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Let C be a discrete memoryless channel with transition
probability distribution py|x(ylz),z € X,y € Y, where X
and Y are finite sets. Let (Suy,Sv) be a pair of memory-
less correlated sources producing a pair of random variables
(U, V) ~ puv(u,v) from a finite set & X V at each instant.
Alice, the sender, has access to U while Bob, the receiver,
has access to V. Alice and Bob are connected by the channel
C. We wish to decide if Alice can convey n realizations of U
in n channel uses for some n. The asymptotically vanishing
probability of error case offers the following possibility: By
Slepian-Wolf, we can encode U at the rate H(U|V). Channel
coding makes reliable transmission possible if H(U|V) is less
than the Shannon capacity of the channel. Shamai and Verdu
[1] showed that this strategy of separate source and chan-
nel coding cannot be improved upon. The situation changes
dramatically if we impose a zero-error constraint. Our main
results are that separate coding is asymptotically suboptimal
and that in fact the gains by joint source-channel coding can
be unbounded.

To analyze the zero-error scenario, we define the following
graphs: the source confusability graph Gy = (U, Ey) where
(ut,u2) € Ev(CU x U) iff Jv € V : pyv(u, v)puv (uz,v) >
0; the channel characteristic graph Gx = (X,Ex) where
(Zl,xz) (S Ex(g X X X) iff yey: py|x(y]$1)py|x(ylz‘2) >
0. A scalar source-channel code is a mapping f : i — X such
that source symbols that are not distinguishable on the ba-
sis of the side information, must have distinguishable images
under f. In terms of the graphs defined above, the condi-
tion on the map f is: (u1,u2) € Ev = (f(u1) # f(u2)) and
(f(u1), f(u2)) ¢ Ex. Note that we can always find a code
from a source graph to its complement. Separate source and
channel coding corresponds to first mapping from the source
alphabet to an index set and then mapping from the index
set to the channel alphabet. The size of the smallest index
set that allows a zero-error source code is the chromatic num-
ber of Gu, x(Gv). The largest index set from which we can
map to the channel alphabet is the stability number of Gx,
a(Gx). We consider two coding scenarios for block length n
depending on the extension of Gy used (for motivation, see
(2)):

1. Unrestricted Input (UI): The relevant source graph is

the n-fold OR product of Gy, Gg‘).

2. Restricted Input (RI): The relevant source graph is the

n-fold AND product of Gy, Gf.

The extension of the channel graph to be considered in
both cases is its n-fold AND product, G%. The asymp-
totic minimum source coding rates are the fractional chro-
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matic number R*(Gu) = limp—.co = log x(G$) bits per sym-
bol in the UI case and the Witsenhausen rate, R.(Gv) =
lim,, o £ log x(G%) bits per symbol in the RI case. The
maximum allowable rate for the channel is the capacity of the
characteristic graph, C(Gx) = limn—oo + log a(G%) bits per
channel use. Observe that all these rates are purely functions
of the associated graphs.

Unrestricted Input case: Our first result is that separate
coding is suboptimal in the UI case. Source and channel
coding can be done separately only if R*(Gy) < C(Gx).
Consider the pentagon graph G = ({0,1,2,3,4}, E), where
(4,5) € E & i —j| = 1(mod5). Let Gy = Gx = G.
R*(Gu) =log § > C(Gx) = Llogh. So, we cannot transmit
the source through the channel by separate coding. On the
other hand, a scalar joint source-channel code exists since the
pentagon graph is its own complement. Therefore, separate
source and channel coding is suboptimal.

Restricted Input case: In this case separate source and
channel coding is possible only if R.(Gy) < C(Gx). Our
proof of the suboptimality of separate coding employs the
theta function, ¥(G), defined by Lovész. Lovész proved that
log¥(G) > C(G) for any graph G. One of our key results is:

Theorem 1. For any graph G = (V, E), log 9(G) < R.(G).

We now have the string of inequalities C(G) < log9(G) <
R.,(G). If any of these inequalities is strict for some graph,
then separate coding is suboptimal in the RI case as well.
Indeed, such graphs do exist. For example, if Gx is the Schlafli
graph, C(Gx) <log7 < ¥(Gx) = log9.

How large are the gains? Given a source-channel pair
(Gu,Gx), let us rephrase the problem as: how many channel
uses are required per source symbol to enable zero-error trans-
mission? With separate coding, the channel uses per symbol

in the UI case is %(% while in the RI case it is }Z‘”((GGXU))

Using a recent result by Alon [3], we show that:
Theorem 2. Given any [, we can find a graph G such that
R*(G) S R.(G)
cG) ~ C6)

This means that both %GGX—U)) and %1 can‘be arbitrar-

ily large even when Gy = Gx, the case where a zero-error
(scalar) joint source-channel code exists with one channel use
per source symbol.

> 1.
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