering [34]-[36] and its extensions. ML-based training is also attractive because it can be realized
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by the popular EM algorithm [5], [17]. The EM algorithmrather than abandon the squared-error training criterion, our
has useful convergence properties as described in [17]. It afgoposed line of attack is to seek a better method for its
affords an interesting interpretation to the regression probleninimization.

by essentially hypothesizing that the data was in fact generated

by a local piecewise model but with the partitioning of the ll. DETERMINISTIC ANNEALING

inputs to experts considered to be unknown or “missing data.”

The gating units then measure the expected values of thidh recent years, optimization methods grounded in an a_nal-
missing data ogy to physical and chemical processes have been actively

The use of ML estimation and the EM algorithm for théjeveloped to tackle combinatorial optimization problems such

mixture of experts structure has stimulated renewed inter&St the Lra:j/ell(lng salesmgn plrob:jem [8]. ﬁn |m2p00rt.ant stochasl—
in the learning problem for neural networks, opening up .m(.et 0d known as simu ated annealing [20] is a genera
ptimization technique that converges to the globally op-

alternative statistical perspective on neural network trainin | solution i bability. H th tational
This approach has been successfully applied in several learni solution in - probability.  Fowever, the computationa
omplexity of an implementation assuring this convergence

contexts [17], [39], [41]. However, despite these promisin et ds what b ticall lized. The | .

results and the justification given in [16], we will reason her eﬂ 3Xiﬁet S W 3 calm f] practllgia(ljy reafized. ¢ € earmhng

that the squared-error cost that directly measures the regres 0 at we develop here bullds on recent approaches
that capture some of the power of the stochastic annealing

error is a more appropriate training criterion. Gimizati thod while reduci tational lexit
We first note the mismatch between ML and squared—err%.P imization method while reducing computational complexity
via a deterministic approximation. Several related methods

minimization. The likelihood maximization of (3) improveshave been described as “deterministic annealing” and “mean
theindividual fit between outpuy; and each expert(x;, A;) field annealing” and have been developed in different fields.

rather than the cooperative fit based on the ME oufu). Our approach builds on the deterministic annealing (DA) ap-

Although this approach encourages each expeividually to .
fit the data well in some localized region, there appear to be %oach for_ data (_:Iusterlng and related problems [34]-{36] and
guarantees on the performance of the resulting overall modgf. gxtensmn to mco_rporate. structural con_stramts on the data
Moreover, we argue that the best regression function & S|gn'm§ants [27].\.N'th. particular emphas!s on the problems
the one that minimizes the regression error regardlesso fsta’ustlcal classification [27] and piecewise regression [33].
whether the resulting solution is qualitatively competitive oI :c”ethi ﬁbo}/ﬁepégﬂi:gi’ ngaelre EAtEZS dilr_ea:]d)gszen utseemd
cooperative. In fact, an important advantage of the ME mo that irr?élgrr?e'nts hard assigr?men;N ofsdata to Slr%ups or (flféses
seems to be that it admits both possibilities. Thus, if t . o e o
P e DA method introduced randomization within the design

learning algorithm is successful in minimizing the cost, | hase in order to allow global optimization over probabilities
should be able to seek either competitive or cooperative resufl 9 P P :

depending on which provides a better fit to the given data. uﬁimately leading to hard assignments as the “temperature” is
lowered to zero.

It is important to note that by adopting the squared-error . . -
. . L . The mixture of experts regression model bears some similar-
criterion, we do not discard the probabilistic interpretation 0{

the model parameters. The weighfj|x] is indeed interpreted ity to PIECEWISE regression as datg Is assigned to Iocal'r.nod.els.
- Lok . . However, an important difference in the problem definition is
as the probability of associating inputt with model j. The

: L o ._that each data point is associated in probability with the various
function f(x, A;) is interpreted as the conditional expectatlop . A
of output Y given that inputx is assigned to modej ocal models. Hence, randomized association is inherent to
) e model and does not have to be introduced artificially. We

However, the training of these parameters is performed 10 . S . .
9 P P ._next derive the deterministic annealing approach for the design

minimize the regression error directly rather than maximiz . L
9 y of a general mixture model, followed by specialization to

the likelihood objective. .
We note that in the closely related problem of pattergleveIOp the DA method for the NRBF and the HME regression

classification, there has been a renewed research interest Tﬁh ltectures.

[11], [18], [21] in the optimization of the true, yet complex, ) .

cost—misclassification probability—rather than a mismatchéti DA Design Method for a General Mixture of Experts Model

but simpler cost function. This approach has found applicationsFundamentally, we view the ME design problem as the

in various fields, particularly in speech recognition [19], [29]problem of optimization of the data assignment rule that
At this point, we must reconcile our argument with th@overns the relation between data and local models. However,

finding in [16] that solutions obtained by ML learning areunlike hard partitional clustering problems, each data point is

superior to those trained directly for the squared-error cost. associatedn probability to the local models. In other words,

fact, with some qualification, our results are not inconsisteME model design does not impose hard data associations but,

with this finding. More concretely, we have found that ascenather, seeks the optimal probabilistic assignmeitg;|x;|}

on the likelihood cost surface sometimes leads to bet@s well as the model parameter sg} that minimize the

solutions in the sense of squared error than those obtainedsbyared-error cost

direct gradient descent on the squared-error cost surface itself. 5

However, what this primarily suggests is that the squared- 1 .

error surface may be more complex than the ML surface, with D= N Z Yi— Z Pljlxilf(x, Aj) 4)

numerous poor local optima to trap descent methods. Thus, i J
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where { P[j|x;]} are determined by the parameter égtas In practice, the minimization of" is achieved by a series
defined for the specific ME structure. The Shannon entropy of gradient descent steps on this cost at each temperéture
the association between the data and local models is An “annealing schedule(T) determines the procedure for
1 gradually cooling the system. When the system has reached
H= N Z Z Plj|x;] log P[j|x:]. (5) thermal equilibrium at a temperatufg the temperature update
i T «— ¢(T) is applied followed by minimization of" at the

. new temperature. An exponential schedy(&) = «T, where
The entropy may _be V|e_vved as a measure of the “’?‘”d‘_’m”SSE 1 worked well in all our experiments.
of the pr(_)baplhstlc aSS|gnment.s_.. The ultimate objective Is The DA algorithm can be summarized as follows.
the optimization of the probabilities and model parameters L :
to minimize D whose cost surface is typically riddled with 1) Set parameters_: initial temperatLTg final temperature,
poor local minima. In this work, we propose to apply an T, and annealing schedule functiqg).
“annealing” process, whereby a high level of randomnessz) Sgt_T_: Ti.
(entropy) is imposed on the system, and then, the constraint i) Minimize” = D — TH over (6, A).

gradually reduced. The basic constrained optimization problem4) Lower temperaturel” — q(T).

is therefore 5) If ' > 1%, go to Step 3. -
Although any standard local optimization method can be
min D subject toH = Hy (6) used to minimize the free energy in Step 3, we used a simple
&4 gradient descent method in our experiments.

where H, is the imposed level of randomness. Effectively, The DA design approach described in this section is quite
this optimization seeks the best randomized regression mod&neral and can be specialized to any specific mixture of
given a prescribed level of randomne&. The annealing €xperts model. Different ME structures simply correspond
process involves solving a sequence of optimizations of tH@ different parametric forms for the association probabili-
type for decreasing values &f,. The constrained optimizationties {P[j|x]} and the local modeld f(x, A;)}. Hence, the

is, of course, equivalent to minimization of the Lagrangian corresponding DA design methods differ only in the gradient
step prescription for the free-energy minimization of Step 3.

F=D-TH, (7) We next consider two important ME models—the normalized
radial basis function (NRBF) and the hierarchical mixture of

where 7" is the Lagrange multiplier. It is important to noteexperts (HME) and rederive the DA design method for these
that the quantity/’ can also be identified as the Helmholtztryctures.

free energy of a system with “energyD), entropy H, and

“temperature,”I’. Thus, the annealing process involves minig Normalized Radial Basis Function (NRBF)

mizing F starting from high!” and tracking the minimum for a _ . _ . : .
sequence of decreasing valuesTofAt high T, the objective The radial basis function (RBF) architecture is an important
is, in fact, entropy maximization, which is achieved by th8IaSS of neural networks. Typically, the RBF network has

uniform distribution. AST’ is lowered, increasing emphasis WO Stages. In the lower (first) stage, the “activation” of

placed on minimizingD, which also has the effect of reducingeach node is determined by a set of RBF's. In the second

the entropy. AtI’ = 0, we seek to minimizeD regardless of stage, the activations are combined linearly to obtain the
the level of entropy, which is precisely the ultimate objectivéigressj'on esl':lmater.] AIthough there are rgany poss:ble chd0|ces
The annealing process helps to avoid shallow local minim@ RBF'S, perhaps the most important and commonly used are

as will be demonstrated in the results section. the Gaussian basis functions
We can gain some intuition about this annealing process by Ri(x) = o~ (lx—my|I?/20%) 8)
noting that solutions with high entropy can be characterized as
highly “cooperative,” whereas solutions with low entropy ar&he vectoram,, are the “centers” or “prototype vectors,” and
more “competitive.” Thus, the annealing process effectively is the “bandwidth.” The RBF was suggested for general
conducts a search for the best regression model, starting witterpolation problems [32] and used in the context of neural
the constraint of a high degree of cooperation, and graduatigtworks [2], [28]. RBF's have some useful properties that
relaxing this constraint. Since dt = 0 there is no constraint make them particularly attractive for regression applications
on the entropy, the method ultimately seeks the best regresg@}) [12]. They have been used successfully in a wide variety
solution, regardless of whether the result is “competitive” @f practical applications in regression [3], [6], [30], [31] as
“cooperative.” Note that at a very high temperatufe co), well as in classification [22], [23].
the uniform distribution implies that all the local models are An important extension of the basic RBF architecture is
identical. The effective model size (number of nondistinct locghe normalized RBF (NRBF) shown in Fig. 1. The NRBF
models) is one. Asl’ is lowered, more emphasis is placedrchitecture is organized in two layers. In the lower layer,
on reducing the regression error, thereby leading to a gradual compute the hidden outputs via the normalized RBF's
growth in the effective model size. The entropy constrained

formulation, however, ensures that the model size will increase Plk|x] = L(X) 9)
only if the improvement in the regression error warrants the ZRk’(X)
decrease in the entropy of the associations. K
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Fig. 1. Normalized radial basis function (NRBF) architecture.

The second layer then performs the linear operation Expert Expert Expert, Expert
K
g(x) = Z Plk|x]Ag. (20) [ [ I ‘
k=1 X X X X

This architecture may be |nterpreted as an ME model Whé'_r@ 2. Two-level binary tree representing the HME architecture for regres-
the weights{P[k|x]} represent the probabilities of associ™'*™
ation with the corresponding constant local modéls;}.
Further, these probabilities are determined by the parametersl for the local model,
© = {{m;}, o}. We wish to optimize the parameter g8t aF )
jointly with the local model parameter satto minimize the oA, N > PlElxi]lg(xi) — yi] = 0. (14)
regression error g
L X In the above equations, we make use of the quantities
D=—= vi — g(x)]]?. (11) T
F 2 v = oGl ) = 20g(x) — YAk — 5og lhe =y (15)

One common NRBF design approach was suggested in [28fid their average over the models
Fix the RBF centergmy } via a clustering algorithm [24], and I
then, optimizeA and o to minimize the cost functio. A (x) = Z Plk[x]61(x). (16)
more powerful version of this algorithm optimizes the entire

k=1
NRBF parameter s€i9, A} in the second step. This algorithm ) ) ,
is quick but suboptimal, primarily due to the aforementione§n€ 9radient expressions above can be viewed as perceptron-

difficulties with gradient descent on the cost surface. like learning rules. For example, a gr.adient descent step for
We propose the DA approach that avoids many poor Ioctae prototypes based on (12) can be mterprete_d as a rule _that

minima on the cost surface. The basic DA optimization stéfOveS & prototype toward or away from data points, depending

is the minimization of the regression error at a given lev@n wheth.erlthelr pontr!but|on to the cost increases or decreases

of entropy (5) or, equivalently, the minimization of the fre?Y @Ssociation with this prototype. The rules for theand A,

energyF = D—TH. This free energy minimization is carriedc@" be interpreted in a similar manner.

out for a sequence of decreasing temperatures endifig-a0. ) ) _

At each temperaturd’, the minimum satisfies the following C- Hierarchical Mixture of Experts (HME)

conditions. In its most general form, the hierarchical mixture of ex-
For the RBF centers perts (HME) is organized as a multilevel, multibranch tree.
oF 1 _ Although our design method is applicable to this general
om,  No? Z (i — ) P[R[xi][05(xi) — 6(xi)] structure, for simplicity of presentation, we will restrict dis-
¢ cussion to the simple two-level, binary-tree HME architecture
=0 (12)  of Fig. 2.
for the bandwidth parameter The leaves of the tree represent simple local regression

OF 1 B models (experts). Starting from the root node, we imagine

= Z Z llxs — myg ||2P[k|x:][0r (x:) — 0(x)] choosing a random branch, recursively, until we arrive at one

do  No° & & of the leaves. The conditional distribution for choosing the
=0 (13) branches given a node is computed at that node by a “gate.”
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Specifically, the gate at the root node obsemxxesmd computes hierarchy. Generalization to larger trees is straightforward. The

the conditional distributioh optimality conditions are
vIx or 1 —
9; = ifj (17) Voo N Y gix)[pi(xi) — dx)xi =0 (22)
6v%x J i
m aF 1 J—
v TN > pik(xa)bin(xi) — 6, (x)lxi = 0 (23)
Similarly, at nodej in the lower layer, the gate computes the ! @
conditional distribution and
oF 2
Vi dun - N Z [9(x:) — yilpjn(xi) = 0. (24)
Irlj = T (18) ‘
Z ’ In the equations above, we have made use of the following

t additional variables, each associated with a branch in the tree.

One may interpret the hierarchy as a soft tree-structured ey _ ' T, .
partition of the input space, based on weight vectpvs} ¢;(x) =2lg(x) = ylu;(x) + Tlvjx = h;(x)] (25
and {ij}.

The conditional distribution over the branches induces a din(x) =2[g(x) — ¥]p5x(x) +Tv]Tkx (26)
distribution over the local models. Specifically, the probability _ _
of choosing modejuy. is given bypx = g;gx;. From the as well as their average values, which have been computed

ME viewpoint, we are interested in the weighted average 8Y€r Pranches that terminate at the same node:

and

the outputs, i.e., the expectation H(x) = Z 9;(X)¢; (%) 27)
J
g9(x) = Z Djktjn = Z gj{z gkljﬂjk} and -~
gk J ; $(%) =Y gkl ()b (x). (28)
= 9 (19) *
J The quantitys; denotes the conditional entropy

where; is defined as the term in parenthesis. The straight- hj = — Z gr|; log gry;- (29)
forward way to computeg(x) is via the architecture in Fig. 2. &

we pr.opagate the estimates provided by the experts by Ilnearlyl_he above expressions for the gradients offer interesting
combining them as we proceed from the leaves to the rooérce tron-like interpretations to the gradient-descent algo-
node, where the final regression estimate) is produced. percep P 9 9

The HME design objective is the optimization of associatioEnthm' Viewing the ¢ varlables as t.he contribution of each
probability parameter® = {{v,i}, {v;}} and the model ranch to the cost function, a gradient-descent method based

g : on (22) and (23) may be interpreted as a perceptron-like rule to

parameter seA to minimize the regression error o . .
strengthen (weaken) the association of an input with branches
1 N that contribute a cost that is smaller (higher) than the average
D= ~ Z llvi — g(x:)|1? (20) over all branches that terminate at the same node.
=1

We are interested in simultaneously controlling the entropy of IV. REsuLTS

association given by In this section, we report the results of our experiments com-
) paring the deterministic annealing approach with conventional
H=—— (%) log pin(x;). 21) design methods for NRBF and HME regression functions. The
N z; zJ: zk: (i) log pju(xi) @ experiments are performed over some popular benchmark data
sets from the regression literature. Among these data sets, the
Equivalently, we minimize the Lagrangiaht = D — T'H first three are real-world applications of regression drawn from
at a fixed temperaturd€. As in NRBF design, we use athe StatLib data set archi§ewhereas the others have been
gradient descent method for the optimization. The free-energynthetically generated.
minimization is repeated for a sequence of decreasing temperin each experiment, we compare the average squared-error
atures. An important advantage of this approach for the trebtained over the training set using the DA design method and
architecture is that the gradients can be computed efficienthe alternative design methods. The comparisons are repeated
via a backpropagation-like rule that follows from the chaifor different network sizes. The network siZé refers to the
rule of derivatives. Here, we only write the simpler optimalithumber of local experts used in the mixture model. For the
conditions for the gradients in the case of the two-levelse of binary HME trees witli levels, K = 2!, and for

the case of NRBF regression functiorfs, is the number of
INote that although the variablgs; ., g;, 9| Ris ik depend onx,
for the sake of notational simplicity, we drop the argumgntHence, e.g., 2The StatLib data set archive is accessible on the World-Wide Web at
Uik = pjr(x) unless otherwise stated. http://lib.stat.cmu.edu/datasets/
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TABLE | TABLE 1
COMPARISON OF REGRESSIONERROR OBTAINED UsING DA anD GD COMPARISON OF REGRESSIONERROR OBTAINED USING DA, GD, anD ML
ALGORITHMS FOR NRBF DESIGN FOR THEBOSTON HOME VALUE ALGORITHMS FORHME FuNcTION DESIGN FOR THEBOSTON HOME
ProBLEM. K Is THE NUMBER OF GAUSSIAN BASIS FUNCTIONS VALUE PrROBLEM. K |s THE NUMBER OF LEAVES IN THE BINARY TREE
K | DA | GD K| DA | GD | ML
1 | 87.7 | 87.7 4157|5975
2 119.7 | 23.8 8134 | 36| 5.6
4 11291 19.3
6 | 12.6 | 15.7 TABLE Il
COMPARISON OF REGRESSIONERROR OBTAINED UsING DA anD GD
101 6.5 | 13.7 ALGORITHMS FORNRBF DESIGN FOR THEMORTALITY RATE PREDICTION
ProBLEM. K Is THE NUMBER OF GAUSSIAN BASIS FUNCTIONS

. . . . K DA GD
Gaussian basis functions used. Following the most common

implementation, the local models are constant functions in 1 13805.1 | 3805.1

the NRBF case and linear functions in the HME case. The 2 | 11488 | 2154.0
alternative design approaches used for comparing our HME

design algorithm are 41 720.8 | 1256.8

* “GD,” which is a gradient descent algorithm to simultane- 6 | 439.1 | 566.5
ously optimize all HME parameters for the squared-error

cost: 8 | 299.6 | 564.5

e “ML,” which is Jordan and Jacobs’s ML approach [17]. 10 | 261.4 | 4382

For the NRBF regression function, we have compared the DA

design approach with the gradient descent algorithm, which ) ) ) )

is an enhanced version of the method suggested in [28] (4N the DA result. Since the regression function obtained by

described in the previous section). A is generally independent of initialization, a single DA run
In our implementation of the DA algorithm for both NRBFSufficed. _ .

and HME design, we adopt an exponential temperature schedEirst, we considered the Boston home value prediction

ule ¢(T) = oT with « = 0.98. Further, the free-energy Problem [10]. Here, we use data from 506 homes in the

minimization at a fixed temperature is performed via a s&0ston area to predict the median price of each home from 13

quence of gradient descent steps. Convergence is determitf@jures that are believed to have some influence on it. Since

by comparing the fractional improvemérin free energy to a the features have different dynamic ranges, we first normalized
small threshold value — 10—4. each one to unit variance. Using the entire data for training, we

In our implementation of the GD algorithm for NRBFdesigned NRBF and HME regression functions using DA and
design, we randomly initialize all parameters, apply fhe alternative methods. Our results in Tables | and Il demonstrate

means algorithm [24] to place the RBF centers, and executégt for both mixture models, the DA approach achieves a
sequence of gradient descent steps on all parameters. In theSgpificantly smaller regression error compared with the other
algorithm for HME function design, a random initialization offPProaches over a variety of network sizes. _
all parameters is used. The GD algorithms for both architec-Our second data set, which is taken from the environmental
tures terminate when the fractional improvement is small§fi€nces, has been used by numerous researchers since its
than the thresholde. introduction [25] in the early 1970's. Here, we consider the
In our implementations of all the above methods, we uséoblem of predicting the age-adjusted mortality rate per
an identical improvement threshold) (to ensure fairness of 100000 people in a locality from 15 factors that may have
comparison. To implement the ML approach to design HMEossibly |nﬂuencgd it. Since thgrg is data for only 60 localities,
functions, we used the algorithm based on iterated recursiyg used the entire set for training. Tables Ill and IV show
least squares (IRLS), which was suggested in [17]. StartiH@f‘t for'both the NRBF and HME regression strgctures, over
from a random initialization of all parameters, we allow 10§1€ entire range of network sizes, the DA design approach
epochs of this recursive algorithm for the solution to converg@gnificantly improved performance over the competing design
For fair comparison, we take a conservative (worst-cas@fthods. . . o
estimate that the complexity of the DA approach is ten times The third regression data set is drawn from an application in
greater than that of the competing methods. To compensateffff food sciences. The problem is that of efficient estimation
the complexity, we allow each competing method to generdté the fat content of a sample of meat. (Techniques of
results based on ten different random initializations, with tr@halytical chemistry can be used to measure this quantity
best result obtained among those runs selected for comparig$gctly, but it is a slow and time-consuming process.) The
N . —_ _ data set of measurements was obtained by the Tecator Infratec
Fractional improvement of a cost function is the ratio between t

improvement in the cost resulting from an iteration and the absolute vaTEQOd and Fegd Analyze_r! Wh'Ch. estimates the absorptlon of
of the cost before the iteration. electromagnetic waves in 100 different frequency bands and
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TABLE IV TABLE VII
COMPARISON OF REGRESSIONERROR OBTAINED USING DA, GD, AND ML COMPARISON OF REGRESSIONERROR OBTAINED UsING DA AnD GD
ALGORITHMS FOR HME DESIGN FOR THEMORTALITY RATE PREDICTION ALGORITHMS FORNRBF DeSIGN TO APPROXIMATE FUNCTIONS,
ProBLEM. K |s THE NUMBER OF LEAVES IN THE BINARY TREE fi() --- fs(). K Is THE NUMBER OF GAUSSIAN BAsis FUNCTIONS.

“TR” AND “TE” REFER TO TRAINING AND TEST SETS, RESPECTIVELY

K| DA | GD | ML

Method | K | fi() | f20) | fs0) | fa0) | f50)
4 118.2|121.8]70.4
DA(TR) | 8 | 0.001 | 0.008 | 0.01 | 0.08 | 0.13
81 21 12.3 | 41.8
DA(TE) | 8 | 0.001 | 0.009 | 0.01 | 0.09 § 0.13
TABLE V GD(TR) | 8 | 0.02 | 0.044 | 0.16 | 0.19 | 0.24
COMPARISON OF REGRESSIONERROR OBTAINED UsING DA anD GD
ALGORITHMS FOR NRBF DESIGN FOR THEFAT CONTENT PREDICTION GD(TE) | 8 | 0.02 | 0.049 | 0.17 | 0.17 | 0.23
PROBLEM. K |Is THE NUMBER OF GAUSSIAN BAsis FUNCTIONS. “TR”
AND “TE” REFER TO TRAINING AND TEST SETS, RESPECTIVELY DA(TR) | 16 | 0.001 | 0.003 | 0.01 | 0.05 | 0.02
DA GD DA(TE) | 16 | 0.001 | 0.005 | 0.01 | 0.05 | 0.03
K| TR TE TR TE GD(tr) | 16 | 0.02 | 0.012 | 0.14 | 0.06 | 0.24
1115991 1682 | 159.9 | 168.2 GD(te) | 16 | 0.02 | 0.017 | 0.12 | 0.07 | 0.23

2| 52.9 | 58.8 | 131.4 | 159.7

TABLE VIII
CoMPARISON OF REGRESSIONERROR OBTAINED UsING DA, GD, ano ML
ALGORITHMS FOR HME FUNCTION DESIGN TO APPROXIMATE FUNCTIONS
Fi() -+ f5(). K Is THE NUMBER OF LEAVES IN THE BINARY TREE
“TR” AND “TE” REFER TO TRAINING AND TEST SETS, RESPECTIVELY

4 1 286 | 329 | 119.8 | 138.0

6| 273 | 40.1 | 749 | 83.7

TABLE VI Method | K | fi{) | f0) | £30 | fa() | £50)
COMPARISON OF REGRESSIONERROR OBTAINED USING DA, GD, AND ML
ALGORITHMS FORHME FUNCTION DESIGN FOR THEFAT CONTENT DA(TR) | 4 | 0.0006 | 0.02 | 0.18 | 0.20 | 0.19
PREDICTION PROBLEM. K |s THE NUMBER OF LEAVES IN THE BINARY TREE
“TR” AND “TE” REFER TO TRAINING AND TEST SETS, RESPECTIVELY DA(TE) | 4 | 0.0006 | 0.02 | 0.18 | 0.25 | 0.21
DA GD ML GD(TR) | 4 | 0.0079 | 0.06 | 0.39 | 0.36 | 0.35
K|TR|TE | TR | TE | TR | TE GD(TE) | 4 | 0.0082 | 0.06 | 0.47 | 0.43 { 0.38
4183|115 14.1 | 18.1 | 15.1 | 23.9 ML(TR) | 4 | 0.026 | 0.08 | 0.86 | 0.36 | 0.43
869198 128172125 | 39.7 ML(TE) | 4 | 0.039 | 0.12 | 0.79 | 0.46 | 0.51
DA(TR) | 8 | 0.0003 | 0.01 | 0.09 | 0.08 | 0.17
the corresponding fat content as determined by analytical DA(TE) | 8 | 0.0003 | 0.02 | 0.09 | 0.01 | 0.16
chemistry. As suggested by the data set providers, we divided GD(TR) | 8 | 0.0063 | 0.05 | 0.12 | 035 | 0.28
the data into a training set of size 173 and a test set of (TR) . il : .
size 43. Next, we designed the NRBF and HME regression GD(TE) | 8 | 0.0079 | 0.05 | 0.12 | 0.40 | 0.30
fu_ncnons using the_ DA and conventional design methods for ML(TR) | & | 0.011 | 0.03 | 0.12 | 0.00 | 0.32
different network sizes. In Tables V and VI, we compare the
average squared error obtained over the training and test sets.  ML(TE) | 8 | 0.016 | 0.04 | 0.14 | 0.14 | 0.44

Again, the DA design approach significantly outperforms the
conventional design methods over both training and test sets .
for both HME and NRBF architectures. Note that allowing th&2Pes VIl -and VIl show improved performance of the DA
ML approach to use a larger network size does not necessaFﬂ?thOd that is consistent with the results obtained for the other

improve the test set performance, although performance on fiffichmark sets. o _ _
training set improves marginally. Although, we demonstrate significant improvements in re-

The last set of experiments is based on synthetically geff€SSion performance using the DA design approach, this gain
erated data. HeréX = (wo, 1) is 2-D, and the training set is obtglned at the.expense.of an increase in complexity. In our
is generated according to a uniform distribution in the unfXPeriments, the increase in complexity is by a factor of 2-10.
square. The outpuY is scalar. We created five different data
sets based on the functiong, (), f2(), ---, f5()] specified V. CONCLUSIONS
in [4] and [14]. Each function was used to generate both aWe have presented an annealing approach for the design
training set and test set of size 225. We designed NRBF aoidregression models based on the mixture of expert archi-
HME regression estimates for each data sets using both Bestures. This class includes the recent hierarchical mixtures
and the competitive design approaches. The results showrofnexperts [17] as well as normalized radial basis functions
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[28]. There has been much recent interest in these structunes)] B. H. Juang and S. Katagiri, “Discriminative learning for minimum error

prompted mostly by new learning algorithms that emphasize a
probabilistic description of the model and redefine the learning,
problem from a statistical perspective as ML estimation.
Although these algorithms have several attractive properti ?0]
including efficient learning based on the EM algorithm, w
have identified two shortcomings, namely, mismatch betweé&il
the design objective and the regression error and suscepti-
bility of design methods to poor local minimum traps. Thez2)
proposed DA method capitalizes on the probabilistic model
description to directly attack the regression error minimization
criterion while avoiding many shallow local optima of the cost23]
Experimental results provide ample evidence of the superior
performance of the DA method. [24]

[25]
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