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Abstract— In this work we address the problem of de-
signing robust, vector quantizer (VQ) based communication
systems for operation over time-varying Gaussian channels.
Transmission energy allocation to VQ codeword bits, ac-
cording to their error sensitivities, is a powerful tool for
improving robustness to channel noise. The power of this
technique can be further enhanced by appropriately com-
bining it with index assignment methods. We pose the cor-
responding joint optimization problem and suggest a sim-
ple iterative algorithm for finding a locally optimal solution.
The susceptibility of the solution to poor local minima is
significantly reduced by an enhanced version of the algo-
rithm which invokes the the method of noisy channel relax-
ation, whereby, the VQ system is optimized while gradually
decreasing the assumed level of channel noise. The result-
ing combined technique is shown to outperform standard
pseudo-Gray coding by up to 3.5 dB, and to exhibit grace-
ful degradation at mismatched channel conditions. We con-
clude with a brief discussion of the impact of TEA on the
peak-to-average energy ratio of the transmitted modulated
signals.

I. INTRODUCTION

With the advent of wireless personal communication sys-
tems, there has been an increasing interest in the area of
joint source-channel coding. The challenge lies in the fact
that these systems must often work under severe band-
width constraints, which allow only limited use of explicit
channel coding. The time-varying nature of these channels
exacerbates matters significantly. A popular method for
robust VQ-based communication is index assignment (IA)
[9], [10]. Here we employ a source-optimized VQ encoder-
decoder pair. This ensures that the system performance
is uncompromised in the case of clean channel conditions.
Robustness to channel errors is achieved by judicious as-
signment of indices to the codevectors. The optimization of
IA is normally performed for some representative (typical
or average) channel condition. However, the resulting IA
is known to achieve robust performance over a large range
of channel conditions.

In this paper we explore the potential advantages of op-
timizing the modulation scheme to increase the robustness
of VQ based communication systems. While most of the
existing literature in the field of combined source-channel
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coding assumes fixed modulation, notable exceptions in-
clude the early work of Bedrosian {1] and the work of Sund-
berg (see more recent description in [2]), where the idea of
transmission energy allocation to the different bits was con-
sidered in the context of pulse coded modulation. Recently,
it was demonstrated in [3], [6], that the performance of a
VQ over a noisy channel can be significantly improved by
allocating transmission energy to the VQ output bits ac-
cording to their sensitivity. An independent work by Ho
and Kahn reported similar findings in the context of multi-
carrier modulation [4], [5].

Motivated by the promising results of our earlier work
[3], here we undertake a more detailed investigation into
the application of Transmission Energy Allocation (TEA)
to a VQ. Another motivation for this work derives from the
recent developments in the area of efficient linear power
amplifier design, e.g. [7], [8]. These developments allow
improved flexibility to experiment with linear modulation
methods than was possible in the past. This paper is or-
ganized as follows. In section II we briefly review the basic
idea of transmission energy allocation (TEA) in the context
of a VQ indexed by the natural binary code (NBC) as de-
scribed in [3], [5]. The motivation behind employing NBC
was to obtain varying degrees of error sensitivity for the
different bits. This feature is exploited for unequal pro-
tection by allocating higher levels of transmission energy
to the more sensitive bits. NBC is a convenient heuris-
tic choice for indexing VQ codewords and its combination
with TEA provides significant improvements over standard
pseudo-Gray index assignment. However, it is not the op-
timal choice. In section III , we pose the problem of joint
optimization of TEA and IA. We develop a direct optimiza-
tion algorithm for this problem and show that substantial
improvements over TEA-NBC can be achieved. The direct
optimization method, however, is susceptible to poor lo-
cal minima that riddle the cost surface due to the complex
discrete nature of the IA problem. We tackle this issue by
developing an enhanced version of the algorithm that incor-
porates noisy channel relaxation [12] which has the ability
to avoid many shallow local minima. We also include a
brief discussion on the impact of TEA on peak-to-average
energy ratio of the transmitted modulated signals.

II. TRANSMISSION ENERGY ALLOCATION

In this section we briefly review the basic TEA-NBC
method where transmission energy allocation is applied in
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conjunction with the natural binary code as described in
[3], [5]. We also include extensions of [3] to handle arbitrary
VQ (that are not necessarily source-optimized) and com-
ment on the choice of representative channel conditions.
Consider a source that produces a sequence of inde-
pendent random vectors z, and the corresponding source-
optimized VQ with its codebook C = {yo,¥1,...,y2n-1}.
Given z, the VQ encoder finds the nearest codevector yy
and employs binary modulation to transmit the n-bit index
I over a Gaussian channel. The decoder receives a noisy
version of the transmitted signal and applies hard decision
decoding to obtain the received index J. Note that we
could equivalently state that individual bits are transmit-
ted on independent binary symmetric channels, whose bit
error rates depend on the corresponding Gaussian channel
SNR. Given received index J, the decoder produces the
codevector ys as estimate of the source vector z. Since the
VQ is source-optimized, its codevectors satisfy the centroid
rule [20]. This implies that the overall distortion can be de-
composed into quantization and channel distortion terms:

D,

2 2 2
D= E||lz—-ysl|I*= Elle —yrl|* + Ellys —wrll*. (1)

Index assignment aims at minimizing D, by a judicious as-
signment of binary indices to the codevectors (see e.g., [9],
[10], [11]). As D, depends on the channel conditions, IA
typically assumes a particular representative (or expected)
level of channel noise for the design phase. It is well known
that some standard VQ design methods naturally produce
relatively good indexing. An important example is NBC
which is obtained from VQ design initialized by the split-
ting method (see e.g. [11]).

Of particular relevance to us is the fact that with NBC
the index bits are not equally sensitive to channel errors.
To formally define the error sensitivity of bits let us employ
a bitwise explicit notation for the transmitted index: I =
(¢193...tn). The sensitivity of the jth bit is defined as the
expected amount of distortion caused by a bit error at this
location:

Dj = E“yil,izmijy»,in - y’i1,i2,~,i;,~,in1|2u (2)

where “superscript *” denotes the complement: ¢* =1 —1.
In [3] it was demonstrated that the bit sensitivities of a VQ
indexed by NBC vary over a large range. We exploit this
fact by providing optimal unequal error protection via the
allocation of transmission energy to the various VQ bits
according to their sensitivities.

As mentioned earlier, the n bits are transmitted inde-
pendently on a Gaussian channel using binary modulation.
Let 02 be the representative level of Gaussian noise in the
channel (i.e., the level of channel noise assumed during the
design phase), and let e; be the energy allocated to the jth
bit. Then, the bit error rate is

€ = 1 /00 e‘gdt
]_\/271' /3 '

Neglecting the probability of more than single bit errors in
the index transmission, the distortion due to channel errors

simplifies to
n
Dc = Z Dj €.
Jj=1

We wish to minimize D, over all choices of {e;}, that is,
by allocating transmission energy to the n bits, subject
to the constraint on the total energy available for their
transmission:

)

n

E €5 = €tot-

j=1

This constrained optimization problem can be solved using
various techniques. The basic idea is to evaluate the set of
derivatives {%%‘} and use them in either a gradient descent
algorithm or anreedy energy quanta allocation algorithm,
similar to the one described in [3].

Note: Evaluation of 42< using (3) is based on single bit
error assumption. If the representative level of channel
noise is sufficiently high, the probability of multiple bit
errors per index will no longer be negligible. For these
cases, we proceed as follows to evaluate %—13]?:

oD. dP(J/1,0?
e -y PPy g,
J I J

0

where P(I) is the apriori probability that index I is trans-
mitted (estimated from the training set), and P(J/I,0?)
is the probability of decoding index J given transmission
of I and channel noise level of o2.

Performance of TEA-NBC: Table 1 provides a compar-
ison of the performance of TEA-NBC with that of the stan-
dard pseudo-Gray (PG) coding. (The table also includes
other results that should be ignored for the moment.) The
PG method consists of index assignment only, with alloca-
tion of equal transmission energy to all the bits. The results
are given for a first order Gauss-Markov source. TEA-NBC
and PG are optimized for a representative channel SNR of
8 dB, and the performance is tested over the channel SNR
range of 4-10 dB. All the values given in Table 1 and else-
where in this paper depict the performance evaluated over
test sets. The results show that in many cases TEA-NBC
can achieve large performance gains. The gains are espe-
cially impressive under conditions of heavy channel noise,
where, for some cases the performance gains can be of the
order of 2-3 dB. Thus, exploiting variation in bit sensitivi-
ties via TEA is a promising direction.

Remark: The optimization of the transmission energy al-
location is performed assuming some representative level
of channel noise - 2. The choice of o2 can have a signif-
icant impact on the resulting robustness of the VQ. If the
value of chosen o2 is too small, the amount of protection
provided to the bits is almost the same. Hence, we fail to
take advantage of the varying bit sensitivities. An exces-
sively high value for o2 results in allocation of very little, or
no, transmission energy to the least sensitive bits, thereby
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causing a substantial performance loss when the channel
is cleaner. However, a sensible choice of o2 should reflect
the channel conditions that we expect to encounter on the
average. If the expected channel conditions translate into
too high a o2, it suggests that the amount of transmission
energy available is too low for meaningful transmission of
all the VQ index bits. Under such circumstances it might
be worthwhile to either increase the total transmission en-
ergy (if possible), or reduce the number of bits used by the

vaQ.

III. JoINT OPTIMIZATION OF INDEX ASSIGNMENT AND
TRANSMISSION ENERGY ALLOCATION

While substantiating the promise of TEA, the results
of Table 1 also indicate that the choice of NBC though a
natural starting point for appling TEA, can not guarantee
success. It can be seen that the gains of TEA-NBC dimin-
ish with increase in VQ dimension, and with decrease in the
correlation coefficient. For example, with p = 0.0 and dim
= 4, PG happens to outperform the TEA-NBC scheme.
These observations motivate the search for better methods
for combining index assignment with TEA. Another draw-
back of TEA-NBC lies in the fact that NBC dictates the
use of the splitting VQ design method which is itself subop-
timal. It is often possible to design better source-optimized
VQ by adopting more elaborate techniques such as deter-
ministic annealing [14] or simulated annealing [15]. It is
clearly desirable to have a method that exploits the advan-
tages of TEA and yet is generally applicable to any given
VQ. This gives further motivation for joint optimization of
index assignment and energy allocation.

We first propose a simple and direct approach for joint
optimization of IA and TEA. It is based on iterative ap-
plication of the IA and TEA procedures. However, this
technique is susceptible to poor local minimum traps. To
attack this problem, we then propose a second, more in-
volved technique which incorporates the idea of noisy chan-
nel relaxation [12].

A. Locally Optimal Design

An optimal solution to the problem of joint design of IA
and TEA should satisfy the following two straightforward
conditions.

Condition 1: Transmission energy allocated to the differ-
ent bits must be matched to the bit-sensitivities resulting
from the underlying TA.

Condition 2: Indexing of the codevectors must be optimal
for the underlying transmission energy allocation.

Given any IA, condition 1 can be satisfied by evaluating the
bit sensitivities (due to this indexing) followed by optimiz-
ing the transmission energies. Condition 2 is satisfied by
optimizing the IA for the given energy allocation. In this
context we note that many IA algorithms, such as binary
switching [9], can be easily modified to take into account
unequal bit error rates for the various bits. Hence, such
a modified 1A technique can be used to optimize the in-
dex assignment for a given transmission energy allocation.

These observations motivate the following simple strategy
for joint optimization of TEA and IA:

1. Start with an initial index assignment.

2. Evaluate the sensitivities of the various bits and apply
the energy allocation algorithm.

3. Reassign indices to the codevectors via an TA tech-
nique (e.g., binary switching) which has been modified
to include the effect of unequal bit error rates.

4. Check convergence (e.g., AD./D, < Th), if so, stop.

5. Go to step 2.

The algorithm alternates between the TEA and IA steps.
Since D, is monotonically decreasing with each step, we
are ensured of obtaining a locally optimal solution to the
problem. This algorithm will be referred to as TEA-IA.

We applied TEA-TA to VQ designed for the first order
Gauss-Markov source of section II. It was found that the
solution depends heavily on the initial index assignment.
We experimented with the following two initializations and
chose the one that gave the best performance in each case:
(a) NBC, (b) NBC followed by pseudo-Gray coding. These
results were added to Table 1. The binary switching algo-
rithm [9] was modified to account for the variation in error
rates among the bits, and used for optimization of IA. The
design assumed channel SNR of 8 dB, while the perfor-
mance was evaluated at the channel SNR range of 4-10
dB. The iterative optimization of TEA-IA achieves a rear-
rangement of the code vectors that yields additional modest
improvements in performance (up to 0.8 dB). The perfor-
mance improvements are more pronounced under condi-
tions of heavy channel noise.

It is important to note that larger improvements were
achieved wherever TEA-NBC provided little or no gains
over the pseudo-Gray method. This observation indicates
the importance of joint optimization of IA and TEA.

B. Noisy Channel Relazation

The significant impact of initialization on the quality of
the solution to the joint optimization problem is not sur-
prising, and stems from the well documented local min-
ima problem of IA methods. In the present situation, the
susceptibility of the solution to poor local minima is ex-
acerbated with the increased complexity of the joint IA
and TEA optimization problem. In fact, our experiments
show that some initializations resulted in extremely poor
solutions. To overcome this shortcoming we developed a
method that has an enhanced capability to avoid these poor
local minima.

The problem of poor initialization for IA was addressed
by the method of noisy channel relaxation (NCR) [12]
where it was suggested to first optimize the VQ for a high
level of channel noise, and then gradually reduce the level
of channel noise assumed for the design (see also [13] for
a related VQ design method). Channel optimized VQ de-
sign for a given level of channel noise is performed using
the noisy channel generalized Lloyd algorithmn (NC-GLA),
see e.g., [L1]. This gradual reduction of design noise level,
or noisy channel relaxation, provides means for avoiding
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many poor local minima of the [A problem. Initializing
the iterations at a very high level of channel noise makes
it easier for the system to find a good initial IA which is
then tracked and reoptimized as the noise level is reduced.
The final iterations are performed for a noiseless channel,
thereby yielding a source-optimized VQ albeit with a built-
in indexing inherited from the design in earlier stages. The
NCR simulation results of [12] demonstrate substantial im-
provements in the robustness of the VQ to channel errors.
In this work we extend NCR for application to the prob-
lem of joint IA-TEA optimization. We start with the obser-
vation that NC-GLA can also be modified in a straightfor-
ward manner to account for variation in error rates among
bits. This modified NC-GLA can therefore be used to in-
corporate NCR, within the joint optimization procedure.
To design a VQ via NCR for a given energy allocation, we
proceed as follows. We use a very high variance of Gaussian
channel noise in the initial iterations and reduce the noise
variance as the iterations proceed. At each iteration we use
the current level of channel noise to evaluate the bit error
rates for the different VQ output bits. Using these values
in the NC-GLA method, we perform the channel matched
VQ design. The iterations towards the end are performed
with zero noise, yielding a “noiseless channel” optimized
(i.e., source-optimized) VQ with indexing that takes into
account the transmission energy allocated to the various
bits.
We now summarize the TEA-NCR algorithm, which in-
tegrates index assignment using noisy channel relaxation,
and energy allocation, as follows :

1. Initialize the transmission energy allocated to the var-
1ous bits.

2. Design the VQ using NCR. (The final index assign-
ment can be fine-tuned by the binary switching algo-
rithm.)

3. Evaluate the sensitivities of the various bits and reop-
timize the transmission energies allocated to the VQ
bits.

4. Check for stopping criterion, e.g., if AD/D < Th
stop.

5. Go to step 2.

The overall performance obtained by the TEA-NCR ap-
proach is tabulated in Table 1. We can see that TEA-NCR
is able to avoid many of the poor local minima that trap
TEA-IA yielding improvements of up to 0.8 dB. The overall
improvement in performance over standard pseudo-Gray
coding is in the rough range of 0.6 — 3.5 dB under heavy
channel noise, while the net improvement over TEA-NBC
is in the order of 0.6 — 1.3 dB.

Detasls of the relazation schedule: The iterative VQ de-
sign was performed using NC-GLA starting with noise level
corresponding to a channel SNR of -5 dB. Under these
conditions the number of non-empty encoding regions [18],
[12] resulting from channel optimized VQ design is much
smaller than the target size of the VQ. The variance of noise
was reduced by a factor of 1.01 in each NC-GLA iteration.
As the variance of the channel noise is reduced, the number

of encoding regions increases. The rate of increase of the
number of non-empty encoding regions was found to be an
effective means of regulating the relaxation schedule. If the
number of non-empty encoding regions increased by more
than 2 in a single iteration, the reduction of noise level was
stopped. The relaxation was subsequently resumed when
the number of non-empty encoding regions remained same
over two consecutive iterations. When the number of non-
empty encoding regions becomes equal to the target size of
the VQ, the noise level was reduced by a factor of 1.1 per
iteration.

IV. CoNcLuUsioNs AND DiIscuUssioN

Motivated by the early work of Bedrosian and promising
developments in the field of linear power amplifier design,
we investigated the idea of transmission energy allocation
to provide unequal error protection to the various bits of a
vector quantizer according to their importance. We formu-
lated the problem of joint optimization of index assignment
and TEA and demonstrated the substantial performance
advantages of the resulting optimization. The correspond-
ing solution is however susceptible to poor local minima.
To overcome this problem, we suggested a design method
based on noisy channel relaxation [12] that has the ability
to avoid many shallow local minima. The resulting per-
formance gains over the pseudo-Gray coding range from
0.7-3.6 dB, for the case of Gauss-Markov sources.

A major drawback of TEA stems from the fact that the
signal energy employed for transmission of different VQ
bits can vary considerably. . In other words, the peak-to-
average ratio (PAR) of the energy of signals transmitted
over different modulation intervals can be high. The PAR
resulting from TEA-NCR for the Gauss-Markov example of
Table I ranges from 0.3 dB to 2.4 dB. A large PAR increases
the linearity requirements of the power amplifier used to
transmit the modulated signal. Hence, it is desirable to
retain the advantages of TEA while maintaining a small
PAR.

It is crucial to note that the above mentioned sizable in-
crease in PAR due to application of TEA was evaluated
based on treating the modulation procedure as one dimen-
sional. In practice, we are mostly interested in quadrature
amplitude modulation (QAM), where we transmit informa-
tion on the in-phase and quadrature phase components of
a carrier. In the case of binary modulation, the resulting
2-dimensional signals are in the form of 4-QAM constel-
lation. For this case we can drastically reduce the PAR
requirements on the 2-dimensional QAM signals by appro-
priately grouping the bits prior to transmission as follows.
We first arrange the n bits of the VQ in decreasing order of
sensitivities. If we group the bits ¢ and j for transmission as
a single 2-dimensional signal, the corresponding constella-
tion point is (b;(/€;, bj,/€j), where b;,b; = £1. The energy
contained in this signal point is e; + e;. Consider the fol-
lowing method of grouping the bits : (1,n), (2,n - 1), ..,
(5, % + 1), where we assume that n is even'!. The PAR

If n is odd, we consider two consecutive codevectors and group the
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‘Channel dim = 2 dim = 4

SNR p=00]p=08]p=09|p=00[p=08]p=09

4 dB PG 4.43 4.63 5.03 3.60 | 4.52 4.75

TEA-NBC 5.09 6.40 7.14 2.72 5.01 5.84

TEA-IA 5.92 6.49 7.16 3.68 5.29 6.29

TEA-NCR 6.39 7.51 7.79 4.31 6.13 6.64

6 dB PG 8.12 8.40 8.86 6.11 7.60 8.08

TEA-NBC 9.36 10.94 11.93 5.51 8.30 9.57

TEA-IA 10.03 11.05 11.96 6.17 8.39 9.82
TEA-NCR | 10.48 11.88 12.38 6.72 9.09 10.10

8 dB PG 13.35 13.86 14.43 8.55 11.03 12.15
TEA-NBC | 14.78 16.58 17.78 8.30 11.50 13.22

TEA-TA 15.27 16.67 17.78 8.60 11.52 13.35
TEA-NCR 15.56 17.23 18.01 8.87 11.84 13.47

10 dB PG 18.79 20.18 21.21 9.71 13.03 14.95
TEA-NBC | 19.11 20.97 22.46 9.68 13.07 15.03

TEA-TIA 19.31 20.97 22.46 9.74 13.10 15.16
TEA-NCR | 19.38 21.29 22.35 9.83 13.12 15.16

TABLE I

HERE WE COMPARE THE OVERALL PERFORMANCE OF A VQ PROTECTED AGAINST CHANNEL ERRORS BY THE FOLLOWING TECHNIQUES. PG :

PSEUDO-GRAY CODING WITH EQUAL ENERGY ALLOCATED TO ALL THE BITS. TEA-NBC : NATURAL BINARY CODE FOLLOWED BY ENERGY

ALLOCATION. TEA-IA : ITERATIVE OPTIMIZATION OF INDEX ASSIGNMENT AND ENERGY ALLOCATION. TEA-NCR : ITERATIVE APPLICATION OF
NOISY CHANNEL RELAXATION AND ENERGY ALLOCATION. A GAUSS-MARKOV SOURCE WITH CORRELATION COEFFICIENT p WAS USED; VQ SIZE
EMPLOYED WAS 256. ALL THE OPTIMIZATIONS WERE PERFORMED AT CHANNEL SNR OF 8 DB AND THE PERFORMANCE IS EVALUATED FOR A

RANGE OF CHANNEL SNR oF 4-10 pB.

variation in the energy of the two-dimensional QAM sig-
nals, for the case of the TEA-NCR VQ example mentioned
earlier, was thereby reduced drastically from 0.3-2.4 dB to
0.02-0.3 dB. Moreover this reduction in PAR is achieved
without compromising the robustness of the VQ.
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