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Abstract—A new learning algorithm is proposed for piecewise regression modeling. It employs the technique of deterministic
annealing to design space partition regression functions. While the performance of traditional space partition regression functions
such as CART and MARS s limited by a simple tree-structured partition and by a hierarchical approach for design, the deterministic
annealing algorithm enables the joint optimization of a more powerful piecewise structure based on a Voronoi partition. The new
method is demonstrated to achieve consistent performance improvements over regular CART as well as over its extension to allow
arbitrary hyperplane boundaries. Comparison tests, on several benchmark data sets from the regression literature, are provided.

Index Terms—Statistical regression, piecewise regression, deterministic annealing, parsimonious modeling, generalization,

nearest-prototype models.

1 INTRODUCTION

HE problem of statistical regression is to approximate

an unknown function from the observation of a limited
sequence of (typically) noise-corrupted input-output data
pairs. Regression is an important tool in diverse areas, in-
cluding statistics, computer science and applied mathe-
matics, various engineering disciplines, business admini-
stration, and the social sciences.

The regression problem is usually stated as the optimi-
zation of a cost that measures how well the regression
function g(x) approximates the output y, over a set {(x, y)}.
Here, x e R, y e R, and g: R" - R’ Perhaps the most
commonly used objective is the least squares cost

D= |y~ g (1)
(xy)

The regression function g(-) is learned by minimizing the
design cost, D, measured over a training set, 7= {x, y}, but
with the ultimate performance evaluation based on the
generalization cost, which is the error D measured over a
test set. The mismatch between the design cost and the gen-
eralization cost is a fundamental difficulty which is the
subject of much current research in statistics in general and
in neural networks in particular. It is well-known that for
most choices of D, the cost measured during design mono-

e A.V. Rao is with SignalCom Inc., 7127 Hollister Ave., Suite 109, Goleta,
CA 93117. E-mail: ajit@dsp-signal.com.

s D.J. Miller is with Pennsylvania State University, University Park, PA
16802. E-mail: miller@pippin.ee.psu.edu.

o K. Rose and A. Gersho are with the Department of Electrical and Computer
Engineering, University of California, Santa Barbara, CA 93106.
E-mail: {rose; gershoj@ece.ucsb.edu.

Manuscript received 23 Sept. 1996; revised 6 Nov. 1998. Recommended for accep-
tance by A. Webb.

For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number 108365.

tonically decreases as the size of the learned regression
model is increased, while the generalization cost will start
to increase when the model size grows beyond a certain
point. In general, the optimal model size, or even a favor-
able regime of model sizes, is unknown prior to training the
model. Thus, the search for the correct model size must
naturally be undertaken as an integral part of the training.
Many techniques for improving generalization in learnin

are inspired by the well-known principle of Occam’s razor,

which essentially states that the simplest model that accu-
rately represents the data is most desirable. From the per-
spective of the learning problem, this principle suggests
that the design should take into account some measure of
the simplicity, or parsimony, of the solution, in addition to
performance on the training set. In one basic approach,
penalty terms are added to the training cost, either to di-
rectly favor the formation of a small model [1], [25], or to do
so indirectly via regularization/smoothness constraints or
other costs which measure overspecialization. A second
common approach is to build a large model, overspecial-
ized to the training set, and then attempt to “undo” some of
the training by retaining only the vital model structure, re-
moving extraneous parameters that have only learned the
nuances of a particular noisy training set. This latter ap-
proach is adopted in the pruning methods for regression
trees [4] and in methods such as optimal brain surgeon [14]
in the context of neural networks.

While these techniques provide a way of generating par-
simonious models, there is an additional serious difficulty
that most methods do not address directly, which can also
severely limit the generalization achieved by learning. This
difficulty is the problem of nonglobal optima of the cost
surface, which can easily trap descent-based learning

1. William of Occam (1285-1349): “Causes should not be multiplied be-
yond necessity.”
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methods. If the designed regression function performs
poorly as a result of a shallow, local minimum trap, the
typical recourse is to optimize a larger model, under the
assumption that the model was not sufficiently powerful to
characterize the data well. The larger model will likely
improve the design cost but may result in over-
specialization and hence suboptimal performance out-
side the training set. Clearly, a superior optimization
method that finds better models of smaller size will en-
hance the generalization performance of the regression
function. While conventional techniques for parsimoni-
ous modeling control the model size, they do not address
this optimization difficulty. In particular, methods such
as CART [4] for tree-structured regression employ
greedy heuristics in the “growing” phase of the model
design which might lead to poorly designed trees. The
subsequent pruning phase is then restricted, in its search
for parsimonious models, to choosing pruned subtrees of
this initial, potentially suboptimal tree. Techniques
which add penalty terms to the cost can also suffer from
problems of local minima. In fact, in many cases the ad-
dition of a penalty term can actually increase the com-
plexity of the cost surface and exacerbate the local mini-
mum problem (e.g., [35]).

As an alternative approach, in this work we present an
optimization technique for regression modeling which,
through its formulation of the problem, simultaneously
embeds the search for a parsimonious solution and for one
that is optimal in the design cost. The method is an exten-
sion of the deterministic annealing (DA) algorithm, pro-
posed originally for data clustering and vector quantization
[28], {29]. In that work, it was shown that embedding the
clustering problem within a statistical physics framework
yields an annealing-based optimization method which
avoids shallow local optima of the cost. An interesting
property of the method is that the model size grows by bi-
furcations which occur at distinct temperatures during the
optimization process. The DA clustering method was later
extended to include additional constraints and costs [27],
[5]. In recent work [21], the approach was given an impor-
tant extension that allows the incorporation of structural
constraints on the assignments of data, thus extending the
applicability of the method to a larger variety of practical
problems. This approach has since been applied to the de-
sign of statistical classifiers [21], generalized vector quan-
tizers for compression applications [23], and mixture of
experts models for regression [24]. The present work ex-
tends the DA approach to address the problem of designing
piece-wise regression models. As in the original DA
method, the growth in model size is achieved by bifurca-
tions in the annealing process, which occur so as to directly
minimize the physical quantity known as the free energy.
Thus, the annealing method naturally facilitates the gen-
eration of a sequence of candidate parsimonious models of
increasing size as the temperature is lowered to zero, while
avoiding many local optima of the cost along the way. The
sequence of candidate models thus obtained can then be
evaluated on an independent validation set to select the
model size. While DA is applicable to the design of a vari-
ety of piecewise regression structures, this paper will focus

on a particular piecewise model which we will refer to as
the Nearest Prototype (NP) model. The NP structure
provides a good trade-off between simple, tree-
structured models like standard CART and more power-
ful, yet less informative® neural network models such as
multilayer perceptrons. The NP structure is a piecewise
regression model like CART. However, whereas CART is
typically restricted to forming nested partitions with,
even more restrictively, splits parallel to coordinate axes,
the NP model divides the input feature space by forming
a Voronoi partition. While this more general model en-
genders a substantially challenging optimization prob-
lem, deterministic annealing facilitates the solution and
exploits the model’s potential for enhanced regression
performance.

To summarize the contents of the rest of the paper: In
the next section, we present an overview of the existing
methodology in statistical regression and indicate the
relevant shortcomings due to both structures and learning
techniques. We describe the NP regression structure in
Section 3 and derive the deterministic annealing method
for its optimization. In Section 4, we compare the per-
formance of DA with that of CART on both synthetic and
real-world datasets. The results substantiate the superior
performance of DA.

2 THE REGRESSION PROBLEM

2.1 Conventional Approaches

The basic approach to regression is the technique of local
averaging. In simple averaging methods, the output esti-
mate § for an input x is computed as a weighted average
over training points (x, y,) whose input coordinates are
“close” to x in the sense of a well-defined distance or dis-
similarity measure. Although this basic method has excel-
lent asymptotic properties [9], its practical usefulness is
limited since one must have access to the entire training set
to compute the regression estimate. Moreover, the method
suffers from the notorious “curse of dimensionality”
(COD), as its performance deteriorates rapidly with in-
creased dimensionality of the feature space. One way to
mitigate the damage caused by COD is to perform regres-
sion on a lower-dimensional projection subspace. This
technique is adopted for example in the projection pursuit
regression (PPR) [11], and alternating conditional expecta-
tions (ACE) [3] approaches.

Here, we adopt an alternative “space partitioning” ap-
proach to solve the COD problem. This approach is derived
from the observation that, despite the large “volume” of the
feature space, it is often the case that the data is localized to
a few relatively dense “clusters.” Simple local averaging
techniques fail for such data sets, because the weighting
functions used for averaging do not take into account the
variation in the density of the training set population. To
exploit this variation, one must adapt the size and shape of

2. By an “informative” solution, what is meant is that the solution can be
readily interpreted to determine, e.g., which features play a significant role.
CART solutions directly provide this information, since “splits” into more
regions occur along feature axes. More distributed neural network models
are less informative in this sense.
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the averaging regions to the local nature of the data as in
variable kernel methods [31)], [30]. A natural extension of
this idea is to divide the input space into regions of differ-
ent sizes and shapes and to use a suitable “local” regression
model in each region. The space partitioning approach also
eliminates the need to access the entire training set to com-
pute a regression estimate, thus reducing the complexity of
implementation. However, the input partition and the local
models must be designed carefully in order to obtain a
good regression function. As a simple example, consider
the case where X is one-dimensional (scalar). We partition
the axis into continuous sub-intervals, {R,}, each associated
with a simple linear model for the output Y: fix, A)) = 4, x +
4 To achieve good performance for this model, the opti-
mal locations of the “knots” (points that separate succes-
sive intervals) must be found. For this one-dimensional
problem, the optimal algorithm is well-known and is
based on dynamic programming [2]. For higher dimen-
sions, however, only suboptimal practical methods are
known.

Some important examples of space-partitioning regres-
sion include classification and regression trees (CART) 4]
and multiple adaptive regression splines (MARS) [10].
CART divides the feature space into a sequence of nested
regions and uses simple local averaging models in each of
the regions. MARS is similar to CART but with local aver-
aging based on splines, which makes it more complex and
more versatile. The use of splines allows smoothness of
regression functions across region boundaries. An attrac-
tive feature of CART is the simplicity of the design algo-
rithm, which can be used to build a sequence of regression
functions of progressively increasing model order. With
each step of the design, the model order is increased
leading to a decrease in the approximation error over the
training set. However, good generalization is only
achieved for a limited regime of model sizes beyond
which the generalization performance deteriorates. One
straightforward way to select the model size, is to design
CART functions of different model orders based on the
training set, and then choose from this set the function
which performs best on an independent “validation set.”
However, this simple scheme is severely limited in its
candidate set of parsimonious models. A potentially more
powerful method involves pruning back an initially
grown tree, effectively searching over the entire (and very
large) set of pruned subtrees for models that give the best
performance over the validation set [4]. Indeed, pruning
has the potential of producing better sub-trees than those
that naturally appear in the growing phase. It is important
to note that although the sequence of candidate pruned
trees is quite large, this set is entirely determined and
limited by the initially grown tree. In fact, in our experi-
mental results of Section 4, we have observed that in
many cases the sequence of trees produced by pruning is
exactly the same sequence of the growing phase (but in re-
verse order.) Thus, in such cases, pruning does not pro-
vide an additional benefit and the quality of the ultimate
solution rests solely on the growing phase of design and
its sequence of trees.

An important drawback of both CART and MARS is

that the shapes of the regions over which local averaging
is performed are highly restrictive. In most CART and
MARS implementations, the regions are constrained to
be hyper-rectangles, with sides parallel to the co-
ordinate axes. Recently, some extensions to the original
methods have been proposed which allow for regions
whose boundary orientation is not as limited (7], [33],
[15], [19], [34].

Another serious drawback is the greedy nature of stan-
dard tree growing approaches. In the basic design ap-
proach, the partitions of the input space are designed in a
hierarchical manner with the partition with N regions
formed by subdividing one of the regions in the partition
with N — 1 regions. However, the upper levels in the hierar-
chy cannot be re-optimized as more regions are introduced
(awareness of a similar difficulty in the projection pursuit
model [11] led to the backfitting mechanism). The following
example illustrates the problem of suboptimality in hierar-
chical partitioning,.

Consider a training set of 200 (x, y) pairs {(x and y-each
one-dimensional) generated from three Gaussian clusters.
Fig. 1a shows a regression function designed by CART for
this data. The regression function is the solid line that is
superimposed over a scatter plot of the training set. To ob-
tain this function, in the first step, a boundary is introduced
at x = 0.46 (the vertical line that breaks one of the clusters).
Next, a second boundary is introduced at x = 0.63 to obtain
the function in the figure. Note that the CART algorithm
cannot re-optimize the boundary introduced in the first
step. The process of recursively dividing the regions is con-
tinued until a full tree is grown. Subsequently, the large tree
is pruned back. However, pruning offers no means to adjust
the suboptimal boundary introduced in the first step. Con-
trast the CART solution (average squared approximation
error = 0.068) with the partition into three regions obtained
by the DA algorithm (to be described later in this paper) in
Fig. 1b. The DA partition identifies the three clusters cor-
rectly and achieves a lower average squared approximation
error (0.052). It should be emphasized here that this exam-
ple only serves to illustrate the difficulties that arise due to
the suboptimality of the high level splits of CART. Neither
Fig. la nor Fig. 1b represents the optimal regression model
obtained by the corresponding design method. In fact, a
complete CART design performed by growing a full tree,
pruning it to the root node and evaluating each pruned tree
on an independent validation set, produced a solution with
model order 20 and an average squared regression error of
0.036 on a large independent test set. In contrast, the DA
design method produced a model with five regions which
yielded an average squared regression error of 0.032 on the
independent test set.

Motivated by the drawbacks of traditional regression
methods, we next propose a novel regression strategy.
The structure we use is more powerful than that of
CART and MARS because of its ability to achieve com-
plicated partitions of the input space with fewer pa-
rameters and at low computational complexity. More
importantly, we propose a deterministic annealing ap-
proach, based on principles of information theory, for
designing the regression function.
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Fig. 1. An example demonstrating the suboptimality of the recursive tree growth approach of CART. (a) Regression function with three regions
designed by CART (MSE = 0.068). (b) Function with three regions obtained by using DA (MSE = 0.052). Each function is superimposed over the

scatter plot of the training data.

3 THE DETERMINISTIC ANNEALING APPROACH FOR
REGRESSION

In this section, we attack the problem of designing space
partition regression functions. We first consider “hard,”
deterministic space partitioning wherein each data point
is uniquely assigned to a partition cell of the feature
space. We then extend this notion to randomized space
partitioning, wherein points are probabilistically associ-
ated with partition cells. While the paradigm of ran-
domized space partitioning is the basis for several re-
gression models such as normalized radial basis func-
tions and hierarchical mixture of experts, in the present
context randomized partitioning is used only as a tool
for the design optimization, with the ultimate (designed)
model structure a regular (hard) space-partitioned re-
gression function.

Our design method builds on the deterministic an-
nealing (DA) approach to clustering and related problems
[28], [29], [27], its extension to introduce structural con-
straints which is derived in detail for the problem of sta-
tistical classification in [21], and its extension for general-
ized vector quantization and estimation [23]. The DA ap-
proach that we derive here is based on randomized space
partitioning. The degree of randomization of the partition
is measured by the Shannon entropy whose level is con-
trolled during the design process. This framework serves
two objectives: First, the cost which was a piecewise con-
stant function of the partition parameters, becomes con-
tinuously differentiable, thus enabling a straightforward
optimization using local gradients. Second, it provides a
mechanism for an annealing method which has good po-
tential for avoiding poor local optima. At the limit of low
entropy, the randomized space partition that we design
reduces to a structured, non-random partition. This
method is applicable to virtually all space partitioning

structures. However, in this paper we chose to employ the
DA strategy to design the nearest prototype partition
structure and exploit its potential.

3.1 Space Partitioning
In the basic space partitioning approach, the input (or fea-
ture) space, R”, is partitioned into K regions or cells, R,. The
regression function is given by:

gx)=f(x,A) VxeR, k=1,..,K (2)
Typically, the local parametric model, (x, A,) has a simple
form, e.g., linear or Gaussian, and is determined by the pa-
rameter set, A,. The average approximation error measured
over the training set is then

D=—;Ti z d(Yi'f(xi’Af))

j=1 1':x,»ER]»

3

where d(-,+) is a distortion measure. A common choice is the
squared difference error. For the moment, let us suppose
that the local model parameters {A} are fixed. Then, the
remaining optimization problem is to choose, among all
possible partitions, the one that leads to the best fit between
the data and the fixed region models. (Of course, in reality
the space partition and local model design problems are not
separable, but this temporary assumption is useful to moti-
vate our design approach.) Rather than seek the optimal
hard partition directly, we will find it useful to generalize
the domain of the search space by allowing randomized as-
signment of input samples. In this extended paradigm, in-
put samples may be associated with each cell of the parti-
tion in probability. The randomized partition is specified by

the distributions denoted {P(x € R].)}.3 Now, the approxi-

3. Note that there is a distribution per domain point, x. P(x € R) is the
probability of the event that input x is assigned to cell R. Hence, %, P(x e R)
=1 Vx.
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mation error (3) over the training set is generalized to the
expected approximation error:

D= ’i? > P(x; € R;)d(y:, f{x;, A;)- @

=1 j=1
Note that the standard (“hard”) space partitioning cost (3)
is the special case where P(x € Rj) € {0, 1}, Vx.

So far we have let {R} be any partition of the input
space. While this strategy may appear to be useful for
obtaining good regression functions, minimizing D
without any constraint on the complexity of the partition
often results in a function that is too complex for practi-
cal implementation and which generalizes poorly out-
side the training set. It is necessary, therefore, to impose
constraints on the structure of the partition {R}. De-
pending on the imposed structural constraint, different
classes of regression functions can be obtained. A com-
mon approach to imposing structural constraints on the
partition is to require that it be consistent with that of a
standard, parametrized classifier such as a nearest pro-
totype (NP), decision tree, radial basis function or mul-
tilayer perception classifier. We have adopted this ap-
proach and found the nearest prototype (NP) structure to
be useful in this context. It should however be reempha-
sized that although in this paper we elaborate the
method only for the NP structure, it is applicable to other
structured partitions.

3.2 The Nearest Prototype Partition

An NP partition is represented by a set of prototype vectors,
{s;:7=1,23 .. K}in the feature (input) space. An input
x belongs to region R, if s, is the prototype nearest to it:
Ix = st < lx — s}, Vj. We have chosen the convenient Euclid-
ean distance as the proximity measure. Note that the pro-
totypes completely specify the partition {R}. Given the set
of prototypes, we may equivalently define the NP partition
as the partition which minimizes the criterion

e Tho-sf- g

j=1 i:x,eRj

Such a space partition consists of K convex regions and is
known as a Voronoi partition. The NP partition is a gener-
alization of the one-dimensional piecewise model to higher
dimensions. It is also referred to as the optimal vector
quantizer or encoder partition in source coding [12]. In the
pattern classification community, this structure is com-
monly associated with the learning vector quantizer [17]
and the k-means algorithm [18].

In the context of regression, imposing the NP structure
on the space partition results in a simple regression func-
tion that is robust to noise in the training set. However sig-
nificant difficulties arise in the design optimization. While
the one-dimensional piecewise model can be designed
based on a dynamic programming approach [2], this tech-
nique cannot be extended to higher dimensions. Moreover,
there are no known descent methods for direct optimization
of the model parameters so as to minimize the cost, D. A
simple explanation for this difficulty is that the variables {s}

do not appear explicitly in the cost function (3), but do so
indirectly through {R}. An infinitesimal change in the lo-
cation of the prototypes does not change the region as-
signment of any vector in the training set (unless a train-
ing vector falls exactly on a region boundary—a set of
zero measure if X is absolutely continuous). Consequently,
the gradients of the regression cost D with respect to the
prototype locations S, are zero almost everywhere. In other
words, almost every possible set of prototype locations
appears as a local minimum to gradient based methods.
One way to circumvent this difficulty is to optimize the
partition by searching over the space of randomized, or soft,
partitions, in such a way that ultimately enforces a hard
partition at some limit. We next propose how to realize
this approach.

Recall that the hard NP partition minimizes an objective
function (5). In a similar fashion, we can characterize a ran-
domized partition by the expected cost,

1 X 2
Plx; Rj)”xz- ~s]-” . )

i=1 j=1
Of course, minimization of C in (6) over the distributions
{P(xi 5 Rj)} yields the “hard” NP partition, where each x,

is fully associated with the nearest prototype. While this is
desirable eventually, during the design we wish to control
the “randomness” in the assignments. Towards this goal,
we introduce the Shannon entropy—an information theo-
retic measure of randomness. The entropy of a partition is
given by

N
H =——$—22P(xi € R;)log P(x; € R). %)
=1 j

which implicitly assumes that the samples are independ-
ently assigned to the partition regions.

Given a fixed set of prototypes and models and a pre-
specified constraint on the randomness H,, we obtain the
probabilistic NP partition by minimizing C of (6) subject
to H = H, Essentially, this constrained optimization
problem seeks the partition which is nearest to the NP
structure in the sense of minimum C while maintaining a
specified level of randomness, as measured by the Shan-
non entropy. This constrained optimization problem may
be rewritten as the minimization of the corresponding
Lagrangian. The solution yields the Gibbs distribution as
the optimal association probabilities:

s

2 e_}'""‘skn2 '

k

P(x € R]-) = ®)

Here, yis a nonnegative Lagrange multiplier which con-
trols the “randomness” of the space partition. Note that
at the limit 7 — oo, the probabilistic NP partition reduces
to a hard NP partition as required.” A layer of such neu-

4. It is interesting to note at this stage that the functional form of (8) is
identical to that of the neuron in a normalized radial basis function network
[221.
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rons may be viewed as generating the maximum entropy
distribution for the association of the input to the “cen-
ters” of a layer at a prespecified variance level. Our en-
tropy constrained formulation has thus yielded a para-
metric form for the randomized association of inputs to
the partition regions. In (8), the degree of association
with a point depends on the proximity of the region’s
prototype. The “peakiness” of the distributions depends
on the scale parameter, % which we use to control the
entropy of the distribution.

The result (8) is a structural form for randomized space
partitioning which allows direct control of the random-
ness or “softness” of the partition, and which provides a
useful probabilistic framework within which to search for
an optimal hard partition regression function. The overall
optimization approach based on this framework can now
be described. Note first that since the expected approxi-
mation error of (4) depends in a continuous manner on the
prototypes {s,.} via the association probabilities, we could
simply define a gradient descent technique on this cost
surface, which eliminates the original difficulty due to
zero gradients. However the optimization must be con-
sistent with the entropy constraint that was imposed on
the probabilistic partition. Otherwise, it would encourage
the parameters to settle down to a very poor local mini-
mum, via a quick “hardening” of the associations. Alter-
natively, we suggest to minimize the expected cost (4)
while simultaneously constraining the entropy of the as-
sociations in order to deter a quick hardening and result-
ing suboptimality of the solution. More specifically, we
minimize the regression cost, D of (4) subject to an en-

tropy constraint, H = H,, where P{x e R.| takes the func-
Py o j

tional form of (8). Equivalently, we minimize the uncon-
strained Lagrangian,

min L=D-TH ©)
fsi{aibr

where the Lagrange parameter, T is referred to as the “tem-
perature” to emphasize an intuitively compelling analogy
to statistical physics.

3.3 Analogy to Statistical Physics—Helmholtz Free
Energy

After close inspection of (9), one may recognize one of the

cornerstone equations of thermodynamics. Let the regres-

sion cost D be the thermodynamic energy of a physical

system, and recall that T is the temperature and H is the

entropy. This implies that the Lagrangian

L=D-TH (10)

is the Helmholtz free energy of the system. The temperature
(Lagrange multiplier) determines a balance of energy (cost)
and entropy (randomness). By minimizing the Lagrangian
L we minimize the Helmholtz free energy and, in effect,
seek isothermal equilibrium at the given temperature T. Of
particular importance is the case of T — 0 which corre-
sponds to direct minimization of D, our ultimate objective.
This suggests the possibility of implementing an annealing
process, where the temperature is gradually lowered while

maintaining the system at thermal equilibrium. Such a pro-
cess allows one to avoid many of the local minima of the
energy D. This interpretation of the Lagrangian in terms of
the free energy in statistical physics has been offered in the
context of our previous work [28], [21], [23]. The analogy of
annealing to physical systems will provide more insight
later in this section when we discuss phase transitions in the
process.

3.4 Deterministic Annealing

Since careful annealing of physical systems ensures con-
vergence to the ground state (global minimum of the en-
ergy), it gives motivation to develop a similar approach in
the context of regression. Starting from a high value of T
(high entropy of the random partition), we gradually re-
duce T while optimizing L at each step (maintaining the
system at equilibrium). In the limit of T = 0, we are merely
minimizing the regression cost D. It is, however, impor-
tant to note the distinction between our approach and the
method of simulated annealing (SA). SA is stochastic in
nature, explicitly simulating the random evolution of the
system to achieve stochastic equilibrium as the steady-
state distribution over the states of a Markov chain. Our
approach, on the other hand is a deterministic annealing
(DA) approach, which replaces explicit stochastic simula-
tions by expectations. Note that L, D, and H are all defined
by expectation. Thus we replace the computationally in-
tensive stochastic simulations by straightforward deter-
ministic optimization of the Helmholtz free energy L. The
resulting algorithm is considerably faster than comparable
stochastic approaches. However, although the DA method
has significant ability to avoid many local optima that trap
descent methods, it is not guaranteed to find the global
optimum.

We initialize the algorithm at T — oo (in practice, T is
simply chosen large enough; we will specify how large it
should be when we discuss phase transitions). It is clear
from (9) that the goal at this temperature is to maximize the
entropy of associating inputs with regions. The solution is
achieved by allowing all the prototypes to be located at the

global centroid of the data. The distributions, {P(x € Rj)},

are consequently uniform. The same parameters, A, are
used for the local regression models in all the regions—ef-
fectively, we have a single, global regression model. As the
temperature is gradually lowered, in steps, optimization is
carried out at each temperature to find the prototype loca-
tions {sj}, local model parameters, {A}, and scale parameter,
% that minimize the Lagrangian, L. As T — 0, the Lagran-
gian reduces to the regression cost, D. Further, since we
have forced the entropy to go to zero, the randomized space
partition that we obtain becomes a hard NP partition. In
practice, we anneal the system to a low temperature, where
the entropy of the random partition is very small (H < H).
Further annealing will not move the prototypes signifi-
cantly. Hence we fix the location of the prototypes at this
point and jump to T = 0 (quench) to perform a “zero en-
tropy iteration,” where we partition the training set ac-
cording to the “hard” nearest prototype rule and opti-
mize the parameters of the local regression models {A} to
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TABLE 1
PSEUDO-CODE SKETCH OF THE DA IMPLEMENTATION USED IN THE SIMULATIONS

1) Initialize:
K=2 T=11T5 7= "7mn;
2) Perturb:
a) s; —s;+v Vj;
b) Initialize: Loy= D ~-TH
3) Thermal equilibrium:

. . oL
a) s s X3s;

§1 = 82 = Uxj;

v =Gaussian perturbation with mean= 0, variance= €.

Vj (a selected by line search)

b) yey- ﬂ% (P selected by line search)

> P(Xi€R,)y;

) A« mﬁ_ Vj (Closed form solution for A; for the sqaured-error case)

d)  Bquilibrium Check: L =D — TH; If (542 > L) {Low = L; Goto step 3(a)}

4) Model Size determination:

a) {If(]s; —sk] <€) Replace s;,s; by a single prototype at §3—"2ﬂ°—} Vi, k

b) K = Number of prototypes after merging.

4) Freeze* and calculate the prediction error on the validation set,

5) If (H < Hy) Stop.

6) Cooling: T « 0.95T

7) Duplication: Replace each prototype by two prototypes at the same location. K + 2K

8) Goto Step 2

*Freezing
a)Set T'=0
b) v « 1.1y

¢) Perform steps 3a,3c.

d) If (H > Hy) Goto Step b; Else Stop

The local models are constant (A,), and a squared-error cost function is used.

minimize the regression cost, D. This approach is con-
sistent with our ultimate goal of optimizing the regres-
sion cost constrained on using a (hard) structured space
partition.

A brief sketch of the DA algorithm is as follows:

1) Initialize: T =T,
2) min L=D-TH.
fsib{nstr

3) lower temperature: T « g(T).
4) If H > H, goto step 2.
5) Zero entropy iteration: Partition using Hard nearest
prototype rule, min i) D.
7

In our simulations, we used an exponential schedule for
reducing T, i.e., g(T) = oT, where o < 1, but other annealing
schedules are possible. The parameter optimization of step 3
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may be performed by any local optimization method. In
our simulations, this minimization is based on a gradient
descent approach. A pseudo-code sketch of the steps used
in our implementation is given in Table 1.

For the nearest prototype regression function, the gradi-
ents may be expressed as

N
—gs% = % . P(xi € Rj)(Lij_ <Ly >)(xi —s].), (1)
i 1 ad(Yi/f(xi"A'))
—E)-A—/-=W§_{P(xi ERJ)——aAj—]—, (12)
and
oL 1Y
7" —WZ;,EP(x,- e R)L;- < Ly > - sj”2. (13)
=1 j

Here, L, = d(y, fix, A)) - Tlx, - s/ is the Lagrangian cost
term associated with the ith training vector and region R,
and <L,>=3,L P(x, € R,)is the expected Lagrangian cost of
the ith training vector averaged over its partition region
assignments.

The prototype condition can be given an intuitive in-
terpretation as a type of supervised learning rule. It sug-
gests that moving a prototype vector s, in the negative
gradient direction means pushing the vector away from
(towards) points that it “owns” probabilistically through
P(x, € R) and for which the cost L, incurred by associat-
ing with region R, is greater than (less than) the average
cost, <L,>. The optimality condition for the scale pa-
rameter yleads to a similar interpretation. Essentially, y
is either increased to solidify ownership of a point by a
region if the cost is smaller than the average cost or is
decreased to weaken ownership of a point by a region if
the cost is larger than the average. Whereas supervised
learning methods typically involve making hard classifi-
cation decisions, the negative entropy component of the
cost guarantees that the distribution {P[-]} remains “soft”
for finite T.

3.5 Phase Transitions

An interesting phenomenon of the annealing method is the
existence of discrete bifurcations, analogous to phase tran-
sitions in a physical system. Let us define the effective model
size as the number of distinct prototypes. When T — oo, the
solution dictates that all the prototypes are coincident. Cor-
respondingly, the distributions {P(x € R)} are uniform and
the model parameters {A} for all regions are identical. The
effective model size is thus one. As T is gradually reduced,
the model size grows through discrete bifurcations, i.e.,
there are distinct (critical) temperatures where the proto-
types split into sub-groups and the effective size of the
model increases. This is a useful phenomenon from the
viewpoint of parsimony. Since model size is a good meas-
ure of parsimony, phase transitions correspond to discrete
steps in the algorithm where parsimony is exchanged for
lower regression cost. The result is a discrete sequence of
regression functions which are progressively less parsimo-
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Fig. 2. Phase transitions in the annealing process. Solutions at effec-
tive model sizes 1 (solid line), 2 (dotted line), and 3 (dashed line).

nious but perform better on the training set. Each function
in this sequence is a potential candidate model for the data.
We measure the average approximation error of each func-
tion in this sequence over an independent validation set
and determine the ultimate regression function as the can-
didate model that gives the best performance on the vali-
dation set.

Fig. 2 demonstrates a sequence of solutions for a simple
regression example. Here X and Y are both scalars and the
local regression models {f(x, A].)} are constants. The solid
line represents the regression function at a high tempera-
ture. All the prototypes are co-incident and the effective
model size is one. The dotted and dashed lines indicate the
optimal regression functions of model sizes two and three
respectively. Note that the three functions progressively
model the data better.

The phenomenon of phase transitions in the annealing
process is also useful for speeding up the DA implemen-
tation. We will demonstrate in this section that we can
analytically predict the temperatures at which discrete
phase transitions take place in the system. Predicting the
critical temperatures helps us to avoid the necessity of
bringing the system to thermal equilibrium at each inter-
mediate temperature. It allows us to “accelerate” in be-
tween consecutive critical temperatures of the system,
thus speeding up our algorithm considerably. In particu-
lar, the annealing process may be initialized at a tem-
perature which is slightly higher than the first critical
temperature. For simplicity, we restrict the derivation of
the critical temperatures in this section to the special case
where the local regression models are constants. The re-
sults can easily be extended to other cases such as linear
or polynomial models.

As T — oo, the globally optimal solution is easily found,
where all prototype vectors coincide and where all the sim-
ple (constant) regression models coincide at the global cen-
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troid of the Y data set. This extremely simple solution will
remain a stable minimum of L over an interval of decreas-
ing T. However, when T reaches a critical value T, the
minimum will turn into a saddle point or a local maximum.
At this point, it becomes advantageous to “split” the pro-
totypes, and the system undergoes a bifurcation wherein
the free energy cost is decreased by increasing the effective
size of the solution.

Insights into the mechanism for growth in the effective
model size are obtained by analyzing the conditions for
bifurcation or phase transition. In [29], it was shown for the
clustering problem that the first bifurcation occurs at the
critical temperature corresponding to T, = 24, where 4 __
is the principal eigenvalue of the data covariance matrix,
C.,.. Moreover, the split is initiated along the principal data
axis. It thus related the critical temperature to the data
variance. 1t was later shown in [26] that all subsequent
bifurcations occur in a similar fashion, dependent on the a
posteriori covariance of the data probabilistically
“owned” by the cluster undergoing the split. Here, we
present the necessary condition for the first bifurcation in
the annealing process for regression function design. We
note that a more general condition governing all bifurca-
tions in the solution process can be derived using the cal-
culus of variations. The first bifurcation increases the ef-
fective size of the solution from one to two. Initial splits
into more than two distinct prototypes may also occur if
certain symmetries exist, but we ignore them here for con-
ciseness. Thus, we consider an optimization problem with
two prototypes, each associated with a constant regression
model, represented by the vector y, € R'. Prior to the split,
both the regression model vectors are at the global Y cen-
troid 4, and the prototype vectors are at the global X cen-
troid g, The phase transition occurs when the Hessian
matrix (consisting of second order partial derivatives) of L
is no longer positive definite at the solution point. It can
be shown that the Hessian is given by

Co —1Cu ~¥Cy £C,
- _72Cxx yzcxx % CT - Zy (14)
‘ - 'ZTT ny _;' ny % I 0 '
% ny - % ny 0 _'}T I

where I and 0 are identity and zero matrices, respectively,

xx N 2 lux X; —lux) (15)
is the empirical covariance matrix of X, and
T
=N Z = 1 )(yi - ) (16)

is the empirical cross-covariance matrix relating X and Y.

The critical temperature marks a point of transition
from positive-definite Hessian. As the Hessian is evolving
continuously, we seek the value of T for which its deter-
minant vanishes. It can be easily established that this re-
quires that

T |_
Coe nyny 0. (17)
The first (largest) value of T satisfying (17) is:
cl
= 22rnax( xxcxycxy) (18)

where A__(-) denotes the largest eigenvalue of its matrix

argument. Moreover, the split is initiated along the direc-

tion of the principal eigenvector of CX;C;CW

These results make an interesting connection with
previous work in the area of data clustering. Consider a
special degenerate case of the regression problem, where
X = Y. While this may not be an interesting regression
problem, a careful look at (3) reveals that the regression
cost function for this case is exactly the cost of clustering
(vector quantization) in the X space. The bifurcation
condition of (18) for this special case reduces to T, =

24,..(C,,) which, not surprisingly, is exactly the bifurca-
tion condition reported previously for the problem of
data clustering [29].

We can gain further intuition by specializing the results
to scalar X and Y. Here, the condition in (18) reduces to

T.=2p°07 (19)

where 0'5 is the variance of Y and p is the correlation coeffi-

cient of X and Y. The “effective variance,” pzai, which de-
termines critical temperatures in the annealing process, is
reduced with respect to the clustering case as the pair (X, Y)

becomes less correlated.

4 RESULTS

In this section, we summarize our experiments comparing
the performance of the proposed DA approach for NP-
based regression with the conventional piecewise regres-
sion approach of CART. Recall that regular CART is se-
verely restricted in that the partition is constrained to be
tree-structured with partition boundaries that are parallel
to the coordinate axes. The latter restriction which pre-
vents regular CART from exploiting dependencies be-
tween the features of X can be overcome by adopting an
extension of CART that allows the boundaries between
regions to be arbitrary linear hyperplanes. While this ex-
tension admits a larger class of input space partitioning,
and will therefore potentially reduce the approximation
error, the complexity of the design method for the ex-
tended structure [15] grows as N”, where N is the size of
the training set. Consequently, the extended form of CART
is impractical unless the training set is sufficiently short.
In this section, whenever distinction is needed, we will
refer to regular CART as CART1, and to its extended form
as CART2. Our implementation of CART consists of
growing a large “full tree” and then pruning it down to
the root node using the BFOS algorithm [8]. The sequence
of CART regression trees is obtained during the pruning
process. It is known that the pruning phase is optimal
given the fully grown tree.
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The NP structure of the DA approach, unlike CART], is
capable of implementing more complex partitions of the
input space and exploiting nonlinear dependencies be-
tween the components of the features vector. Unlike
CART?2, the complexity of the DA method grows linearly
with the size of the training set. Moreover, the DA algo-
rithm optimizes all the parameters of the regression func-
tion simultaneously, while avoiding many shallow local
minima that trap greedy methods.

In all the simulation examples, we have used the simpler
piecewise constant models. However, the DA regression
method’s improvements over CART are similarly obtained
for other types of local models, e.g., linear or polynomial. In
our implementation of the DA method (see pseudo-code in
Table 1), we used the annealing schedule: g(T) = 0.95T. The
initial temperature, T, is 1.1T,, where T, is the first critical
temperature given by (18). The annealing process is
stopped and the quenching step is performed when the
entropy of the partition (7) is less than H,= 0.01. At such a
small value of entropy, the partition is almost “hard,” so
that further annealing will not change the prototypes or the
local regression models significantly. The steps to minimize
the Helmholtz free energy at each temperature were per-

formed until the fractional improvement’ in the free energy

was less than L, = 107",

We demonstrate the usefulness of our approach on sev-
eral synthetic and real-world datasets from the regression
literature.

4.1 Synthetic Examples

Through the following experiments on synthetic datasets,
we will establish that the proposed DA method generates
robust, low-complexity regression functions that outper-
form CART-generated regression functions. In all the syn-
thetic examples, the input, x = (x, x,), is two-dimensional
and the output, y, is one-dimensional.

First, we compare the performance of the CART and DA-
based regression function design methods for the problem
of approximating known functions from noisy input-output
data. The functions used in this subsection have been used
in the literature [16], [6] as benchmarks to compare regres-
sion function design methods.

We consider, first, the function given by

£"(x) = 10.39((x,— 0.4)-(x, - 0.6) + 0.36). (20)

This function involves a simple interaction between the
two features, x, and x,. We generated a training set (size
200), a test set (size 3,000), and a validation set (size
1,000).6 The training set in this experiment was deliber-
ately made small to facilitate comparison with the CART2
design approach which becomes prohibitively complex
when large training sets (>500) are involved. We added a
zero-mean Gaussian noise with variance 0.1585 to the
output variable in the training, test, and validation sets.
CART1, CART2, and DA were used to design regression

5. Fractional improvement of a cost function is the ratio between the im-
provement in the cost resulting from an iteration and the absolute value of
the cost before the iteration.

6. All synthetic and real-world data used in this paper are available on
the World Wide Web at hitp://scl.ece.ucsh.edu/datasets/.

TABLE 2
OPTIMAL AVERAGE SQUARED APPROXIMATION ERROR
MEASURED OVER THE TEST SET AND OPTIMAL MODEL ORDER
FOR REGRESSION MODELS FOR NOISE CORRUPTED DATA

Dataset | CART (Model Order) | DA (Model Order)
g 0.100 (59) 0.094 (57)
9?0 0.112 (62) 0.106 (62)
d9() 0.305 (214) 0.166 (59)

functions from the noisy data. The optimal regression
models generated by the design methods were obtained
and compared as follows: For each algorithm, we obtained
a sequence of regression functions of increasing model
order by the appropriate mechanism—greedy tree grow-
ing and pruning for CART1 and CART2 and phase transi-
tions for DA. We then chose the best model for each de-
sign method by selecting the member of the correspond-
ing sequence of functions that performed best over the
independent validation set. The optimal regression func-
tions for each method were then compared over the test
set (which is independent of both the training and valida-
tion sets).

In the above experiment, the DA approach generates
the best regression model with an average squared-error
of 0.25. Further, the CART2 model which is marginally
worse (error of 0.26) is considerably better than the
CART1 function (error of 0.49). This is because the sim-
ple structure of the CART1 partition is inadequate when
there is interaction between the feature variables. Note
that the CART2 method performs quite well. This is of-
ten the case for small training set sizes. However, for
larger training sets, CART2 is impractical because of its
high design complexity.

In the following experiments, where we use larger
training sets (size 1,000) we must abandon the CART2
method (in these examples, our attempt to simulate CART2
was aborted after 36 hours on a SPARC20 computer). Thus,
the comparison is restricted to the CART1 and DA methods.
We will return to consider CART2 when we experiment
with smaller, real-world data sets.

The experiments for the larger training sets were per-
formed over three functions. In addition to the function, g
of (20), we define

g9(x) =24.234r(0.75 — ) (21)
where r = (x,— 0.5)° + (x,~ 0.5 and
§%(x) = 42.659(0.1 + (x,~ 0.5)(0.05 + (x,— 0.5)'—
10.0(x,— 0.5)*(x,~ 0.5)" + 5.0(x,— 0.5)*)) (22)

For all three functions, a zero-mean noise with variance
0.063 was added to the output variable. The entire data set
was divided into training (size 1,000), test (size 3,000), and
validation (size 1,000) sets. The results tabulated in Table 2
show the average squared-error over the test set for each
model and the corresponding model order in parentheses.
The “model order” is measured by the number of regions
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TABLE 3
OPTIMAL AVERAGE SQUARED APPROXIMATION ERROR
MEASURED OVER THE TEST SET AND OPTIMAL MODEL ORDER
FOR MULTIMODAL GAUSSIAN DATASETS

Dataset | CART (Model Order) | DA (Model Order)
1 12.0 (21) 11.1 (8)
2 12.7 (30) 11.7 (10)
3 11.5 (22) 10.7 (13)
4 12.0 (33) 11.6 (14)
5 15.1 (59) 14.4 (9)
6 13.6 (47) 12.9 (11)
7 13.5 (46) 11.1 (20)
8 11.9 (27) 11.1 (14)

used by the best model produced by the method in terms of
performance on the validation set. The DA approach con-
sistently generates superior regression models (lower
squared-approximation error and lower model order) com-
pared to the CART approach.

Note that in the cases of the first two functions,
which are relatively simple, the performance improve-
ments of DA over CART are small. This is due to the
fact that there is not much to be gained over CART for
these simple functions. The function ¢, on the other
hand, is more complex, and in this case, the DA method
shows its real potential and outperforms CART by a
factor of almost two, while maintaining a much simpler
partition.

The second group of synthetic datasets also involves
two-dimensional feature vectors x = (x, x,) and one-
dimensional output y. The input components, x, and x,, are
uniformly distributed in the interval (0, 1). The output, y, is
a weighted sum of six normalized Gaussian-shaped func-
tions of x, each with an individual “center,” variance, and
weight. By choosing different centers, variances, and
weights for the Gaussians, we created a number of data
sets, each consisting of training and validation sets of size
1,000 each, and a test set of size 3,000. The output samples
were corrupted by a zero-mean Gaussian noise with vari-
ance 10.0.

As with the first group of data sets, DA and CART proc-
essed the training set to design a sequence of regression
functions of increasing complexity. Performance on the
validation set was used to select a regression function from
the sequence, and the overall performance was evaluated
on the independent test set. The experiments were con-
ducted over more than 40 different data sets. In Table 3, we
have randomly chosen a sample of the data sets and tabu-
lated the performance. Note that we only compare our
method with standard CART1, since CART2 is too complex
to use with training sets of this size. Clearly, in all the ex-
amples, DA demonstrates consistent improvement over
CART1.

One notable advantage of CART over many other re-

gression methods is that its decision tree structure offers
an interesting and useful way to interpret the data. To a
lesser degree, the NP-based regression function can also
be used for such interpretation. In particular, the proto-
types in the NP-regression function may be interpreted

s “typical feature vectors,” each associated with a par-
ticular, locally active regression model. The regression
process effectively models the training data in terms of
the “typical data,” offering a way to interpret large vol-
umes of data.

4.2 Real-World Examples

Here we present the results of experiments that compare
the DA design approach against CART over data sets from
real-world regresswn applications. This data is taken from
the StatLib database, which has been extensively used by
researchers in benchmarking the relative performance of
competing regression methods. In some of the following
experiments, due to the unavailability of sufficient data for
proper validation, we make use of cross-validation to de-
termine the optimal model order.

In the first experiment, we consider the problem of pre-
dicting the value of homes in the Boston area from a variety
of parameters [13]. The training set consists of data from
506 homes. The output in this case is the median price of a
home, with the input consisting of a vector of 13 scalar
features believed to influence the price. The objective is to
minimize the average squared error in price prediction.
Since the features have different dynamic ranges, we nor-
malized each to have unit variance. We then applied the
two CART design methods and the DA design method to
the training set and obtained a sequence of regression func-
tions for each design method. Each sequence of CART
functions was obtained by growing a full tree and opti-
mally pruning this tree using data from the training set. The
sequence of DA solutions was obtained via the phenome-
non of phase transitions.

The final model order for each design method was
determined by a cross-validation method. Our imple-
mentation of cross-validation for CART1 and CART2
follows the approach outlined in [32]. The training set
was divided into 10 (roughly) equal parts. Nine of these
parts were used to grow and prune a sequence of trees.
Each pruned tree obtained during design was tested on
the remaining data. The division of the entire data into
training and test sets in this manner can be done in ten
ways. The test set results were averaged over the ten re-
gression trees thus designed. Averaging was done for a
fixed value of the cost-complexity slope (refered to as «
in [32}]). The model orders corresponding to the optimal
value of ¢ (that which result in the best averaged test set
error) are 8 and 5, for CART1 and CART2, respectively.
Cross-validation for the DA design method is imple-
mented similarly—DA models of different orders are
designed for each subdivision of the data into training
and test sets. The error on the test sets are averaged for
functions of the same model order designed on each
training set and the best model order (corresponding to

7. The StatLib data set archive is accessible on the World Wide Web at
hitp://lib.stat.cmu.edu/data sets/.
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TABLE 4
AVERAGE SQUARED PREDICTION ERROR FOR
HOUSING PRICES IN THE BOSTON AREA

K CART1 | CART2 | DA
1 84.4 84.4 84.4
2 46.2 43.2 344
3 31.8 33.0 25.0
4 25.7 26.1 16.9
b) 20.7 23.2 14.4
6 17.9 21.9 11.0
7 15.6 20.8 10.8
8 13.6 19.7 10.7
9 12.5 18.8 8.6
10 11.8 18.1 8.5
Selected model | 13.6 (8) | 23.2 (5) | 11.0(6)

Comparison of average squared-errors for the standard CART1, its extension
CART?2, and the proposed DA method. K is the number of partition regions
for each model. The last row shows the squared-error and model order of the
regression function selected by cross-validation.

the lowest averaged test set error) is determined to be 6
for the Boston data.

In Table 4, we have compared the squared-error in pre-
dicting the house price using the standard CART1 and its
extended form CART2, with the performance of the pro-
posed DA method. Although each design method generates
a sequence of regression functions of increasing complexity,
we have tabulated here, only the training errors for each
method for model orders from 1 to 10. As mentioned ear-
lier, the model orders chosen by cross-validation for the
CART1, CART2, and DA methods are 8, 5, and 6, respec-
tively. The performance of the optimal models is also
shown in Table 4 and demonstrates the superior perform-
ance of the DA design method.

Also note that CART1 outperforms CART2 in several
cases, despite the fact that CART2 is a potentially more
powerful regression structure. These results are indicative
of the prevalence of poor local optima which trap standard
methods.

The data set for the second example was taken from
the environmental sciences. We consider the problem of
predicting the age-adjusted mortality rate per 100,000
people in a locality from 15 factors that may have possi-
bly influenced it. Some of these factors are related to the
levels of environmental pollution in the locality, while
others are measurements of nonenvironmental/social
parameters. This data set has been used by numerous
researchers since its introduction in the early 1970s [20].
As there are data on only 60 localities, we have used a
cross-validation method to determine the optimal model
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TABLE 5
MEAN-SQUARED ERROR FOR PREDICTION OF THE
AGE-ADJUSTED MORTALITY RATE PER 100,000 PEOPLE
FROM VARIOUS ENVIRONMENTAL FACTORS

K CART1 | CART?2 DA
1 3805.13 3805.13 | 3805.13
2 2427.40 2087.0 2003.4
3 1786.90 1532.19 976.18
4 1381.08 1323.50 775.36
5 1122.68 1174.17 694.27
6 938.91 1050.55 603.46
7 792.91 917.2 551.85
Selected Model | 1381.08 (4) | 1532.19 (3) | 976.18 (3)

Comparison of CART1, CART2, and DA. K is the number of partition regions
for each model. For the model eventually selected by each design method, we
quote the error with the corresponding model order in parentheses.

TABLE 6
MEAN-SQUARED APPROXIMATION ERROR FOR THE
FAT CONTENT OF A MEAT SAMPLE FROM
100 SPECTROSCOPIC MEASUREMENTS

K CART1 CART2 DA
TR { TE | TR | TE | TR | TE
1 159.03 | 168.20 | 159.03 | 168.20 | 159.03 | 168.20
2 114.03 | 143.72 | 62.85 85.06 37.56 38.60
3 97.54 | 129.90 | 51.16 | 75.23 | 22.80 | 21.90
4 83.17 | 14840 | 41.41 | 73.56 | 16.08 | 1517
5 73.28 | 131.83 | 37.70 | 66.63 | 15.46 | 15.93
6 62.29 | 126.44 | 34.24 | 7233 | 1533 | 16.66
7 5551 | 117.24 | 30.83 | 65.81 | 12.00 | 24.80
8 48.18 | 121.85 | 2854 | 7401 | 12.42 | 14.98 |
9 4258 | 122.04 | 25.69 | 84.03 | 10.95 | 18.41
10 37.62 | 119.44 | 23.56 | 73.64 | 11.56 | 13.87
Selected model | 92.44 (35) 62.09 (20) 18.41 (9)

The performance of CART1 and CART2 is compared with that of the proposed
DA method, both inside the training set (TR) and on a test set (TE). K is the
number of partition regions used to represent the data. For the model eventu-
ally selected by each design method, we quote the test set error with the corre-
sponding model order in parentheses.

order of each method for this data set. Again, we use 10-
fold cross-validation to obtain our results. In Table 5, we
compare the regression error obtained by the DA-based
method with CART1 and CART2. The CART results were
obtained by growing and pruning a full tree from the
training set. The selected model order which is obtained
by cross-validation is determined to be 4 for CARTI and
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TABLE 7
APPROXIMATE COMPUTATION TIME (IN MINUTES) ON A
SUN SPARC20 SYSTEM, FOR REGRESSION FUNCTION DESIGN
FOR THE TRAINING DATA EXAMPLES OF SECTION 4.2

Dataset CART1 { CART2 | DA

Boston Data 30 510 580

Pollution Data 3 6 35
Tecator data 60 200 500 |

3 for CART2. The corresponding average squared-error
results are 1,381.08 and 1,532.19. We note that the best
cross-validated DA model is of order 3 and its average
error is 976.18.

The third regression data set is drawn from an appli-
cation in the food sciences. The problem is that of effi-
cient estimation of the fat content of a sample of meat.
(Techniques of analytical chemistry can be used to meas-
ure this quantity directly, but it is a slow and time-
consuming process.) We used a data set of quick meas-
urements by the Tecator Infratec Food and Feed Ana-
lyzer which measures the absorption of electro-magnetic
waves in 100 different frequency bands, and the corre-
sponding fat content as determined by analytical chem-
istry. As suggested by the data providers, we divided the
data into a training set of size 129, a validation set of 43,
and a test set of size 43. We then applied CART1, CART2,
and DA to the training set for different model sizes. In
Table 6, we compare the average squared approximation
error obtained over the training and test sets for model
orders from 1 to 10. We reemphasize here that in our ex-
periment, we designed CART regression functions by
growing a full tree by a sequence of splits of the training
set and pruning the full tree back to the root node using
the BFOS algorithm. The CART results in the table are
for trees obtained during pruning. The optimal model
order is chosen by chosing the tree in the pruned se-
quence that performs best over the validation set. The
optimal model order for CART1 was 35 and its average
error over the test set was 92.44. The more complex
CART2 method performs substantially better. It chooses
a model order of 20, which gives an average test error of
62.1. The DA method out-performs both the CART algo-
rithms. The best validation performance was obtained
for the DA-designed model with 9 regions. This model
gives an average test error of 18.41. The excellent per-
formance of the DA method both inside and outside the
training set confirms its expected good generalization
capabilities.

4.3 Note on Design Complexity

Although the DA method achieves substantial performance
gains over the CART-based regression function, these gains
are obtained at the expense of additional computational
complexity of the design process. As noted earlier, the
complexity of DA and CART1 grows linearly with the
number of training vectors and with the dimensionality of
the feature space.

Typically, the computation time DA varies between 8

and 20 times that of CART1, depending on the optimal
model order for the given data set. In our simulations, the
complexity ratio was 15 on the average.

The complexity of CART2, on the other hand, grows
quadratically with the number of training vectors and
linearly with the dimensionality of the feature space.
Therefore, while CART2 is less complex than DA on
small training data such as in the examples given in Sec-
tion 4.2 (see Table 7), it becomes prohibitively complex
on midsize to large training sets, as in the synthetic ex-
amples of Section 4.1.

Table 7 shows the approximate time (in minutes) spent
by each one of the competing methods on regression func-
tion design for the real-world datasets of Section 4.2. The
software was written in C, and the simulations were per-
formed on a Sun microsystems SPARC20 computer.

5 CONCLUSIONS

In this paper, we have shown that the nearest prototype
model, when optimized via the powerful technique of
deterministic annealing, is an efficient and useful struc-
ture for regression modeling. We have presented a novel
approach for the design which takes as its starting point
the paradigm of randomized space partitioning. The
method is based on information-theoretic principles and
uses entropy-constrained optimization within a determi-
nistic annealing framework. Further intuition into the
workings of the method is conveyed through analogy to
statistical physics. In the annealing process, we identi-
fied and analyzed the phenomenon of phase transitions.
Each phase corresponds to a distinct model size with the
transitions corresponding to increases in model size oc-
curring at predictable “critical temperatures.” Through
this phenomenon, as well as through its ability to avoid
many shallow local optima, the DA method provides
efficient parsimonious models and thereby attacks the
problem of generalization. Our experimentation shows
that the DA method generalizes significantly better than
both the standard CART approach and the extended
form of CART that allows arbitrary hyperplane parti-
tions. Further, the algorithm generates an optimal model
whose complexity (model order) is lower than that of the
optimal CART model.
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