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Abstract. Assessing the effects of white matter (WM) lesions on struc-
tural connectivity as measured by diffusion MRI (dMRI) is invaluable for
understanding structure-function relationships. These WM lesions have
many etiologies that ultimately lead to attenuation of the anisotropic
signature in dMRI signals. Attenuation can produce inaccurate recon-
structions of the underlying model of the fiber population. In this paper,
we combine methods from image inpainting and estimation theory to de-
velop a novel approach for restoring the fiber model in small to moderate
sized WM lesions. Our approach begins by taking healthy reconstructed
WM fiber models at the boundary of the lesion and filling in lesioned
voxels with their optimal affine estimate moving iteratively in a fast-
marching method style until the fiber models in the lesion are restored.
We demonstrate with in-vivo simulations on diffusion tensors (DTs) and
fiber orientation distributions (FODs) that our approach offers superior
performance over multiple restoration approaches. We restore lesioned
fiber models in three stroke patients suffering hemiparesis from damaged
corticospinal tracts (CST). We show that our method restores diffusivi-
ties, anisotropy and orientation of lesioned DTs as well as the amplitudes
and orientations of fiber populations in lesioned FODs enhancing tractog-
raphy and enabling more accurate characterization of lesion connectivity
and changes in tissue microstructure in patient populations.

Keywords: image restoration · inpainting · tissue microstructure · dis-
connection · DTI · HARDI · DSI · FODs · tensors · diffusion MRI ·
connectomics · spatial normalization · brain lesions

1 Introduction

Diffusion-weighted magnetic resonance imaging (DW-MRI) techniques have
been successfully used to non-invasively explore fiber bundle architectures in the
brain. These techniques are sensitive to the diffusion of water molecules enabling
the characterization of the orientation of bundles of myelinated axons when the
water is restricted to diffusion along the long axis of the axons. However, due
to pathological injury processes such as gliosis, demyelination, and necrosis, the
structural integrity of the axons is compromised, and water is no longer restricted
to diffusing along the long axis. These macro and microstructural changes at-
tenuate the anisotropic signature in dMRI signals [1]. Consequently, it remains
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challenging to accurately characterize the change in tissue microstructure and
the connectivity within lesioned white matter areas which are crucial for study-
ing disconnection syndromes.

Clinical researchers typically measure changes in tissue microstructure by
comparing the measurements in the lesion ROI with measurements in healthy
tissue from the left-right flipped ROI [2]. Using microstructure measurements
from the contralesional side as a model for the original properties is not the
most accurate approach because the brain is not symmetric and where it is sym-
metric, e.g. CST, the tissue measurements are not identical and are less similar to
restored tissue measurements. With regards to mapping lesion connectivity, one
strategy clinical researchers use is to project the patient’s lesion into a normal
database of streamlines to approximate the degree of disruption by the lesion to
normative [3]. However, this strategy produces a generic estimate of the patients
lost connectivity, without any characterization of patient specific disrupted con-
nectivity. Other researchers simply track through the lesioned area to map the
lesions connectivity [4]. However, tracking through lesioned areas is known to
affect streamline reconstruction and structural networks [5,6].

Another strategy for characterizing lesion connectivity and changes in mi-
crostructure is to restore or inpaint the lesioned fiber diffusion model. This has
the advantage of more closely preserving the patients native connectivity struc-
ture. Prior work has primarily focused on inpainting multiple sclerosis (MS) and
tumor lesions in T1 T2 weighted images to improve registration accuracy to
a template [7,8]. Recently, a method has been developed to restore fiber ori-
entation distributions (FODs) in MS lesions [9]. They combine diffusion based
inpainting and FOD reconstruction in a single step. But they only assessed their
performance on an unrealistic simulated lesion of 9 voxels, so it is unclear how
it would perform in-vivo. Moreover, its only capable of restoring FODs.

Although a method exists for restoring FODs, a solution that can restore
multiple fiber diffusion models, is needed for multiple reasons. The ability to re-
store diffusion tensors would be beneficial since diffusion tensor imaging (DTI)
remains the most popular technique used by clinical researchers for character-
izing changes in tissue microstructure and connectivity in lesioned WM tissue.
Furthermore, many clinical diffusion datasets in wide use can be reconstructed
in myriad ways and contain lesions from the myriad etiologies of WM injury
such as white matter hyperintensities in the Rotterdam Study and the Human
Connectome Project (HCP) Lifespan study[10,11]. Since there is a great need
in clinical research to improve prediction outcomes, the ability of researchers to
restore the fiber diffusion models of their choice in a lesion would make such an
approach more accessible and have the potential to improve these predictions
through improved anatomical delineation of lesion disrupted connectivity and
measurement of changes in tissue microstructure.

In this paper, we describe a novel approach that combines methods from
diffusion-based image inpainting and estimation theory for restoring fiber diffu-
sion models in WM lesions. Our approach begins by taking healthy WM fiber
models at the boundary of the lesion and filling in lesioned voxels with their
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optimal affine estimate moving iteratively in a fast-marching method style until
the fiber models in the lesion are restored. By leveraging estimation theory, we
can minimize the mean squared error (MSE) of fiber models within the lesion,
restoring their original shapes and orientations. We demonstrate with realistic
in-vivo simulations on diffusion tensors and fiber orientation distributions that
our approach offers superior performance over multiple inpainting approaches.
Further we restore diffusion tensors and FODs in lesions in three stroke patients
suffering hemiparesis and demonstrate that the shape and orientation of the fiber
models and the ability to map the lesions connectivity are recovered.

2 Methods

2.1 Diffusion imaging data

The S500 dataset containing 500 subjects was collected from the Washing-
ton University-Minnesota Consortium Human Connectome Project [11]. Further
analysis was restricted to 210 subjects without familial relation. The diffusion
volumes were collected with a spatial resolution 1.25mm3, using three shells at
b = 1000, 2000, and 3000 s/mm2 with 90 diffusion directions/shell.

Diffusion volumes were collected for three stroke patients with unilateral
motor impairment at Emory University using the HCP Lifespan protocol with
a spatial resolution of 1.5mm3, using two shells at b = 1500 and 3000 s/mm2

with 46 diffusion directions per shell and 7 b0s. All datasets were corrected for
geometric, eddy current, and motion distortions using the HCP Pipeline scripts.

The diffusion tensors were reconstructed from the diffusion weighted vol-
umes collected with b = 1000 s/mm2 with weighted least squares in Dipy for the
HCP dataset and b = 1500 s/mm2 for the stroke dataset [13]. Fiber orientation
distributions we reconstructed using constrained spherical deconvolution (CSD)
in MRtrix with b = 3000 s/mm2 and lmax = 8 for both datasets [13,14]. The
response function was estimated using the recursive Tax algorithm [15].

2.2 Model estimation

Suppose there is a lesioned fiber diffusion model L lying at the bound-
ary of the lesion and healthy WM tissue. If the model is a diffusion tensor
then there are only 6 unique elements of L that need to be estimated i.e.
Dxx, Dyy, Dzz, Dxy, Dxz, and Dyz because diffusion tensors are positive semi-
definite matrices. Similarly, if a more complex spherical deconvolution model is
used then at each lesioned voxel the FOD is represented by a real-valued spherical
harmonic coefficient vector, F , containing (lmax + 1) × (lmax + 2) / 2 elements
that need to be estimated. Consider that L has N observed healthy or restored
neighboring models, H1, H2, . . . ,HN ∈ W, the white matter mask. Each un-
known element, Yi e.g. Dxx or Fi, is treated as a random variable. The collection
of matching neighbor elements forms a random vector X = [X1, X2, · · · , XN ].
Then each unknown element Yi can be estimated from the known neighboring
elements of Hi using an optimal affine estimator.
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We seek an affine estimator Ŷ = a0 +
∑N

i=1 aiXi such that the MSE e.g.

ε2 = E
[
(Y − Ŷ )2

]
is minimized. To minimize this expression, we differentiate

it with respect to ai. Differentiating E
[
(Y − a0 +

∑N
i=1 aiXi)

2
]

with respect to

a0 and setting it to 0 we find that a0 = µY −
∑N

i=1 aiµXi
from which it follows

that Ŷ = µY +
∑N

i=1 ai (X − µXi). Letting Ỹ = Y − µY and X̃ = X − µX we

can rewrite our MSE criterion as E
[
(Ỹ −

∑N
i=1 aiX̃i)

2
]
.

By differentiating this with respect to the coefficients and setting the re-

sult to 0 produces: E
[
(Ỹ −

∑N
i=1 aiX̃i)X̃j

]
= 0 j = 1, 2, · · · , N which can be

rewritten as E
[
X̃j Ỹ

]
=

∑N
i=1E

[
aiX̃iX̃j

]
. These sets of equations can be ex-

pressed in matrix form as RXY = (RXX) a where RXY is the cross-correlation
vector and RXX is the auto-correlation matrix and a is the coefficient vector.
We obtain the optimal coefficients: a = (RXX)

−1
RXY .

From this solution it is possible to produce the optimal affine estimate of el-

ements of L: Li = a1L
H̃1
i +a2L

H̃2
i +· · ·+ aNL

H̃N
i + µYi , where H̃i = Hi−µXi(1)

By taking the affine combination of the neighboring healthy elements. Since Y
and X are approximately Gaussian, the optimal affine estimate excellently ap-
proximates the optimal MMSE estimate of Y. However, to construct an optimal
affine estimator at each voxel a distribution of fiber diffusion models must exist
at every voxel in the patient.

2.3 Distribution of fiber models

A fiber model distribution at every voxel in the patient can be constructed
through spatial normalization. Custom fiber diffusion model templates are con-
structed using DTI-TK for tensors and FOD Reorientation and ANTs for FODs
[16,17,18]. After the templates are constructed, we spatially normalize the pa-
tients reconstructed tensors or FODs into its respective custom HCP template
using cost-function masking. We then combine the estimated deformation fields
to the template for the patients and the HCP subjects to warp a subset of tensor
or FOD data from the HCP subjects that corresponds to voxels in the patients
lesion and healthy voxels at the boundary.

2.4 Model inpainting

We use a diffusion based inpainting algorithm where the lesion region is
filled from its border to the center inspired from [19]. At each iteration, rather
than taking a simple average of the known neighboring models, we estimate
the unknown model L by taking the affine combination of its healthy neighbors
where the coefficients are estimated from the optimal affine estimator in Eq.(1).
Note that an optimal affine estimator is constructed for each element of the fiber
diffusion model for each voxel in the lesion region.
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while the lesion region is not empty:
for all L ∈ ∂Ω :

for all y ∈ L(y) :

y = a1L
H̃1
i + a2L

H̃2
i + · · ·+ aNL

H̃N
i + µYy

Ω = Ω/∂Ω

where H̃i = Hi − µXy
∈ Ω̄ ∩W and y ∈ [L1, L2, · · · , LN ] ,L is the model

to inpaint, Ω is the lesion region, Ω̄ its complement (the voxels outside Ω), ∂Ω
its border (voxels of Ω having one of its 6 cube neighbors in Ω̄).

3 Results

3.1 Simulation in-vivo

We demonstrate the efficacy of our approach by simulating a lesion within
a healthy HCP subject that is not part of the model distribution. The lesion was
created by adding Rician noise to a cuboidal region consisting of 1035 voxels
(129 cm3) until the SNR = 3. The lesioned voxels are then inpainted with a
baseline approach and our optimal approach. For our baseline, we use the same
diffusion based inpainting algorithm as used in the optimal estimation where
the inpainted model is estimated by simply taking an average of its neighbors
[19]. The results of inpainting the tensors (top) and FODs (bottom) with both
approaches is shown in Figure 1 within the transparent border.

Column C shows the ground truth reconstructed tensors (top) and FODs
(bottom). The baseline approach is shown in column B and our optimal approach
is show in column D. At first glance, the baseline approach appears to provide
a reasonable restoration of the tensors but upon closer inspection many tensors
have different anisotropy (shape) and orientation (color) relative to the ground
truth tensors. For FODs restored using the baseline approach it is immediately
clear that they differ in both magnitude and orientation with respect to the
ground truth. Our optimal approach more accurately preserves the anisotropy
and orientation of the ground truth tensors and the magnitude and orientation
of the ground truth FODs.

The mean angular error (MAE) is plotted for the primary fiber direction
for tensors on the left and on the right for FODs (solid) from the HCP template
mean normalized into the lesion area (green), restored using the baseline ap-
proach (orange), and restored using our optimal approach (blue) with respect to
the primary fiber direction from the respective ground truth tensors and FODs
for lesion sizes varying from 6 voxels to 1035 voxels in Figure 2. For the smallest
lesions, the difference in MAE is negligible for all the approaches and the FODs
MAE is less than the tensors MAE. However, as lesion size increases the FODs
MAE quickly outpaces the tensors MAE. In general, the template average has
the largest MAE while our optimal approach has the smallest as lesion size in-
crease. The MAE for the baseline approach grows more rapidly than our optimal
approach for both tensors and FODs and for large lesions the MAE is twice as
large compared to our optimal approach. On the right in Figure 2, the MAE for
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Fig. 1. In-vivo simulated model restoration: The lesion region is demarcated by the
transparent border. Rician noise is added to the original diffusion signal until SNR
= 3 producing the tensors (top) and FODs (bottom) in A. The baseline approach
in B appears to provide reasonable approximation of normal tensors but upon closer
inspection the restored tensors differ in anisotropy and orientation, while for FODs
there are large deviations in magnitude and orientation from the ground truth The
ground truth reconstructions are in C. Tensors and FODs restored using our optimal
approach are in D. Notice that the tensors and FODs restored using our approach
more closely match the ground truth in terms of orientation and shape compared to
the baseline.

the second fiber population is plotted as the dotted line and is typically twice
as large as the MAE for the primary FOD fiber population. The trends for the
angular error in the second fiber population mirror those seen in the primary
FOD fiber population. Our optimal approach achieves the smallest MAE.

On the top left of Figure 3, the root mean squared error (RMSE) in frac-
tional anisotropy (FA) with respect to the ground truth is measured for varying
lesion sizes. The RMSE starts high and then slowly decreases until its constant
with increasing lesion size for the template mean (green). The RMSE of FA val-
ues extracted from the flipped ROI in the contralesional area (red) with respect
to the original FA values also starts high and then grows slowly with increasing
lesion size. For lesion sizes < 200 voxels, the baseline and optimal approach have
almost identical trends, but for larger sizes the baseline error grows much faster
than for our optimal approach. At large lesion sizes the baseline approach again
has an error almost double our optimal approach. For axial diffusivity (AD) on
the top right, the template mean and optimal AD RMSEs both grow moderately
with increasing lesion size while the RMSE for the baseline and flipped case grow
faster. On the bottom row in Figure 3, the RMSEs for mean diffusivity (MD)
and radial diffusivity (RD) are plotted. The MD and RD RMSE for the flipped
case grows the fastest with increasing lesion size while the template mean, the
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Fig. 2. Analysis of angular error: The MAE is plotted on the left for tensors and on
the right for FODs (solid) for the primary fiber direction for varying lesions sizes. The
MAE for the smallest lesion sizes is comparable across all approaches and the FODs
MAE is smaller than the tensors MAE. However, the FODs MAE quickly outpaces the
tensors MAE at larger lesion sizes. The template average (green) has the largest MAE
while our optimal approach (blue) as the smallest as lesion size increase. The MAE for
the baseline approach (orange) grows more rapidly than our optimal approach for both
tensors and FODs. Typically, the baseline approach has a MAE twice as large as of our
optimal approach. On the right, the MAE for the second fiber population is plotted
as the dotted line. It is typically twice as large as the MAE for primary FOD fiber
population. The MAE trend in the secondary fiber population mirrors those seen in
the primary FOD fiber population for all restoration approaches. Our optimal approach
minimizes the MAE the most compared to the baseline and template approaches.

baseline, and optimal approachs RMSE grow slowly. Interestingly, there is not
much gain in terms of RMSE for MD and RD between the baseline and our
optimal approach. In general, our optimal approach has the smallest RMSE and
grows the slowest with increasing lesion size while the baseline outperforms the
template mean which outperforms the flipped-case for all tissue measures.

3.2 Lesion restoration

The restoration results using our optimal approach are plotted in Figure 4
for three patients. The lesion region for each patient that undergoes restoration
is demarcated in red on the coronal FA slice in column A. The lesioned tensors
before and after the restoration are seen in columns B and C in Figure 4. In
column B, the tensors in the lesion area have lost their normal color (orienta-
tion) and shape (anisotropy). Notice that the restored tensors in column C have
both normal appearing shape and color. The lesioned FODs before and after
restoration are plotted in columns D and E. In column D, the lesioned FODs
have lost their normal orientation and magnitude. The orientation and magni-
tude of FODs in the lesion are recovered after undergoing restoration using our
optimal approach. Moreover, the restored tensors and FODs demonstrate high
spatial coherence with the surrounding healthy white matter tensors and FODs.

The restoration of scalar tissue microstructure measures AD, MD, and RD
are plotted in Figure 5 for patient 1 on the same coronal plane. In the top row are
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Fig. 3. RMSE of tissue microstructure measurements: On the top left, RMSE FA for
the baseline (orange) and our optimal approach (blue) show nearly identical trends for
lesion sizes < 200 voxels. The baseline RMSE FA increases more rapidly compared to
our optimal approach and is nearly twice as large at larger lesion sizes. For the template
mean (green) the RMSE gradually decreases until becoming constant as the lesion size
increases. The RMSE of FA values extracted from the flipped ROI in the contralesional
area (red) with respect to the original FA values grows slowly with increasing lesion
size. On the top right the RMSE for axial diffusivity (AD) is plotted. The template
mean and optimal AD RMSEs both grow moderately with increasing lesion size while
the RMSE for the baseline and flipped case grow faster. On the bottom row, the
RMSEs for mean diffusivity (MD) and radial diffusivity (RD) are plotted. The MD
and RD RMSE for the flipped case grows the fastest with increasing lesion size while
the template mean, the baseline, and optimal approachs RMSE grow slowly. For MD
and RD there is not much gain with our optimal approach over the baseline. In general,
our optimal approach has the smallest RMSE and grows the slowest with increasing
lesion size for all tissue measures.

the measures before the restoration and in the bottom row after the restoration.
The lesion area is demarcated in red. Notice that after restoration using our
optimal approach that the lesion area has been restored to a normal appearance
for all the scalar diffusivities.

To demonstrate the improved mapping of lesion connectivity after fiber
model restoration, we perform deterministic tractography before and after restora-
tion on FODs in MRtrix with default settings using the SD STREAM algorithm
from a seed image consisting of two voxels below the lesion area with 1000 seeds
per voxel [14]. In Figure 6, the tractography results before the restoration (top)
and after the restoration (middle) are displayed on top of the magnified portion
of their lesion in the sagittal FA slice which is denoted by the arrow (bottom).
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Fig. 4. Restoration results for three stroke patients: The lesion regions where models
undergo restoration is demarcated in red in column A. The average lesion size is 390
voxels. In column B are the tensors before the restoration and afterwards in column C.
The loss of anisotropy (shape) and proper orientation (color) of healthy white matter
tissue in the CST are visible in column B. In column C, our approach restores the
orientations and anisotropy of the tensors to a normal appearance. Similarly, the FODs
in the lesion area of column D have lost their normal orientation and magnitude.
After underoing restoration using our optimal approach the normal orientation and
magnitude of the FODs in the lesion area have been recovered in E. The restored
tensors (C) and FODs (E) demonstrate high spatial coherence with their surroundings.

In all three patients, once the tracking enters portions of the lesion area it pre-
maturely terminates before the restoration, preventing an accurate mapping of
connectivity within the lesion. After the FODs have been restored, tracking
through the lesion area becomes feasible enabling a more accurate mapping of
the lesions connectivity.

4 Discussion

Using in-vivo simulations and stroke patient data, we demonstrated the
ability of our novel approach for accurately restoring both the orientation and
magnitude of FODs and the orientation, anisotropy, and tissue microstructure
measures of diffusion tensors in WM lesions. Our optimal affine estimator ap-
proach offers superior performance over a diffusion based inpainting approach
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Fig. 5. Coronal view of tissue microstructure measures before (top) and after (bottom)
restoration for patient 1: From left to right axial diffusivity, mean diffusivity, and radial
diffusivity. The lesion area is demarcated in red. The lesion area has been restored to
a normal appearance for all measures.

that takes the average of neighboring tensors for inpainting a lesioned area as
well as the trivial copy and pasting of tensors or FODs from the normalized HCP
tensor or FOD template.

Simple neighbor averaging performs well for very small lesions. However, as
the lesion sizes increases, it introduces increased blurring that compounds mov-
ing inward. The increased blurring is reflected by the large increases in angular
error and error in scalar measures such as FA or AD as the lesion sizes increase.
Our optimal approach performs well at restoring tensors and FODs across all
lesion sizes with only modest increases in angular error and error in scalar mea-
sures as the lesion size increases because as the algorithm moves inward, the
fiber diffusion models are inpainted with their optimal affine combination of
their neighbors such that the MSE is minimized. Consequently, blurring is re-
duced as the algorithm moves toward the center of the lesion.

Although performance was only measured on simulated cuboidal lesions, our
method is applicable to lesions of any shape. Besides lesion size and location, the
quality of the restoration depends on the initial healthy fiber diffusion models
that are optimally combined to inpaint the first set of models in the lesion area.
If the healthy models are corrupted by noise or by proximity to the lesion, it
will get propagated into all subsequent inpainted models. Consequently, we rec-
ommend overestimating the lesion mask and carefully defining the white matter
mask to ensure all models used in the initial stages are in fact healthy. More-
over, despite only demonstrating the restoration of lesioned diffusion tensors
and FODs, orientation distribution functions (ODFs) from QBI could also be
restored using our approach by representing them with an orthonormal spherical
harmonic basis and using FOD reorientation to build a distribution of ODFs.
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Fig. 6. Deterministic tractography results before (top) and after (middle) restoration:
Before the restoration, a portion of all three patients streamlines prematurely terminate
once they enter the lesion area, making it difficult to study the patients lesion connec-
tivity. After the restoration, tractography can be performed more accurately because
the FODs have been restored, enhancing the tracking and mapping of connectivity in
the lesion areas. The results are plotted on top of magnified portion of the lesion area
in the sagittal FA slice (bottom).

Clinicians and researchers could find our approach beneficial for restoring
fiber diffusion models in lesioned areas in their clinical diffusion datasets because
it not only improves the accuracy of measuring changes in tissue microstructure
relative to measurements from the contralesional area but also improves the
accuracy of tractography results and the mapping of connectivity from the lesion
for improved study of structure-function relationships and outcome prediction.
To apply our approach, visit https://github.com/clintg6/OFDMR.
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