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ABSTRACT

We propose a deterministic annealing (DA) algorithm to
design classifiers based on continuous observation hidden
Markov models. The algorithm belongs to the class of
minimum classification error (MCE) techniques that are
known to outperform maximum likelihood (ML) design.
Most MCE methods smooth the piecewise constant
classification error cost to facilitate the use of local
descent optimization methods, but are susceptible to the
numerous shallow local minimum traps that riddle the
cost surface. The DA approach employs randomization
of the classification rule followed by minimization of the
corresponding expected misclassification rate, while
controlling the level of randomness via a constraint on
the Shannon entropy. The effective cost function is
smooth and converges to the MCE cost at the limit of
zero entropy. The proposed algorithm significantly
outperforms both standard ML and standard MCE design
methods on the E-set database.
Keywords: Speech recognition, Discriminative training,
Deterministic annealing, continuous HMM.

1. INTRODUCTION

Many practical speech recognition systems employ
hidden Markov models (HMMs) to model speech units.
Typically, the system associates an HMM with each
speech unit, and recognition is performed via
competition between these HMMs.

During the design (or training) phase, the HMM
parameters are learned from a training set of speech
utterances. Optimal training is a major challenge since
the natural choice for design cost is the classification
error rate (defined as the fraction of training patterns
that is misclassified), which is a piecewise constant

function of the HMM model parameters, and does not
lend itself to gradient-based optimization. The popular
Maximum Likelihood (ML) approach circumvents this
difficulty by discarding the classification error cost and
replacing it with the ML objective, which although
mismatched is easier to optimize. Recently, there has
been renewed interest in direct design approaches
whose objective is minimum classification error
(MCE). MCE techniques smooth the classification error
cost function and jointly optimize all HMM parameters
of the classifier via gradient descent. Of particular
importance within the MCE family is the generalized
probabilistic descent (GPD) [1,2,3,5]. Although MCE
targets the true design cost and thereby offers
significant performance gains over ML, it suffers from a
significant drawback. The MCE cost surface is riddled
with shallow local minima that easily trap local descent
methods, and may substantially compromise
performance.

The above provides the motivation for the deterministic
annealing (DA) method proposed here, which is an
MCE technique in that it targets the true cost
(classification error rate), but does so while employing a
powerful optimization tool. DA was first proposed for
clustering and related problems [12,13] and later
extended to solve problems which require structural
constraints on the clustering rule [6], and applied to
certain source coding systems [7], regression functions
[8,10], pattern classifiers [6], etc. For a tutorial on DA
see [14]. Most recently, DA was successfully applied in
the design of discrete observation HMM classifiers
[9,11], and was shown to substantially outperform both
ML and GPD. In this paper, we propose a
generalization of the DA method to the design of
continuous observation HMMs.

2. PROBLEM STATEMENT

The isolated-word speech recognition problem is
specified by a training set, Τ={(x1,c1),(x2,c2),.., (xN,cN)}
of labeled training patterns. The pattern xi corresponds
to an utterance of the word ci which belongs to a finite-
sized dictionary, C ={1,2,...,M}. Pattern xi is a sequence
of Ti feature vectors extracted from the speech
utterance. Each Nf–dimensionnal feature vector
typically contains the cepstral or LPC coefficients and
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their derivatives. The recognition system consists of a
set of HMMs {Hj; j=1,2..NH}, usually, one per word in
the dictionary. Model Hj is fully specified by the
parameter set Λj, which includes the state transition
probabilities Aj[], the state-conditioned output
distributions Bj[] and the state priors πj[]. These models
determine the classifier, C, via the classification rule
that maps the training pattern, xi to the class C(xi) as
follows:

• Given the pattern, xi, a “path score” is computed
for each path p (defined as one possible sequence
of states, s0, s1..) in each model Hj:
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• The emission probability Bj[] is a mixture of K

gaussian distributions:
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• The path with the highest score (the winning path)
is determined and xi is mapped to the class of the
HMM that the winner path belongs to:
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The classifier operation can be viewed in terms of
competition between paths. The observation, xi, is
ultimately labeled by the class index of the HMM to
which the winning path belongs.

The design objective for is to jointly optimize the model
parameters jΛ composed of:

 Priors, [ ]0sjπ ,

 State transition matrices, [ ]1, +ttj ssA ,

 Distribution means ],1[],[,, fksj Nmm ∈µ ,

 Distribution variances ],1[,],][[,, fksj Nnmnm ∈Σ ,

 Distribution weights, ksjc ,, ,

So as to minimize the empirical classification error rate:
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Here δ() is the Kronecker delta function: δ(u,v)=1 if
u=v, and δ(u,v)=0 elsewhere.

As noted above, a significant design problem is due to
the piecewise constant nature of Pe, which precludes the
use of direct descent-based optimization. The popular
ML approach circumvents this difficulty by replacing

the true cost function with a sub-optimal design
objective. GPD and other MCE approaches smooth the
true cost function to allow descent-based optimization,
but are still susceptible to poor local optima.

3. DETERMINISTIC ANNEALING

The fundamental principle underlying the DA approach
to HMM design is the randomization of the “best-path”
rule during the design. The original (non-random) rule
which associates pattern xi with a unique winning state
sequence p is replaced by a randomized rule that
chooses state sequence p in model Hj in probability.
Specifically, the winning probability of path p is given
by the Gibbs distribution,
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We note that paths with higher scores are more probable
winners in the competition. The parameter γ controls
the “fuzziness” of the distribution. For 0=γ , the

distribution over paths is uniform. For finite, positive
values of γ, the Gibbs distribution indicates that we
assign higher probabilities of winning to paths of higher
scores. In the limiting case of ∞→γ , the random

classification rule reverts to the non-random “best path”
classifier that assigns all the winning probability to the
path with the highest score.

The “Gibbs” parametric form of this distribution is not
arbitrary, but is derivable from information-theoretic
principles [6, 8,14]. We should re-emphasize that the
random classifier paradigm is adopted only during the
training phase. The DA algorithm ultimately produces a
regular, non-random HMM-based classifier.

The expected misclassification rate of the random
classifier is given by:
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where C(Hj) is the class associated with the HMM Hj.

Straightforward minimization of the expected
misclassification rate with respect to all the HMM
parameters and the scale parameter γ is possible
although such a method would be highly susceptible to
shallow local minimum traps. We propose instead to
introduce the notion of annealing which involves an
entropy-constrained formulation.

Instead of simply optimizing the misclassification cost
<Pe> during the design process, we do so while
enforcing a constraint on randomness, which is
measured by the (conditional) Shannon entropy:



( ) ( )ij

N

i

N

j Hp
ij xHpPxHpP

N

H

j

|,log|,
1

1 1
∑∑ ∑
= = ∈

−=H .

Thus we minimize the expected misclassification <Pe>
while constraining the entropy to a prescribed level,

HH ˆ= . We then gradually lower the entropy level
while tracking the minimum. The constrained
optimization problem of minimizing <Pe> at a given
entropy level is equivalent to the unconstrained
Lagrangian minimization:
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where T is the corresponding Lagrange multiplier. The
parameter T is gradually reduced from a high value to
zero while tracking the minimum of L. This is directly
analogous to the process of annealing in physics. The
parameter T is naturally referred to as the
“temperature”. As 0→T , the optimization reduces to
the unconstrained minimization of <Pe> which forces

∞→γ  leading to the optimal non-random maximum
discriminant classifier. The gradual reduction of T is
central to the ability of the algorithm to avoid shallow
local minima on the cost surface.

Thus, the optimal probability distribution over the
classes evolves during the design. When the entropy
(and temperature) is high, the probability distribution
over the paths is uniform, and all paths in the trellis are
equally probable. However, as the entropy is reduced,
the distribution becomes more discriminating and
assigns higher probability to more likely paths.
Eventually, only the most likely path is assigned a non-
zero probability and the classifier becomes a hard (non-
random) classifier. The DA procedure is summerized in
Figure 1.

The re-estimation process for a given value of T uses a
gradient descent algorithm to optimize the model
parameter set { jΛ } and the smoothing factor γ .

The derivative of criterion L with respect to parameter
θ is given by:
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The re-estimation formula for HMM training can be
written in an efficient forward-backward form similar to
[11].

It is worthwhile to note some connections between the
GPD approach and the DA optimization.  If in (1), we
impose 0=T  and fix γ  to a constant value, the

resulting criterion is a smoothed version of the actual
MCE criterion, and the smoothness of this criterion is
determined by the parameter γ . This criterion is very

similar to the one used in the GPD method. It can
further be shown [11] that for particular values of  the
constants used in GPD criterion [2], the two criteria are
equivalent. In this sense, GPD may be viewed as a
special, degenerate case of the DA procedure as it
minimizes its criterion at zero temperature, and for a
particular value of the smoothness factor γ . The  DA

method, however, involves the important effect of
annealing where the temperature is gradually reduced
while the classifier parameters and the smoothing factor
are optimized at each temperature.

4. EXPERIMENTAL RESULTS

We have compared the performance DA to that of GPD
and standard ML on the challenging task of recognizing
spoken utterances of letters belonging to the E-set:
{ b,c,d,e,g,p,t,v,z}. The E-set classification problem is
notoriously difficult due to its high confusability.
Misclassification within the E-set has been identified as

Figure 1:DA procedure
Flowchart.
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the most significant cause of errors in the more general
problem of spelled word recognition which has several
applications such as automated telephone forwarding
systems and automated directory assistance [4].

The experiments were carried out on speech data from
the ISOLET database, which is a part of the CLSU
corpora. The E-set portion of this database was divided
into a training set (utterances by 60 male and 60 female
speakers) and a test set (utterances by 15 male and 15
female speakers). Two utterances of each letter by each
speaker were used. The speech signal was divided into
32 ms length frames with a 16 ms inter-frame overlap;
10 MFCC coefficients and their first-order time
derivatives (∆MFCC coefficients) were extracted from
each frame. The HMM classifier consists of nine left-
to-right HMMs. Two different classifier configurations
were tested. The first was a minimal two states per
HMM configuration, and the second consisted of six
states per HMM. In both cases, the state-conditional
output distribution was Gaussian.

Table 1 compares the error rates obtained by the three
different optimization schemes: ML, GPD and DA.
Clearly, DA yields the best classification error rates in
both configurations. The DA error rates are consistently
lower than ML and GPD on both training and test sets.

Number
of

States

Data
Set

ML GPD DA

Train 25.41 21.25   2.96
2

Test 28.70 26.67 17.04

Train 24.86 19.54   1.76
6

Test 28.89 27.04 15.74

Table 1: Error rates obtained by competing design
methods (ML, GPD and DA) on the E-set in two
configurations (two states / six states).

5. CONCLUSIONS AND FUTURE WORK

This paper was motivated by the difficulties
encountered in direct optimization of the classification
error rate for continous HMM classifier design. A
powerful optimization method based on deterministic
annealing was developed to attack this shortcoming.
Experimental results on E-set letter recognition show
the promise of the approach and demonstrate
performance gains over two standard classifier design
methods, namely maximum likelihood and generalized
probabilistic descent. Work is currently in progress to
extend the deterministic annealing approach to the
design of semi-continuous HMM classifiers.
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