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Abstract

We attack the difficult problem of optimizing a hidden
Markov model (HMM) based speech recognizer to minimize
its misclassification rate. In conventional HMM recognizer
design, the training data is divided into subsets of identi-
cally labeled tokens and the HMM for each label is designed
from the corresponding subset using a maximum likelihood
(ML) objective. However, ML is a mismatched objective and
ML design does not minimize the recognizer’s misclassification
rate. The misclassification rate is difficult to optimize directly
because the cost surface is riddled with shallow local minima
that tend to trap naive descent methods. Here, we propose an
approach which is based on the powerful technique of deter-
ministic annealing (DA) to minimize the misclassification cost
while avoiding shallow local minima. In the DA approach,
the classifier’s decision is randomized during design and its
expected misclassification rate is minimized while enforcing a
level of “randomness” measured by the Shannon entropy. The
entropy constraint is gradually withdrawn (annealing) and in
the limit, the cost function converges to the misclassification
rate of a regular “non-random” recognizer. This algorithm is
implementable by a low complexity forward-backward proce-
dure similar to the Baum-Welch re-estimation used in ML de-
sign. Our experiments on speaker-independent isolated word
speech recognition of clean and noise-corrupted utterances of
letters of the difficult E-set = { b,c,d,e,g,p,t,v,z} demonstrate
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that DA-designed recognizers offer consistent and substantial
improvements in accuracy over ML-designed recognizers.

1 Introduction

Hidden Markov modeling (HMM) of speech utterances is a key paradigm in
many conventional speech recognition systems. While the objective in speech
recognition applications is accurate classification of utterances, the design of
HMM-based speech recognition systems has traditionally been equated to and
based on maximum likelihood modeling of speech. Recently, several speech
recognition researchers [1, 2, 3, 4, 5] have recognized the inherent mismatch
between the goals of the recognition problem (minimization of the misclas-
sification rate) and the objective of the modeling problem (maximization of
the likelihood). The problem is exacerbated because: (i) the training data is
often inadequate to estimate the distribution optimally and (ii) the HMM is
not necessarily the optimal stochastic model for speech. It should perhaps be
noted that a similar mis-match between the true objective and the commonly
used design objective has been pointed out for the related problem of pattern
classifier and regression function design. This realization has led to new ap-
proaches [3, 6, 7] that directly optimize the true objective and demonstrate
significant improvements in performance.

Robustness and accuracy of speech recognizers can be substantially im-
proved by joint optimization of all design parameters to directly minimize
the misclassification rate. However, there are several important design dif-
ficulties that must be overcome. Firstly, the misclassification cost is not a
smooth function of the design variables. This eliminates the possibility of
using a simple local descent method for optimization. In fact, the cost sur-
face is highly complex and riddled with shallow local minima which tend to
trap even sophisticated descent algorithms. Secondly, joint optimization of
the recognizer parameters is computationally complex, even for an off-line
design.

The novel approach we propose in this paper is based on the powerful
technique of deterministic annealing (DA) for clustering and related problems
which was first presented in [8, 9]. Of particular relevance here is the DA
extension to include structural constraints which was applied to the design of
pattern classifiers [7], regression functions [6] and a new class of source coding
systems [10]. In this paper, the DA approach is extended, non-trivially, to the
design of HMM-based speech recognizers. The method is used in conjunction
with minimum classification error (MCE) training [3] and can be applied
to both discrete and continuous output HMM systems. Moreover, DA is
implementable by a low-complexity forward-backward algorithm similar to
the Baum-Welch re-estimation steps of the popular but suboptimal maximum
likelihood design method.
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2 HMDM-based speech recognition

Consider the following typical isolated-word recognition problem : We are
given a training set 7 = {(y1,¢1),(¥2,¢2),.-(yn,cn)} of labelled training
patierns. The pattern, y; corresponds to an utterance of the word, ¢; which
belongs to a finite-sized dictionary, C = {1,2,..M}. Moreover y; is a vector
of I; observations which may be discrete or continuous. Continuous observa-
tions are usually a sequence of feature vectors (typically consisting of cepstral
coefficients or linear prediction coefficients and their derivatives) extracted
from consecutive time frames of the speech utterance. If discrete-observation
HMMs must be used, the feature vectors are vector-quantized to entries in
a pre-designed finite length codebook of prototype vectors and the sequence
of quantization indexes obtained by this process is defined as the discrete
observation vector.

The HMM recognition system consists of a set of HMMs {H;, j = 1,2..M},
one per word in the dictionary. The model H; is fully specified by the param-
eter set A; which includes the state transition probabilities, state-dependent
output distributions, and the initial probabilities of the states. The HMM
system that we design here uses the common “best path” discriminant ap-
proach ! which can be implemented by the computationally efficient Viterbi
search algorithm.

Given a training pattern y; we determine for each HMM H; a discriminant
d;(y:) which is the log likelihood (based on the HMM model) of the most likely
state sequence:

di(y;) = l(y:,s, H;). 1

i (i) 5% | (vi,s, Hj) ey
Here, &), (H;) is the set of all state sequences of length [; in the trellis of HMM
Hj; and l(y;, s, Hj) is the log likelihood of a particular state sequence s. The

classifier maps each input pattern to the dictionary entry corresponding to
the HMM with the highest discriminant:

Cly;)=arg mjaxdj(yi). (2)

This classification system can be viewed as a competition between paths. The
observation is ultimately labeled by the class index of the HMM to which the
winning path belongs.

To design this HMM-based recognizer, we must jointly optimize the HMM

parameters {A;} to minimize the empirical misclassification rate measured
over the training set,

N
. 1
minPe =15 > 8(C(vi), ). (3)

=1

Here ¢ is the error indication function: §(u,v) =1 if u = v and 0 otherwise.

! Our design method can be easily modified to the case where the discriminant is obtained
by appropriate averaging of the likelihood over all paths.
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A significant difficulty in this optimization arises from the nature of the
cost P, which is a piecewise constant function of the HMM parameter set.
Consequently the gradients with respect to the HMM parameters are zero
almost everywhere, thus preventing us from using gradient descent based
optimization techniques. Recently, Juang et al [3] have proposed the Gener-
alized Probabilistic descent (GPD) approach to circumvent this difficulty - in
GPD, the piecewise cost function is replaced by a smooth approximation to
1t. While the modified GPD cost function is continuously differentiable, thus
allowing descent-based optimization, in practice, there are numercus shallow
local minima on the complex cost surface that can easily trap optimization
methods based on simple descent. Here, we propose an alternative approach
based on the powerful optimization method of deterministic annealing which
simultaneously tackles the piecewise nature of the cost function and the prob-
Iem of shallow local minima traps.

3 Deterministic Annealing

The fundamental idea behind the DA approach is to randomize the “best-

path” classification rule during design. In effect, we replace the original (non-

random) rule which associates a pattern y; to a unique winning state sequence

s, by a randomized rule that chooses a state sequence s in model H; with a
probability,

Pls. H evl(y,-,s,H,-) 4

(s, Hilys) = 5 RICTIC N “)

j’ SIESI'(H].I)

This parametric form for P(s, H;|y;) is referred to as the “Gibbs” distribu-
tion. Note that paths with higher “scores”, {(y;, s, H;) are more probable to
be chosen as output. The parameter, v controls the “fuzziness” of the distri-
bution. For v = 0, the distribution over paths is uniform. For finite, positive
values of v, the Gibbs distribution indicates that we assign higher probabili-
ties of winning to state sequences with higher log likelihoods. In the limiting
case of v — oo, the random classification rule reverts to the non-random
“best path” classifier, which assigns a non-zero probability of winning only
to the path with the highest log likelihood as in (1). The parametric form of
this distribution is not arbitrary, but can be derived in a systematic manner
from information-theoretic principles (see [11] for derivation in the context of
HMMs, as well as earlier derivations of DA [6, 7, 10]). At this point, we re-
emphasize that the random classifier paradigm is adopted only during design -
ultimately the DA algorithm will produce a regular, non-random HMM-based
classifier.
The average misclassification rate of the random classifier is given by:

N
1
< P, >=1~NZ Z P(s, Hjly:) (5)
i=1 SES”(HC")
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Straightforward minimization of the expected misclassification (5) with re-
spect to all the HMM parameters and the scale parameter v is possible al-
though such a method is highly susceptible to shallow local minima traps.
We prefer instead to introduce the notion of annealing which involves an
entropy-constrained formulation: Instead of simply optimizing the misclassi-
fication cost (< P, >) during the design process, we do so while enforcing a
constraint on the randomness which is measured by the Shannon entropy

H:—%ZZ Z P(s, Hjly:)log P(s, H;ly:). (6)

i i SEeS,(H;)

Thus we minimize the expected misclassification < P, > while constraining
the entropy to a prescribed level, H = H. We then gradually lower the
entropy level while repeating the optimization process. The constrained opti-
mization problem of minimizing < P, > at a given entropy level is equivalent
to the unconstrained Lagrangian minimization:

min L =< P, >-TH (M

{A}y
where T is the corresponding Lagrange parameter. The parameter, T, is
gradually reduced from a high value to zero while tracking the local minima
of L. This is directly analogous to the process of annealing in physics. The
parameter T is naturally referred to as the “temperature”. As T — 0, the
optimization reduces to the unconstrained minimization of < P. > which
forces v — oo leading to the optimal non-random maximum discriminant
classifier. The gradual reduction of T is central to the ability of the algorithm
to avoid shallow local minima on the cost surface.

An important aspect of the proposed method is the discovery of an effi-
cient forward-backward algorithm to determine the gradient parameters for
the optimization. This algorithm substantially cuts down on computational
complexity and memory requirements. The complexity of the DA method
scales similarly to the maximum likelihood method with respect to the num-
ber of states and training vectors.

4 Experimental Results

We have compared the performance of the DA algorithm and the standard
maximum likelihood (ML) algorithm for the difficult E-set recognition task
(recognition of spoken utterances of the letters b,c,d,e,g,p,%,v,2). The E-set
classification problem is well-known to be difficult because of the confusability
of the alphabet. Misclassification within the E-set has been recognized as the
most significant cause of errors in the more general problem of letter recogni-
tion which has several applications such as automated telephone forwarding
systems and automated directory assistance [12]. In many practical situa-
tions, the difficulty of the problem is further aggravated by noisy background
conditions.
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The experiments were carried out on both clean and noise-corrupted (white
noise and car noise) speech data from the ISOLET database which is a part
of the CLSU corpora 2. The speech data consists of E-set letters spoken by
30 speakers (15 male and 15 female). Every speaker uttered each letter twice.
For each utterance, two noise-corrupted versions were obtained by adding
synthetic white noise and recorded car noise to the clean speech.

The speech was sampled at 16 KHz and divided into frames of 512 samples
(32ms). Consecutive frames overlap by 256 samples (16ms). An FFT was
performed on each speech frame and Mel-scaled FFT cepstral coeflicients
(MFCC) [13] were extracted. The MFCC coefficients are known to have the
advantage of robustness to noise and ease of computation over other features.
The feature set consists of 14 MFCC coefficients and their first-order time
derivatives (AMFCC coefficients). We recognize that the front-end feature
extraction process can be optimized further to improve the misclassification
rate, but feature extraction is not our focus here.

In our experiments, we designed recognizers based on discrete HMMs. The
28-dimensional feature obtained from the MFCC analysis was quantized using
a codebook of 64 “prototypes” For each dataset (clean speech, white noise
background, car noise background), the codebook was designed independently
using a Generalized Lloyd algorithm [14]. The recognizer consisted of nine
HMMs, each configured in a four-state left-to-right architecture.

Table 1 compares the error rates obtained by the maximum likelihood (ML)
method and the DA design method in each of the background conditions.
Clearly, DA yields classification error rates that are consistently lower - the
improvement is by a factor of 2-3.

Background | Clean Car White
Condition Noise Noise

P, (ML) 22.22% | 38.52% | 28.52%
P, (DA) 7.04% | 18.52% | 9.63%

Table 1: Comparison of misclassification rates (P.) obtained by the maximum
likelihood (ML) method and the deterministic annealing (DA) method for E-
set recognition under different background conditions.

5 Conclusions

We have presented a novel algorithm to optimize HMM-based speech recog-
nizers, based on direct minimization of the misclassification rate. At the heart
of this algorithm is the powerful deterministic annealing design method. The

2Information on the CLSU corpora and how to obtain it is available at
http://www.cse.ogi.edu/CSLU/corpora/
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new approach consistently outperforms the popular Maximum Likelihood al-
gorithm at the cost of a modest increase in design complexity. Simulation
results show that a dramatic decrease in misclassification rate is achieved by
DA design of the speech recognizer.
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