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ABSTRACT

A tied-mixture HMM speech recognizer design approach is
proposed, which combines parameter training with parameter
reduction. The procedure starts by training a system with a large
universal codebook of Gaussian densities. It then iteratively
reduces the size of both the codebook and the mixing weight
matrix, followed by parameter re-training. The additional cost in
design complexity is modest. Preliminary experimental results
on the E-set show that the classification error rate is reduced by
over 20% compared to standard tied-mixture or semi-continuous
HMM design. This improvement is obtained both inside and
outside the training set.

1. INTRODUCTION

The Hidden Markov Model (HMM) is widely recognized as a
useful statistical tool for automatic speech recognition. Model
parameter training has long been recognized as a critical part of
the system design. While the natural objective of training is
accurate classification of utterances, training has traditionally
been performed using the maximum likelihood (ML) criterion.
The corresponding re-estimation algorithms are effective and of
manageable complexity. However, ML optimization suffers from
the inherent and fundamental mismatch with the natural “true”
objective, namely, minimum classification error (MCE). Instead
of MCE, the traditional procedure attempts to optimize ML,
which is the objective of the modeling problem. Recently, a new
class of methods that directly optimize MCE has been proposed
[1]. MCE methods offer improved performance but encounter
three main difficulties. The design complexity is considerably
increased, but this may not be prohibitive in practical
applications where the design is typically performed off-line.
MCE tends to be highly susceptible to poor non-global optima
(see [2] for the deterministic annealing approach to resolve this
difficulty). Finally, the gains of MCE may not generalize well
outside the training set. This paper is concerned with the search
for an approach that offers gains over ML methods, at minimal
additional design complexity cost, which generalize well outside
the training set.

Optimal design of speech recognizers, based on limited training
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data, must take into account the fundamental tradeoff between
model richness and robustness. Tied-mixture HMM (TMHMM)
[3] [4] represents an important approach to optimization of this
tradeoff (In this paper, we use the term TMHMM to refer
generally to methods where mixtures are tied, and experiment
comparison will be made with respect to the TMHMM method
of [4]). With its universal set of density functions for
constructing state emission mixtures, TMHMM offers the
modeling capability of a large-mixture continuous HMM
(CHMM), but with a substantially reduced number of free
parameters to train. Thus, for the typical case of insufficient
training data, TMHMM achieves significant performance gains
over traditional CHMM.

In spite of TMHMM’s success, two inter-related problems
remain open: 1) how to optimally design the state emission
density codebook; and 2) how to select and train the tying
parameters. Appropriate selection of emission (typically
Gaussian) density parameters is of paramount importance to the
performance of continuous HMM systems [5]. Further, the
choice and effective training of the tying parameters is at the
heart of TMHMM, and is recognized as a challenging problem.
Good selection and estimation of tying parameters can improve
the model accuracy with little or no increase of model
complexity and, thus, optimize the tradeoff between model
complexity and robustness. Various tying techniques [6][7][8]
have been developed over the last ten years, and considerable
improvement has been achieved. However, these methods have
mainly focused on trading performance for reduced
computational complexity. The objective of the work presented
here is to develop an qufomatic parameter tying approach so as
to improve performance outside the training set.

A new approach is proposed, which is based on combined
parameter training and parameter reduction. The Gaussian
density codebook is first initialized with a large number of free
parameters, and then downsized to the target codebook size
using minimum-entropy parameter reduction techniques. The
procedure simultaneously reduces the size of the density
codebook, and trains the Gaussian parameters. This optimization
is performed jointly with a parameter reduction procedure that
dynamically reduces the tying-weight matrix. The overall
method is shown to significantly outperform standard TMHMM
design [4]. These performance gains are achieved by automatic
design without incorporating any prior phonetic knowledge as is
commonly done in “manual” tying techniques [9].

2. COMBINED TRAINING AND REDUCTION

In this section we give a high-level description of, and
motivation for, the combined training and reduction (CTR)
approach. The approach will be applied to TMHMM design in
the next section.
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Figure 1. Combined Training and Reduction Algorithm

Let the HMM parameter set be A= (7[ A B ) , where ris the

prior probability, A is the set of state transition probabilities, and
B contains the state emission probability distributions. Let the
target number of free parameters be My. A high-level diagram
for the CTR Algorithm is given in Figure 1. The training process
builds on two iterative optimization loops: one loop optimizes
the system for a fixed number of free parameters (FNFP), and is
referred to as the FNFP loop. Here, the standard HMM training
technique may be used. The other loop optimizes decisions for
parameter reduction and is called the PR loop. The initial number
of free parameters is My, and either a fixed or a variable
parameter reduction rate may be employed. A group of
parameters is identified and eliminated in each iteration. The
decision is based on a performance criterion derived from the
previous FNFP loop. The overall process, of parameter
estimation and reduction, continue until the target number of free
parameters has been reached.

The reduction procedure targets a subset of the HMM
parameters. We will restrict our treatment to the state emission
parameters B. (One may consider extensions to state-tying, i.e.,
apply reduction to A as well.) More specifically, we seek to
reduce the number of codewords in a DHMM, the number of
Gaussian densities per state in a CHMM model, and both the
total number of Gaussian densities and the number of mixing
parameters in a TMHMM model. The remainder of the paper
will focus on the latter.

The motivation for the proposed CTR is due to the following
somewhat overlapping points: 1) design complexity is in the
order of that of ML-based re-estimation; 2) MCE considerations
are involved in the design; 3) parameter training and parameter
reduction are combined.

Most of the computation performed during CTR design is in the
form of ML re-design of HMM systems in the FNFP loop. ML-
based re-estimation formulas are known as relatively fast but
mismatched with MCE. In this paper, ML re-estimation is first
performed on a large HMM parameter set, which is then
downsized to the target size. The reduction procedure aims at
climinating only those parameters that offer little or no
contribution to the recognition performance of the system. This
may naturally be measured by MCE. Since only MCE-
superfluous parameters have been removed, the system
performance is roughly maintained while the number of
parameters is reduced. Once the PR loop is completed, the
parametric structure of the system has been changed, and it is no
longer expected to be at a local optimum. A new round of re-
estimation may therefore be carried out based on the now
improved initial values, and so on.

By using ML re-estimation for the FNFP loop and alternating it
with an MCE-based PR loop we achieve the desired properties
enumerated above. The system complexity is largely governed
by the ML re-estimation procedure, and is therefore only
moderate. However, the MCE criterion is not ignored, and the
PR loop takes into account inter-class relationships to adjust the
design for better discrimination.

Parameter estimation and parameter sharing have been
commonly considered separately in the literature. Parameter
estimation is viewed as a performance-enhancing procedure.
Parameter sharing techniques are mainly used for complexity-
reduction at the cost of reduced recognition accuracy. However,
this is not necessarily always the case. In fact, as will be shown
for the CTR algorithm, parameter estimation and parameter
sharing can be combined to achieve both complexity reduction
and performance-enhancement.

Before proceeding with direct application of the approach to
HMM design we introduce a further compromise to restrict
design complexity. Although the MCE criterion may be used
effectively for the reduction process, as explained earlier, it still
involves an undesirable cost in computational complexity. In this
work we chose to incorporate within the framework a minimum-
entropy parameter reduction algorithm, which substantially
reduces the computational burden and, yet, achieves considerable
gains. The evaluation of the merits of a high complexity
approach that optimizes combined parameter estimation and
reduction solely with respect to the MCE criterion is currently
under investigation.

3. APPLICATION OF CTR TO TMHMM
DESIGN

Unlike traditional CHMM, TMHMM [4] uses a universal
codebook of Gaussian densities. State emission probability
distributions are constructed as mixtures of densities from the
codebook with appropriate mixing coefficients. Let there be M
classes, each represented by an HMM of N states, and let there
be a universal codebook of K Gaussian densities. The emission

probability distribution for state R



K
bm,n (x) = Z g(x|vk )pk|m,n

k=1

where g (lV) is a Gaussian density whose mean and variance

are specified in parameter vector v. The universal codebook may
be simply given by the set of parameter vectors

{vk ,k = 1,. LK } The mixing coefficients have obvious

probabilistic interpretation p k| mn =Pr (Vk | S, n) , and satisfy

K
Zpk|m,n = 1
k=1

The proposed CTR approach is concerned with two reducible
sets of parameters: 1) Universal codebook elements or Gaussian

parameter vectors V, ; and 2) Mixing coefficients p k| The

first set has global properties as its parameters involve all classes
and states. The second set consists of state-specific parameters.
Both types of reduction may be captured b}l operations on the

mixing weight matrix (MWM): pk|mn , which is

KXMXN
shown in Figure 2. In this work we restrict our attention to three
possible operations:

¢ Row deletion - elimination of a Gaussian density from the
universal codebook.

e  Column sharing - distribution sharing by two states (see
state clustering [8] and distribution sharing [7]).

¢ Column element thinning — elimination of Gaussian
components from a state emission distribution

A minimum-entropy criterion has been effectively used in
parameter-sharing [7]. In this paper, we apply the minimum-
entropy approach to row deletion, however, in a fundamentally
different way. Our focus is on the posterior conditional entropy
as explained next.

The marginal probability of universal codebook element V, is

Pr(vk ): EM‘, zN‘, Pr(sm,n ) Prim, n

m=1n=1

Consider the posterior probability

PI'(S,,,,,, Vk ) — — ?vr(sm,n )pklm,n ~ - l])vklm,n
ZZPT(Sm,n )pk|m,n Zzpklm,n
m=1 n=1 m=1 n=1

where the rightmost approximation is valid if the states are
equiprobable. Thus the (posterior) conditional entropy for a
Gaussian density is

N
2 Pr (sm,n

=1 n=1

M

H(Vk):_

Vk)}

The minimum-entropy reduction of the universal codebook is
performed by: sorting the codebook elements in increasing order

of entropy I < ] = H(v,. )S H(Vj), computing

Vv, ) log{Pr(sm,n

L
L=arg maxl DH)<ay,
L

I=1

where o is a pre-defined reduction rate parameter, and removing

the elements {V,, 1<1< I: }

The dynamic reduction rate defined by o can be replaced with a
fixed reduction rate, where the first (constant) L pdfs are
removed.

For MWM column sharing there are known techniques such [8]
or [7]. Several criteria have been proposed including minimum
entropy, minimum divergence, maximum likelihood, etc. In our
simulations we used the minimum squared error (MSE) distance,
and have found it to perform well.

For column element thinning, instead of the fixed number
reduction which was applied in [1], we propose to use a

probability-based dynamic reduction. For each state §, ., the

thinning is performed by: sorting the mixing weights in

ascending order I < j ﬂpqm " <p , computing

j| m,n

L
I:=arg maxl Zpl|m,n <p
L I=1

(where B is a predefined reduction rate parameter), and thinning

A

the state’s mixture by setting to zero the first L mixing
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Figure 2. Mixing Weight Matrix of TMHMM



No. NO'. of Train Set | Test Set
states distinct
methods . Error Error
per Gaussian Rate Rate
HMM pdfs
CHMM 13 234 7.8 % 17.7 %
Standard
TMIIMM 13 234 7.5 % 152 %
TMHMM
_CTR 13 234 5.6 % 113 %

Table 1. Performance comparison of HMM design
methods at the same number of states and Gaussian

reduction in error of more than 20% relative to standard
TMHMM. Alternatively, TMHMM-CTR can achieve similar
recognition accuracy but with a greatly reduced set of Gaussian
components, and with enhanced robustness (this alternative
version of the results is not shown for lack of space)

5. CONCLUSION

Selection and training of the Gaussian density codebook and the
tying parameter set are two critical issues for TMHMM. The
combined training and reduction (CTR) algorithm proposed in
this paper maintains complexity similar to that of ML-based
training while providing improved training results. Experiments
demonstrate that CTR can reduce the recognition error rate by
over 20% compared with the benchmark TMHMM model. The
basic CTR algorithm is not restricted to TMHMM, and is
expected to improve HMM training performance significantly in
other set-ups as well. Future work will focus on incorporation of
powerful optimization tools within the CTR framework to

densities
?I?' No. of fr Train Set | Test Set
Methods s ;efs pa(;;ne tei: Error Error
HMM Rate Rate
CHMM 22 28512 5.6 % 11.0 %
Standard
TMEMM 19 28044 4.8 % 10.8 %
TMHMM
_CTR 19 27936 39 % 8.1 %

Table2. Performance comparison of HMM design
methods with similar number of free parameters

coefficients: pl|mn =O, / =1,...,L .

4. EXPERIMENT RESULTS

To test the performance of CTR on TMHMM design,
experiments were carried out on the E-set speech database
obtained from OGI [10]. The recognition task is to distinguish
between nine confusable English letters {b, c, d, e, g, p, t, v, z}.
The database was generated by 150 speakers (75 male and 75
female) and includes one utterance per speaker. Of the 150
speakers, 60 male and 60 female speakers were selected at
random for training, and the remaining 30 speakers were set
aside for the test set. The experiment of random selection
followed by design was repeated 300 times and the average
performance over all trials was recorded.

In our experiment, 36-dimension LPCC parameters were used as
the speech features, with 18 LPC-derived cepstrums plus 18
delta-cepstrums. The analysis frame width is 30ms, the analysis
frame step is 10ms, and a Hamming Window is used. Two HMM
models were used for each utterance, to allow for variation
between male and female speakers. The experiment results are
shown in Table 1 and Table 2. Table 1 summarizes the
performance of various HMM design methods compared at the
same number of states and number of Gaussian components. The
results demonstrate that the performance is monotonically
improving from CHMM, through standard TMHMM [4], to
TMHMM-CTR. Note that TMHMM in this case has more free
parameters because of the mixing weights. In Table 2, further
comparison is given between CHMM, standard TMHMM and
TMHMM-CTR at similar number of free HMM parameters.
TMHMM-CTR offers the best performance and achieves

achieve further improvement.
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