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Capacity Enhancement of Cellular CDMA by
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Abstract—Variable rate speech coding is now recognized as an
important system component for high-capacity cellular networks
because it exploits speech statistics to reduce the average bit
rate, which results in reduced interference and increased capacity.
Once a variable rate capability is available, an additional capacity
enhancement can be achieved by introducing network control of
the user bit rate in response to changing traffic levels. In this
paper, we introduce the concept of network control of rate and
propose a particular network-control method for code-division
multiple access (CDMA) systems. Based on an M/M/ ocof /M
queueing model applied to a cell under heavy traffic conditions
and a new performance measure called averaged speech quality,
we obtain simulation results to demonstrate how network control
of rate can achieve improved speech quality or increased capacity
for a given quality objective.

I. INTRODUCTION

VARIABLE rate speech coder generates a transmitted

data signal whose rate varies over the duration of a
call. Variable rate coders [1] can be divided into two main
categories:

1) source-controlled variable rate coders: where the coding
algorithm responds to the time-varying local character
of the speech signal to determine the data rate, with the
data rate varying from frame to frame or over a few
frames;

2) network-controlled variable rate coders: where the coder
responds to an external control signal to switch the
data rate to one of a predetermined set of possible
rates. The external control signal is assumed to be
remotely generated, in response to requests for signaling
information or, as proposed in this paper, in response to
traffic levels in the network.

Source-controlled variable rate coding is already used in
actual systems and has been adopted as the TIA industry
standard IS-95 for code-division multiple access (CDMA)
cellular networks [6]. Network-controlled variable rate coding
based on traffic loading appears to be a new concept, however,
and will also prove to be useful in making more efficient use of
the limited radio spectrum. Although it can be applied to both
time-division multiple access (TDMA) and frequency-division
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multiple access (FDMA) systems, in this paper we propose its
application to a CDMA system because CDMA offers a natural
and easy way to benefit from variable rate coding in cellular
networks. Reducing the coding rate of a user correspondingly
reduces interference to other users. Furthermore, each user
transmits a wideband signal that covers the entire spectral
band, which is shared by a large number of users. Thus, there
is no family of frequency channels (as in FDMA systems)
and no assignment of time slots to different channels (as in
TDMA systems), and the rather complex overhead required
for network control in other systems is eliminated. In' the IS-
95 standard, each frame may have one of four rates and the
receiver automatically identifies the rate without requiring side
information.

In the past decade, major advances have been made to low
bit-rate speech coding for telecommunications [4], but only
recently has attention been addressed specifically to variable
rate speech coding for CDMA (see, for example, [1]-[3]).
Most algorithms of current interest are based on the family of
techniques known as code-excited linear prediction (CELP). In
particular, the QCELP variable rate algorithm [2] was adopted
by the TIA as a service option for the IS-95 standard. For a
tutorial on CELP and other speech coding algorithms, see [5].

While many methods of network-controlled variable rate
speech coding are possible, perhaps the simplest method is
one in which the network directs all transmitters to-use a
lower rate during periods of heavy traffic. Under normal or
light traffic conditions, a higher rate coder performs better (in
terms of the speech quality experienced by the users) than
a lower rate coder because the performance in this case is
limited not by the interference but by the coding rate. On the
other hand, under heavy traffic conditions, coding at a higher
rate can lead to more severely degraded quality due to channel
bit errors, because the performance in this case is limited not
by the coding rate but by the total interference in the network.
Therefore, as illustrated in Fig. 1 for the case of two alternative
bit rates, a favorable trade-off between the coding rate and the
perceived speech quality may result. The same principle can
be extended to network control of variable rate coders with
more than two bit-rates by incrementally reducing the rate at
suitably chosen successively increasing levels of traffic.

In this paper we demonstrate that this hypothesis is indeed
valid based on an idealized but reasonably realistic model of
the problem. We utilize an objective measure of perceived
speech quality to quantitatively derive a relation between
speech quality and the offered traffic load. This calculation
is done is two steps. The first step involves calculating the
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Fig. 1. Representative curves of voice quality versus number of active users
for the case of two alternative bit rates.

traffic load (or the number of users) as a function of the error
rate at the receiver. The second step involves calculating the
error rate at the receiver as a function of the speech quality.
These results are combined to obtain a relationship between
the speech quality and the number of users in the network.

II. RELATION BETWEEN THE TRAFFIC
LOAD AND THE ERROR RATE

Most research that has been done to obtain a relation
between the traffic load and the error rate has until now
concentrated on calculating the bit “error rate (BER) at the
receiver versus the number of users per cell. This is because
these ‘studies concentrated chiefly on the communications
rather than the source coding aspects of such systems (see,
for example, [7] and [8]). In actual systems, however, speech
quality usually depends on the frame erasure rate (FER) rather
than the BER. Bit errors are correctable by employing forward
error correction (FEC) codes, so a frame of speech is in error
only when the error correcting capability of the FEC code is
exceeded. Thus, at the output of the decoder it is the FER
and not the BER that is the parameter of interest. The CDMA
standard of the TIA, for instance, employs convolutional codes
(different codes for the uplink and the downlink) for forward
error correction. If the number of errors in a frame exceeds
the error correcting capability of the code, the frame is treated
as an erasure. Although in an actual system, the receiver uses
a block code (with a very weak error correcting ‘capability of
correcting one error) to correct such extra errors (see Fig. 2),
we will ignore its effect for the purposes of our analysis.

In this paper, we use an additive white Gaussian noise
(AWGN) approximation model of the cellular channel for the
downlink, that is, the connection from the base-station to the
mobile (see for example, [7] and [9]). As in the paper by
Milstein ez al. [7], we assume that the mobile is situated at the
intersection of four square-shaped cells, a possible worst case
scenario (see Fig. 3). Although the uplink is more severe than
the downlink and should also be considered, in this paper we
will only use a simple model of the downlink to confirm the
effectiveness of the network-controlled variable rate coding
scheme. The model is based on a frequency-duplex system,
where every mobile in the system experiences interference

from all base stations, but experiences no interference from the
transmitters of other mobiles: The signal from each base station
is composed of K direct-sequence waveforms (asynchronous
with one another), where K is the total number of users in a
cell. As in [7], we also assume that the composite signal from
each base station independently undergoes flat fading with a
Rayleigh distribution, that is, all signals that arrive at a mobile
from a given base station propagate over the same path; and
so are assumed to fade in unison.

As pointed out previously, Milstein ez al. [7] have calculated
the BER as a function of the number of users per cell. Pursley
and Taipale [9], however, have calculated an upper bound on
packet error rate (PER), which is the quantity of interest for us,
in terms of the first error-event probability of the convolutional
code used. Therefore, we modified the analysis in [7] to obtain
a relation between the FER and the number of users per cell. A
packet error is defined as the generation of errors in a sequence
of data bits (i.e., the packet) that are beyond the correcting
capability of the FEC code. Since the system initializes the
convolutional decoder at the beginning of every frame, the
PER and FER are the same in our case, provided that we ignore
the effect of the additional block code. Since this additional
code can correct at most one error, we W111 ignore its effect
in" our analysis.

The upper bound on the FER is calculated based on the
first error-event probability of the convolutional code used,
which is itself calculated only as an upper bound [11]. The
fact that these probabilities are upper bounds makes our
results pessimistic. Since we compare a system with network-
controlled variable rate coding to one without it, under the
same pessimistic conditions, however, the qualitative nature
of our results still remains valid.

The upper bound on the first-event error probability P, of
an AWGN channel is given by

P, < T(D)IDzexp(—E§Rc/No) (1)

where T'(D) is the transfer (or generating) function of the
convolutional code used [11], E} is the transmitted energy per
bit, Ny is the one-sided power spectral density of the noise,
and R, is the code rate of the convolutional code used. The
BER of a cellular channel approximated as an AWGN channel
has been calculated in [7] to be

P(e[dl, Qg, 053, a4)

_ K oe1+oc2+a3k —1/2
(G

where ¢(z) is given by \

¢(w)=\/—12—7; /_ eV’ /2 dy 3)

and where K is the number of users in the cell, G is the
processing gain of the CDMA system, and 1,09, a3, and
a4 are the “fading” variables, which are independent and
identically distributed Rayleigh random variables, Tepresenting
the fading of the amplitudes of the signals received from the
four base stations (see Fig. 3).
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Fig. 2. Receiver block diagram. The errors that are not corrected by the convolutional decoder give rise to packet errors. If the packet errors cannot be
corrected by the block code decoder, a frame erasure results. For our analysis, we ignore the effect of the single-error correcting block-code decoder, so

packet errors and frame erasures are Synonymous for our purposes.
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Fig. 3. A mobile at the intersection of four cells—a worst case placement.

When BPSK signaling is used, the BER for an AWGN
channel is also given by

P. = ¢(—v/2Ey/No) “

where ¢ is as defined in (3).

Both .(2) and (4) represent the BER in an AWGN channel
using BPSK signaling, and they should therefore be the same.
Thus, equating the arguments of the ¢ function in the two
equations, we obtain

1[K Z+ad+ad\]7}

Ey/No= [3G (149222 G
where Ej /Ny is the effective bit energy to interference density
ratio, which can be used in (1) to obtain a bound on the
first error event probability P,, conditioned on the random
variables a1, s, s, and ay. The unconditional first error-
event probability can then be calculated by averaging over the
distribution of ratio of the “fading” variables as

P, < / T(D)|D=9Xp(—EbRC/N0)fZ(z) dz (6)
o

where z = o2 + o2 + a2/a? and fz(z) = 322/(1 + 2)* as
shown in [7].

To obtain meaningful bounds on the first error-event proba-
bility, it was necessary to truncate the probability distribution
of the random variable z at a value that would yield values
of T(D) less than unity. Therefore, we used a truncated and
renormalized distribution function in (6). For this purpose, we
numerically solved the equation T'(D) = 1 to obtain an upper
threshold value, say D,, for D. Since D = exp(—Es R, /No)
we obtain

R. =1In(1/Dy). M

Combining (7) and (5) and remembering that the ratio of
the amplitudes (or “fading” variables) is given by the random
variable 2z, we obtain the following bound zmax on the value
of the random variable z -

1.5GR.

Kumax log(1/Do) 1 ®

Zmax =
where Koax is the maximum number of users per cell and
the remaining parameters are as explained earlier. Thus, the
modified probability density function used in (6) is given by

2 oy fz(?)

.fZ(Z) = F(zmax) 9
where F(zmax) = J§™ fz(2) dz. Finally, the packet error
probability Ppacket ¢an be upper bounded in terms of P, (see
[10]) as

Ppacket =1- (]- - Pu)L (10)
where L is the packet length, that is, the number of sequential
data bits in a packet.

III. RELATION BETWEEN THE SPEECH
QUALITY AND THE ERROR RATE

A block diagram of the simulation scheme used to obtain
the relationship between speech quality and the error rate is
illustrated in Fig. 4. Since the FER derived in the previous
section includes the effect of channel coding, our simulation
does not employ a channel coder. For inserting errors into
the coded speech, we used the error insertion device (EID),
a standard tool provided by the CCITT [8]. The EID can
insert bit errors or frame erasures into a speech file, with
the bursty (correlation) factor of the errors or the erasures
controlled according to the Gilbert-Elliott channel model. We
note that the FER calculated in Section II includes the effect of
error correction due to convolutional decoding. Therefore, in
the simulation set up shown in Fig. 4 we only considered the
FER at the input of the speech decoder. Since this setup does
not include the effect of channel coding, it may be argued
that the distribution of the FER’s in the two cases might
be different, and this may affect the final result. However,
as pointed out later in Section V, it turns out that the final
results are practically independent of the correlation between
the FER’s in the simulation scheme, so this difference will not
cause any significant change in the final results.
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Fig. 4. A block diagram of the simulation scheme is illustrated. The decoded speech signal at the output of the speech decoder is compared with the

original speech signal to calculate the bark spectral distortion.
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Fig. 5. The state-transition-rate diagram for the M/M/co//M queueing model, which is used to evaluate the performance of the system.

As a speech quality measure, we used the bark spectral
distortion (BSD) and the predicted mean opinion scores (MOS)
obtained from the BSD values [9]. The BSD is the average
squared Euclidean distance between spectral vectors of the
original and reconstructed utterances (see [13]). The BSD
takes into account auditory. frequency warping, critical band
integration, amplitude sensitivity variations with frequency,
and subjective loudness. The standard error in estimating MOS
scores with the measure was 0.2—().3, with the higher accuracy
for low rate coders in the range of 2.4-8 Kbps. The measure
offers a more consistent assessment of the effect of incremental
changes in the parameter of a speech coder than is usually
obtained by the designer who relies on his or her own informal
listening. ,

IV. SYSTEM EVALUATION

To evaluate the performance of a CDMA system that
employs network-controlled variable rate coding we propose
a new performance measure, which we call the averaged
speech quality. In a system that employs network controlled
variable rate coding, the source coder must respond to the
instructions from the network controller, which in turn depend
on the time-varying traffic levels in the network. Consequently,
any performance measure to evaluate the system performance
should include the effect of this statistical variation in traffic
character. In our case, we account for this variation by using
an appropriate queuing model. We analyze a heavy traffic
situation and use the M /M /oo//M queueing model [14], with
the assumption that the total number of users in conversation
in a cell is fixed at NV, while the number of active users %,
that is, the users involved in a talk-spurt, has a probabilistic
distribution governed by the above model (see Fig. 5). The
state variable is the number of active users in the system.

We assume that for each user who is not active the talk-
spurts arrive according to a Poisson process with rate ),
independently of other users in the system, and that the talk-
spurt durations are exponentially distributed with mean y. In
any state k, only the (N — k) users who are currently silent
can initiate new talk spurts. The arrival rate A of talk-spurts
from a silent user is the reciprocal of the average duration S
of the silence interval. Thus, the arrival rate into the system
in state k£ is given by ‘

Ak:{(N—k)A, for 0 < k < N an

0, for k>N

where A = 1/8S.

Similarly, the service rate in state % is conditioned on the
fact that k users are involved in a talk-spurt. The service rate
1/ of a talking user is the reciprocal of the average talk-spurt
duration 7. Thus, the service rate of the system in state & is

given by
_ J ky,
= {0,

where 1/p = T.

Fig. 6 shows the relation between a talk-spurt and a silence
interval. The ratio A/u can also be expressed in terms of the
voice activity factor v, as

for 0 < k < N;

for k>N (12)

2 (13)

where

TSyT (14

In accordance with the M /M /co//M queueing model [14],
the state probability Fj that there are k active users in the
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Fig. 6. Relation between a talk-spurt duration and a silence interval. Each
talk-spurt is followed by a silence interval. In our model, a talk-spurt duration
is exponentially distributed with mean 4 = 1/7, and each silence interval is
exponentially distributed with mean 1/A = S.
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Fig. 7. State probability distribution of the number of active users per cell,
derived as per (15).

system (which in our case is a cell) is given by

A\ £ W
NCel = 1+—) for 0 < k < N;
k(u)( p =v=" (15

0, for k> N.

P =

From (13), this probability is a function only of the voice
activity factor v and of the total number of users N in
conversation. Fig. 7 shows an example of the state probability
distribution, when there are N = 500 users in the cell and the
voice activity factor is v = 0.6.

Although we used Fig. 1 to illustrate the concept of network
controlled variable rate coding, we point out that it depicts only
a static situation, because it shows how the speech quality may
vary with the number of active users in the system. In reality,
the nature of a cell’s loading is dynamic, in the sense that
the number of active users is constantly changing, even if the
total number of users N in the cell remains roughly constant
(in heavy traffic conditions). Using our model, the number of
active users k has a probabilistic distribution given by (15).
Since the speech quality experienced by a user now varies
constantly, we define a new performance measure, called the
averaged speech quality, which we will use to evaluate the
system performance. This measure is obtained by weighting
the speech quality Q(k), experienced by the users when there
are k active users in the cell, by the probability P that & users

547

are active. Therefore, the averaged speech quality experienced
by a user is given by

N
Q=7 Q)P (16)

k=1

We note that Q(k) can in fact be any speech quality measure
such as segmental SNR, BSD, or MOS. As explained earlier
in Section II, to characterize Q(k) we have used the BSD
measure and the predicted MOS values. It should be noted
that the performance measure @ contains the effect both of
voice activity detection and of network-controlled variable rate
coding.

V. RESULTS

The experimental results presented here are derived using
the system parameters of the CDMA standard of the TIA.
Fig. 8 shows an example of the relation between FER (upper
bound) and the number of active users in a system for the
two cases that we considered, namely, when all users employ
a high rate coder and when all users employ a low rate
coder. Although the QCELP coder was intended as a (source-
controlled) variable rate coder, for our experiment we modified
it to work at the two fixed rates of 9.6 Kbps and 4.8 Kbps,
which correspond, respectively, to our high rate coder and
to our low rate coder. Thus, the processing gains for Fig. 8
are 12.5 MHz/9.6 Kbps = 1302.08 for the higher rate and
12.5 MHz/4.8 Kbps = 2604.16 for the lower rate. As per the
CDMA standard of the TIA, the downlink employs the best
convolutional code of rate half (i.e., R, = 1/2) and constraint
length nine, whose transfer function [15] is given by

T(D) = 11D'? 4+ 50D 4286 D¢ +1630D' +---.  (17)
We have used only the first eight terms (four out of eight of
whose coefficients are zero), because for reasonable values of
the effective bit energy to noise density ratio, the higher order
terms do not contribute significantly to the sum. The plots in
Fig. 8 were obtained by the method outlined in Section II. We
first calculated the upper threshold value D, by solving the
equation T'(D) = 1 for the transfer function of (17). Next for
each user population K., we used (8) to evaluate 2.y and
renormalized the probability density function fz(z) as per (9).
The bound on first error-event probability P, was calculated
using (6). Finally, the FER, Ppacket (recall that modulo our
assumption, of ignoring the effect of the single error correcting
block decoder in the receiver, the packet error probability and
the FER are identical in our case), for each user population
was obtained from (10).

Figs. 9 and 10 show an example of the relation between
speech quality and frame erasure rate. The: plots in these
two figures were obtained as explained in Section III (see
Fig. 4). The EID module, which inserts erasures into frames
of the coded speech, allows the user to program into it the
required FER. We therefore inserted frame erasures into the
coded speech at several different FER’s and for each FER
obtained the quality of the decoded speech by using the
BSD module. (The BSD value for each FER was obtained
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Fig. 8. FER versus number of active users per cell for two alternative bit
rates, 9.6 and 4.8 Kbps, respectively. Legend: FER (full rate) = dash-dot
curve and FER (half rate) = solid curve.
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Fig. 9. BSD versus frame erasure rate for the case of two alternative bit
rates, 9.6 and 4.8 Kbps, respectively. For each rate, two curves are shown,
one with random frame erasures (abbreviated “random” in the legend) and
one with correlated frame erasures (abbreviated “correlated” in the legend).
Legend: full rate (random) = solid curve, full rate (correlated) = dashed
curve, half rate (random) = solid curve with circles, and half rate (correlated)
= dash-dot curve. It can also be seen that highly correlated frame erasures
(a bursty factor = 0.8) give practically the same distortion as uncorrelated
frame erasures (a bursty factor = 0.0), thus justifying our choice of working
only with uncorrelated frame erasures.

by averaging over several speech files.) Fig. 9 shows BSD
as a function of the FER in a cell, and Fig. 10 shows the
predicted MOS scores, obtained from the corresponding BSD
values, as a function of the FER in a cell. We obtained
these graphs for bursty factors of 0.0 and 0.8, representing
completely random frame erasures and highly correlated frame
erasures, respectively. Even though it is expected that in an
actual cellular environment the frame erasures at a receiver
output would be correlated,- these graphs indicate that the
slight difference in performance between the two bursty factors
is not significant. Considering the correlation of erasures

Predicied MOS score

=rs -35 -3 -2 1.5 -1

© 25
Frame Erasure Rate [log} -

Fig. 10. MOS versus frame erasure rate for the case of two alternative bit -
rates, 9.6 and 4.8 Kbps, respectively. For each rate, two curves are shown,
one with random frame erasures and one with correlated frame erasures. The
legend and associated explanation for the curves is the 'same as that in Fig. 9.
As in Fig. 9, we see that correlated frame erasures give the same results as
uncorirelated frame erasures.

and its effect on speech quality is also an interesting issue.
However, it is not our main purpose here. For our subsequent
calculations we have used a correlation factor of 0.0, because
the correlation of frame erasures does not affect the validity
of our results, since using a bursty factor of 0.8 also gives
similar final results. '

In conjunction with Fig. 8, Figs. 9 and 10 give Figs. 11
and 12, respectively, which show the relation between speech
quality and the number of active users in the cell. In both
graphs, we have the expected crossover threshold (255 in this
case). Thus, the simple network control can be implemented
by switching all users to the coding rate of 4.8 Kbps beyond
this threshold. Figs. 13 and 14 show the averaged MOS score,
with and without the simple network control, for voice activity
factors of 0.4 and 0.6, respectively. To derive the graphs shown
in Figs. 13 and 14, we set the MOS score to zero when the
total number of users exceeded the maximum for which MOS
scores were available from Fig. 12. This is justified on account
of the observation that the MOS score has already dropped
very close to zero when the number of users per cell reaches
the limit shown in Fig. 12. We note that actually calculating
these values and using them for deriving the latter figures
would only improve the averaged voice quality and therefore
improve the results further. ) )

From Figs. 13 and 14 we see that there is an improvement in
speech quality for a fixed user population. Alternatively, if an
acceptable threshold of the averaged MOS value was set at a
nominal value of 2.0 we see that there is an increase in network
capacity. Though a threshold of 2.0 might appear low at first
sight, we consider it a reasonable threshold here because it is
known that the MOS values predicted from the corresponding
BSD values are lower than the actual MOS scores by a bias.
value of about 0.3 (for QCELP) (see [13]). At the crossover
threshold, a system with the network-controlled variable rate
speech coding method gives about a 7% increase in capacity
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Fig. 11. Speech quality (BSD) versus the number of active users per cell for
the case of two alternative bit rates, 9.6 Kbps (or “full-rate”) and 4.8 Kbps
(or “half-rate”), respectively. Legend: BSD (full rate) = dash-dot curve and
BSD (half rate) = solid curve.
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Fig. 12. Predicted MOS versus number of active users per cell for the case
of two alternative bit rates, 9.6 and 4.8 Kbps, respectively. Legend: MOS (full
rate) = dash-dot curve and MOS (half rate) = solid curve.

over a fixed rate system for voice activity factors of 0.4 and
0.6, respectively.

We also see from Fig. 12 that under high traffic conditions
employment of a higher performance low-rate coder will
provide better system operation by providing a higher speech
quality for all users. This is simply because the predicted MOS
curve for a better low rate coder would be above the curve of
the prototype low rate coder used by us, and such a coder will
deliver a higher speech quality beyond the crossover threshold
at which the network switches to this coder.

VI. DISCUSSION

We proposed the use of network control of speech bit
rate and a simple strategy for implementing such a scheme
in a CDMA environment. The averaged speech quality

549

35 T T T T T

score)
I
0

Averaged Speech Quality (MOS

400 500 600
Number of total users in conversation

Fig. 13. Averaged speech quality Q versus total number of users in conver-
sation N, for a voice activity factor v = 0.4 and two alternative bit rates.
Legend: @ (full rate) = dash-dot curve and @ (half rate) = solid curve.
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Fig. 14. Averaged speech quality @ versus total number of users in conver-
sation IV, for a voice activity factor v = 0.6 and two alternative bit rates.
The legend is the same as that in Fig. 13.

performance measure was introduced to evaluate the network-
controlled system. The effectiveness of the method was
demonstrated with this quality measure. The degree of
improvement by the network-controlled method needs further
study, since the speech quality measure, the predicted MOS
based on the BSD, is not perfect, and our calculations still
include some approximations. For instance, frame erasure rates
are not actual values but rather only upper bounds. Also the
effect of error distribution has not been considered in depth.
We believe, however, that the qualitative nature of our results

“lends strong support to the effectiveness of network-controlled

variable rate coding and highlights it as an interesting area
for further research.

In this paper, we confined our focus to the downlink (from
base to mobile), where the base station can easily coordinate
the coding rate of all users without any significant delay. In
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the uplink, on the other hand, we expect some delay in the
switching of the coding rate at mobiles, due to the propagation
delay on the control channel on which the base station’s
instructions would travel. The effect of this delay is of interest
for further study.

As pointed out before, there is a trade-off between the
speech quality resulting from the coding rate itself and the
speech quality resulting from the interference in the system. In
the network control scheme proposed in this paper, the network
directs all transmitters to use a lower rate during periods of
heavy traffic. Due to the trade-off, however, it is also possible
that only a fraction of users can be assigned a lower rate under
a certain heavy traffic condition, which should be achievable
by a sophisticated network controller. Such a scheme would
be capable of giving a further improvement in speech quality
(or capacity, for a fixed quality) by use of network-control.
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