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Abstract

We attack the problem of robust and efficient image compression for trans-
mission over noisy channels. To achieve the dual goals of high compression
efficiency and low sensitivity to channel noise we introduce a multimode coding
framework. Multimode coders are quasi-fixed length in nature, and allow opti-
mization of the tradeoff between the compression capability of variable-length
coding and the robustness to channel errors of fixed length coding. We apply
our framework to develop multimode image coding (MIC) schemes for noisy
channels, based on the adaptive DCT. The robustness of the proposed MIC is
further enhanced by the incorporation of a channel protection scheme suitable
for the constraints on complexity and delay. To demonstrate the power of the
technique we develop two specific image coding algorithms optimized for the
binary symmetric channel. The first, MIC1, incorporates channel optimized
quantizers and the second, MIC2, uses rate compatible punctured convolu-
tional codes within the multimode framework. Simulations demonstrate that
the multimode coders obtain significant performance gains of up to 6dB over
conventional fixed length coding techniques.

1 Introduction

Although much of the image coding literature has ignored issues of transmission errors
due to noisy channels, the topic has been gaining in urgency due to emerging “hot”
applications such as multimedia communications over wireless channels. Moreover,
separate handling of source and channel coding, while asymptotically justifiable by
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Shannon’s theory, appears too inefficient in practice given the demanding require-
ments on bit rate, complexity, delay, and of robustness to noisy time-varying chan-
nels. Thus, several researchers have been investigating the applicability of combined
source-channel] coding to robust image compression [1], [2], [3].

A major shortcoming of the standard source-channel image coding techniques is
due to their use of fixed-length encoding. It is well known that as long as vector
dimensions are not excessively high, fixed length source coders are significantly infe-
rior to variable length coders in terms of compression efficiency. More importantly,
images are well modelled as a mixture of multiple sources [9], [10] and a variable
length coding scheme can be tailored to exploit these highly non-stationary statis-
tics, and provide additional gains over fixed-length coding. However, conventional
variable length codes are extremely sensitive to channel errors that may cause desyn-
chronization and catastrophic error propagation. Fixed length coding offers greater
robustness to channel errors, as an error is confined to just one codeword. Indeed,
image coders for noisy channel environments predominantly use fixed-length coding
(e.g., [1], {2] , [3]), and compression performance is sacrificed for error resilience.

Ideally, we would like to achieve the best of both worlds, namely, robustness to
channel errors and high compression efficiency. In this paper, we propose a method
to optimize the tradeoff between the two competing objectives via the framework of
multimode coding. The multimode coder switches between different fixed length codes
for each block of data to achieve efficient compression. Moreover, as long as the mode
information is error free, there is no error propagation in the fixed length part. We
exploit this quasi-fized length nature of multi-mode coding in designing robust image
compression schemes which substantially outperform other standard approaches.

The rest of the paper is organized as follows: We introduce the general multimode
coding structure in section 2. We discuss its advantages over standard coding schemes
and propose a simple optimization scheme for the design of the multimode coder. In
section 3, the adaptive discrete cosine transform (ADCT) is viewed as a special case
of multimode coding. We use this observation as the starting point for developing
ADCT-based multimode image coding (MIC) schemes. In section 4, we incorporate
two channel protection methods within our ADCT-based MIC framework. These are:
channel optimized quantizers (e.g. [4]) and rate compatible punctured convolutional
codes [5]. To demonstrate the performance gains achievable by the multimode coding
approach over conventional image coding schemes, we provide simulation results for
transmission over a binary symmetric channel.

2 Multimode Coding

The basic idea in multimode coding is to allow a set of possible modes in which the
coder can operate, where each mode is in fact a fixed rate encoding algorithm. For
each block of data, the encoder can choose the best mode for operation given the local
statistics (or other parameters) so as to achieve the optimum overall rate-distortion

performance. The mode, as well as the encoded data, are transmitted through a noisy
channel.
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2.1 Structure

Let {X} represent k-dimensional random vectors generated from a source X. Let
{m;}, 5 = 1,2,...M denote the available modes. Let each mode m; be associated
with its own fixed length encoding/decoding scheme whose rate in bits per source
vector is denoted by r;.

For each source vector X, the encoder selects a particular mode m; and uses the
associated encoding scheme to quantize X. The mode information is transmitted
to the decoder as heavily protected side information. Let ¢; denote the total rate
(including protection) for specifying to the decoder that mode m; is used. We will
assume, for the time being, that the probability of error in the mode information
is negligible due to this protection. The total rate needed for encoding some source
vector z using the mode m; (including the rate for transmitting the mode information)
is thus

Rz)=rj+¢ (1)
The transmitted value of X is corrupted by channel noise. Since the decoder has per-
fect information about the mode m;, it can use the corresponding decoding algorithm
to produce an estimate X. The expected rate R for encoding the source is

R = E{R(X)} (2)
where the expectation is over the source statistics. The expected distortion D is
D = E{d(X, X)} ®3)

where the expectation is over both the source and channel statistics and d(-,:) is a
suitably defined distortion measure. The design objective is to minimize the distortion
D while satisfying the constraint on the rate R. In section 2.3, we describe a design
method for this system.

2.2 Motivation

The quasi-fixed length operation of the multimode coder can achieve both compres-
sion efficiency and error resilience. The coder adapts its operation to the source by
switching modes. Thus we retain the flexibility of variable rate coding which en-
ables efficient compression of non stationary sources (images). Moreover, the heavy
protection of the mode information ensures that it is exactly known at the decoder,
and hence the actual data is effectively transmitted in a fixed length manner without
significant error propagation. Note that by careful design, the mode information can
be made a very small part of the total rate so that protecting the mode heavily does
not impair the overall compression performance significantly. Moreover, within each
mode, the effects of channel errors on the quantized data can be further reduced by
incorporating standard channel protection techniques.

We note that the number of modes (and the mode information rate) determines
the number of different fixed length codes (flexibility of the coder). On one exireme, a
large number of modes ensures that the coder can be extremely adaptive to a variety of



statistics. However, the overhead in mode information is greatly increased particularly
due to its heavy protection. A completely fixed length coder is the other extreme
where there is only one mode (no mode information needed) and correspondingly no
flexibility in adaptation. We develop an optimization procedure to tradeoff the dual
objectives of compression efficiency and robustness.

2.3 Optimization

A training set {z;}, 7 = 1,2,...N is generated from the source X. Replacing the
expectation over the source statistics with sample average over the training set, the
objective of the coder becomes that of minimizing

1 N
D = 5 3 B(d(:,2) (4)
i=1
subject to
1 N
R= N Z R(Zz) < Ries (5)
i=1

where the expectation is now only over the channel statistics.

We naturally rewrite this constrained optimization problem as minimization of
the Lagrangian L = D + AR, where A is the Lagrange multiplier. The resulting
unconstrained minimization problem-is separable, and the Lagrangian contribution
of each training vector can be minimized independently. Note that the multimode
coder can also be regarded as a two stage coder albeit with a heavy protection to the
first stage. From this viewpoint, we adopt an iterative algorithm from [10] to design
the multimode coder. It should however be emphasized that the objective in {10} was
one of pure source coding while our objective is one of robust coding for transmission
through noisy channels.

Algorithm: Partition the training set into the M modes. This initial partition
could be arbitrary or based on some ”smart” heuristic. Iterate the following steps:

1. For j =1,2,..M, design an optimal fixed length code to minimize the lagrangian
for the training subset of mode m;.

2. Design optimal code words (with protection) c; to represent each mode based
on the population of training subsets to minimize the average side information
rate.

3. Repartition the training set into modes such that each vector is encoded by its
optimal mode. i.e., assign each training vector to the mode that minimizes its
contribution to the Lagrangian L.

Each step of the algorithm is non decreasing in the Lagrangian cost and thus
the design method produces a locally optimal multimode coding scheme for noisy
channels. Note that the multimode coding framework is general and can encompass
a wide variety of coding schemes. For example, most variable rate speech coding
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methods are in fact special cases of multimode coding, where the modes are “voiced
frame”, “unvoiced frame”, “silence”, etc. In this work, however, we restrict ourselves
to applying this framework to design efficient and robust multimode image coders for

noisy channels.

3 ADCT-based Multimode Image Coding (MIC)

An important special case of multimode image coding is the method of adaptive DCT
(ADCT) {6]. The 2-dimensional separable DCT has been successfully employed as a
decorrelating transform for image coding. Moreover, the DCT is image independent
and can be efficiently implemented using fast algorithms. ADCT is a technique that
exploits these features of DCT, while allowing flexibility in locally adapting the bit
rate, and most importantly for our purposes, can be extended to provide robustness
to channel errors. We now develop ADCT-based multimode image coding (MIC)
schemes.

In the ADCT method, the image is divided into a set of disjoint blocks. The
two dimensional DCT is applied to each block individually to get a vector of DCT
coeflicients {z;},7 = 1,2,..N. Let the total number of DCT coefficients in each block
be k. Each DCT block is classified into a mode {m;}, j = 1,2,...M. The mode
index {c;} is transmitted to the decoder as side information. We use a rate 1/3 error
correction code for protection which ensures that the mode information is transmitted
reliably with a negligible rate of errors (8]. Each DCT coefficient is scalar quantized
separately using the number of bits specified by the bit allocation map associated with
the mode index. The decoder uses the received values and the associated mode index
to make an estimate {&;} of the DCT coefficients. Inverse DCT is then performed
to reconstruct the image blocks. For the mean squared error distortion measure,
the error in reproducing the image is equal to the error in reproducing the DCT
coefficients since the DCT is a unitary transform.

Based on a training set of DCT blocks, we can apply the iterative algorithm

to design bit allocations, fixed length codes for each coefficient and codewords to
represent the modes.

4 Channel Protection in MIC

We can enhance the robustness of the scheme by incorporating channel protection
schemes which are suited for the various constraints on complexity and delay. Exam-
ples include index assignment [12] and the recently developed method of transmission
energy allocation [11]. We chose to demonstrate the power of multimode image cod-
ing in conjunction with the following techniques: (i) channel-optimized quantizers
(COQ) [4] and (ii) rate compatible punctured convolutional codes (RCPC) [5]. We
note in passing that further improvements were obtained by incorporating transmis-
sion energy allocation methods, but space does not permit us to adequately develop
that method here.
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4.1 MIC1: with Channel Optimized Quantizers

The objective of channel optimized quantizer design is to optimize the encoder/decoder
pair for the given source, channel condition, and bit allocation (rate). This is achieved
by modifying the generalized Lloyd algorithm (GLA) to take into account the effect
of channel errors (see e.g. [4]).

We design channel matched quantizers, along with the corresponding bit allocation
strategy, for the DCT coeflicients in the M classes. Let € be the bit error rate on the
given binary symmetric channel. We impose the requirement that no coeflicient be
encoded using more than 7., bits.

The probability densities of the DCT coefficients can be reasonably approxi-
mated by gaussian distributions [9]. Hence, we design a set of quantizers of rates
r=1,2,...,Pmar bits, where each quantizer is optimized for a unit vartance Gaussian
source and the given channel. Let us denote these quantizers by {@%,@3,...,Q% }
and the corresponding distortion they produce by {d(r)}. The channel-matched quan-
tizer for a Gaussian variable of variance ? with rate of r bits, is obtained by scaling
Q° by a factor of o. The resulting distortion is given by o2 d(r).

We start with an initial partition of the training set based on the AC energy of
the blocks. The corresponding steps in the iterative design algorithm are:

1. Given the current partition, design the quantizers and bit allocation for each
class:

For each coefficient i = 1,2, ..., k, and for each class j = 1,2,...,. M :

(a) Compute ¢, the variance of the 7th coefficient of blocks belonging to class

t2?
J-
(b) Deter;nine bit allocation as rj; = argmin{d;;(r) + Ar}, where d;;(r) =
d(r)o?;.

(c¢) The quantizer Q;; is obtained by scaling the normal quantizer by o;;.

2. Redesign the prefix code for class indices ¢; based on the empirical rate of
occurrence of each class. (including redundancy for heavy protection).

3. Given the new quantizers and prefix code, repartition the training data into
classes. For each block the classification decision minimizes

Ealdii(rii) + drigl + Aey.

4.2 MIC2: Multimode Image Coding with RCPC

Rate Compatible Punctured Convolutional Codes (RCPC) [5] provide unequal error
protection while sharing the same encoder/decoder structure enabling them to share
the same hardware in a practical realization. We make use of RCPC to tailor the
protection offered to each individual bit of the quantized DCT coefficients..

We optimize our source quantizers for the noiseless channel. We design a set of
scalar quantizers of rates r = 1,2,...,7pq, bits, where each quantizer is optimized
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for a unit variance Gaussian source and the noiseless channel. Let us denote these
quantizers by {Q3,@3,...,Q°,__} and the corresponding distortion they produce by
{ds(r)} where the subscript s indicates that the distortion is due to source coding
alone. We repeat the design procedure of section 4.1 producing a set of class indices,
bit allocation and quantizers for the coefficients.

Next, we evaluate the channel error sensitivity of each bit of the quantized DCT
coefficients to apply judicious unequal error protection. We first consider a n-bit quan-
tizer codebook C = {yo,¥1,-.., y2n—1} and denote the codebook index: I = (i315...3,,).
The sensitivity S; of the j the bit is defined as the expected amount of distortion
caused by a bit error at this location:

Si = EllYis iaunisinin = Yirigsmifyuinl (6)

where, i} =1 — ¢; is the complement of ;.
Let the quantizer encode a DCT coefficient # to y; and let the decoded codeword
be y;. The average distortion is given by

D = Ellz — yill* = Ellz — yill* + Elly: — w;ll* (M

since {y;} are at the centroids of their encoding regions. The first term is the source
coding distortion D, (which is fixed) while the second term can be interpreted as
the channel distortion D.. If we assume that the error rate is small enough that
probability of more than a single bit error can be neglected, then

Dc = ieisi (8)
i=1

where ¢; is the error probability and S; is the sensitivity of each bit. Note that the
contribution of each bit to the Lagrangian cost can be minimized independently under
this assumption.

We consider a particular RCPC family [7]. Let each code be characterized by
the triplet (r¢,7s,€) where r, is the channel rate, r, is the source rate and ¢ is the
decoded error rate produced by the code for the given channel error rate €. Let the
sensitivity of a particular bit be denoted by S. Assign the error correction code which
minimizes the Lagrangian contribution,

€S+ X+ :— (9)
This is repeated for each bit of the quantized DCT coefficients.

Results : We now present the simulation results obtained by using multimode
coders to compress real world images and transmitting through noisy channels. The
training set was generated from the image “BARBARA” and used to design multi-
mode coding algorithms MIC1 and MIC2 , with the number of modes N = 1,4 and
16 in both the cases. As discussed, MIC1 uses channel optimized quantizers, while
MIC2 uses rate compatible punctured convolutional codes for error protection. Note
that the single mode (N = 1) cases in MIC1 and MIC2 corresponds to the fixed
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R 0.4 0.5 0.6 | 0.75 1.0
Method | N

MIC1 |1 [24.15(24.19 | 24.80 | 25.37 | 26.67

4 128.82129.54 30.12 | 30.82 | 31.67

16 | 29.54 | 30.54 | 31.34 | 32.17 | 32.96

MIC2 |1 |23.61(23.39|23.69 | 23.85 | 24.44

4 |26.47126.72 | 27.15 { 28.16 | 28.79

16 | 27.10 | 27.50 | 27.74 | 29.21 | 29.48

Table 1: Performance of multimode coding (PSNR in dB) on test image "LENA” at
various rates R (measured in bpp) and channel bit error rate ¢ = 0.005. N > 11is
multimode coding while N = 1 corresponds to Fixed Rate Coding as in [1],[3].

R 0.4 0.5 0.6 | 0.75 1.0

Method | N

MIC1 |1 [22.20122.29 [ 22.75 | 23.13 | 24.04
4 [26.47 | 26.91 | 27.20 | 27.75 | 28.36
16 | 27.50 | 28.31 | 28.75 | 29.39 | 30.02

MIC?2 1 [21.90 | 21.75 | 22.07 | 22.16 | 22.64
4 124.84 | 24.98 | 25.35 | 26.05 | 26.48
16 | 25.86 | 26.10 | 26.80 | 27.21 | 27.50

Table 2: Performance of multimode coding (PSNR in dB) on test image "PEPPER”
at various rates R (measured in bpp) and channel bit error rate e = 0.005. N > 11is
multimode coding while N = 1 corresponds to Fixed Rate Coding as in [1],[3].

rate coder of [1] and [2] respectively. In all cases, the side information (if any) was
protected by a rate 1/3 convolutional code and was assumed to be transmitted error
free [8]. Table 1 lists the PSNR values achieved on the test set image “LENA” and
table 2 on the image “PEPPER”, for rate R (in bpp) in the range of 0.4 to 1.0 and
a channel transition error probability ¢ = 0.005. The listed rates include the rate
required for transmitting the protected mode information. It can be seen that the
proposed multi-mode coding outperforms fixed rate coding, and achieves dramatic
performance gains of up to 6 dB. Note also that the gains increase with bit rate since
the mode information becomes a smaller fraction of the overall bit rate.

5 Conclusion

We have proposed a new multimode coding framework to design robust compression
schemes for transmission through noisy channels. We developed a design algorithm
which jointly optimizes the compression performance and error resilience and applied
the algorithm to develop ADCT-based multimode image coding schemes (MIC).
The framework allows the incorporation of various channel protection schemes and
we chose to demonstrate its power by incorporating COQ [4] and RCPC [5], yielding
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the specific coding methods MIC1 and MIC2, respectively. Simulations demonstrate
that the multimoder coders can provide significant improvements in performance of
up to 6dB over the known fixed-length predecessors [1], [2].

Current work involves extending this framework to handle video coding for noisy
channels, and results will be presented in a future publication.
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